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We study the properties of athermal polymers at hard walls using two different versions of
self-consistent field theory �SCFT�. We calculate the segment density profiles, center of mass
profiles, bond orientation vector profiles, and end-to-end vector distributions and compare with
grand canonical Monte Carlo simulations. Using the same excess free energy prescription for both
theories, we investigate the role of the excluded volume intramolecular interactions on these
properties, show the relation between SCFT and density functional theory, and discuss several
numerical implementations of the SCFT method. The phantom chain model gives Gaussian chain
statistics independent of the conditions. Including the full intramolecular potential leads to an
improved description of the low density regime but it does not produce any significant improvement
in the semidiluted and concentrated regimes. We show that a viable compromise is achieved by
using the effective field resulting from the phantom chain model and by calculating single chain
properties using the full intramolecular potential. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2976339�

I. INTRODUCTION

The understanding and prediction of the properties of
inhomogeneous polymer systems is of paramount impor-
tance for many applications, e.g., lubricants, adhesives, and
protective coatings. Even if two polymers appear to be simi-
lar on the macroscale, small incompatibility of interactions
between the segments of different species may give rise to
demixing and formation of an interface. The resulting char-
acteristic of such systems depends crucially on the balance of
bulk and surface properties. Among several theoretical ap-
proaches devised to describe inhomogeneous polymeric flu-
ids the self-consistent field theory �SCFT� and the density
functional theory �DFT� have attracted considerable interest
in recent years.

In the traditional SCFT approach one approximates the
ensemble of interacting polymer molecules by a system of
noninteracting polymer chains in an effective, position de-
pendent field.1,2 The contributions to this field are due to the
external potential and interaction with other polymer coils.
The field depends in a self-consistent manner on the density
distribution and determines the conformation of polymer
chains. The general idea, first introduced by Edwards,3 Hel-
fand and Tagami,4 and Helfand5,6 has attracted a lot of re-
searchers over the years. The usual representation of a poly-
mer coil is a Gaussian thread model in which the polymer is
described as a continuous, fully flexible space curve; how-
ever, other polymer models, such as wormlike semiflexibile
chain model7–10 or lattice random walk11,12 have also been
considered. The Gaussian model has gained considerable

popularity, in part, because of relative simplicity of numeri-
cal implementation; however, the resulting SCFT is lacking
in short length-scale description such as oscillatory profiles.

In the DFT framework, one considers the grand potential
of a system as a functional of the polymer density.13 This
approach is inspired by highly successful DFT for simple
fluids.14 One of the first formulations of DFT for polymer
systems is based on the seminal work of Chandler et al.,15

who proposed a molecular DFT for polymeric systems. In
this approach the polymer is represented as a finite length
chain of interaction sites. The Helmholtz free energy func-
tional of an inhomogeneous polymer system is constructed
using the familiar functional Taylor expansion about the
ideal reference state, and the expansion is usually truncated
after the quadratic term. This approach requires the site-site
direct correlation function as an input and is usually taken
from integral equation theories for polymer systems.16–18 An-
other formulation of DFT for polymer systems employs the
concept of weighted density approximation known from
simple fluids. Within this approach the excess free energy is
calculated using a locally averaged or a weighted polymer
segment density. The earliest application of this concept was
proposed by Woodward,19 in which the weighted density was
calculated using one simple weight function. The numerical
performance of this class of DFT depends on the choice of
the bulk equation of state and weight functions.20–25 More
sophisticated approaches involve weight functions con-
structed on the basis of the direct correlation function.26,27

Using Wertheim’s thermodynamic perturbation theory28

�TPT�, Kierlik and Rosinberg29,30 proposed a nonlocal DFT
for polymer mixtures. This approach was further developeda�Electronic mail: pawel.bryk@gmail.com.
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by Yu and Wu,31 who proposed a refined and simpler imple-
mentation version of TPT functional, which has attracted a
considerable interest.32–37

There is a deep connection between SCFT and DFT ap-
proaches and it has been argued that the two frameworks are
essentially equivalent.2,17,19,38–40 This point of view has be-
come the cornerstone in developing theories that combine
single chain simulations and effective fields resulting from
the excess free energy functionals.26,41–47 The incorporation
of the nonlocal density functionals with one or more
weighted densities into SCFT framework leads to the correct
prediction of the packing effects, such as oscillatory profiles.
Henceforth, we will refer to this kind of approach, where the
single chain simulations are coupled with a liquid state
theory functional, also as SCFT. A related approach has been
recently proposed by Cao et al.48 They put forward a hybrid
DFT method that uses single chain simulations in conjunc-
tion with TPT excess free energy functional.31 The method
has been used to study the structure of confined polymers of
various architectures, such as star polymers, rod-coil copoly-
mers, rigid rods, and dendrimers.49–52 The main purpose of
the hybrid DFT �hDFT� method is to avoid the direct inte-
gration of the recursive propagator functions, which inevita-
bly arises in the DFT, and which becomes progressively dif-
ficult to handle as the complexity of polymer topology
increases.48 From the formal point of view hDFT can be
interpreted as a variant of SCFT, but the single chain simu-
lations are performed for the phantom chain model that ac-
counts only for the chain connectivity �and not for the in-
tramolecular excluded volume effects�. Therefore, the hDFT
results48 will be identical to that from DFT theory31 if the
direct calculation of propagator functions is feasible, e.g., for
linear or star polymers.31,37 On the other hand, hDFT offers
the possibility of calculating all chain properties that are usu-
ally difficult to extract from DFT, e.g., center of mass profile
or end-to-end vector.

In the present paper, we consider SCFT for polymers,
where the single chain calculations are performed using two
different polymer models, the phantom chain model, which
accounts only for the connectivity constraint, and the self-
avoiding chain model, where single chain calculations incor-
porate the full intramolecular potential. As a test ground we
choose the classic problem of linear polymers at hard walls.
In both variants we employ the same nonlocal excess free
energy functional, which allows us to isolate the role of ne-
glected intramolecular excluded volume interactions in
SCFT. We thoroughly analyze both the local and global chain
properties resulting from the two approaches and compare
them with Monte Carlo �MC� data. We also provide and
discuss several possible implementations of the single chain
simulation technique.

The remainder of the paper is organized as follows. In
Sec. II we briefly describe the theoretical approaches for in-
homogeneous polymeric systems, while in Sec. III we
present our results for both local and global chain properties,
and we conclude in Sec. IV.

II. THEORY

Let us first consider a microscopic DFT for polymeric
fluids.19,29,31 Within this framework the grand potential of the
system is a functional of the local density of polymer ��R�,

����R�� = F���R�� +� dR��R��Vext�R� − �� , �1�

where R= �r1 ,r2 , . . . ,rM� denotes the set of segment posi-
tions, Vext�R�=�i=1

M vext�ri� is the external field acting on each
monomer, � are the external and the chemical potentials,
respectively, while F is the intrinsic free energy,

F���R�� = �−1� dR��R��ln���R�� − 1�

+� dRVint�R���R� + F̄ex���R�� . �2�

In the above equation, Vint is the intramolecular potential

�which will be defined later�, whereas F̄ex���R�� is the excess
free energy over that of the ideal gas of chains, which con-
tain all the intramolecular interactions but no intermolecular
interactions. Contrary to DFT for simple fluids, this choice of
the ideal reference system is not the only possible. One can
�formally� split the free energy into the reference part of
ideal gas of unconnected point particles and incorporate the
intramolecular part into the excess free energy.53 However, in
our choice we follow the approach used in Refs. 19 and 31.

While Eq. �1� is formally exact, further approximations
are necessary in order to arrive at a tractable approach. The
crucial step introduces an approximation

F̄ex���R�� � Fex��PS�r�� , �3�

where Fex is the excess free energy represented as a func-
tional of the average �total� segment density defined as

�PS�r� =� dR�̂1�R�, �̂1�r� = �
i=1

M

��r − ri� . �4�

The approximation in Eq. �3� enables the application of
treatments known from the DFT of simple fluids. We apply
the Yu and Wu31 functional for Fex, which is based
on the fundamental measure theory of Rosenfeld.54 Accord-
ing to this approach the excess free energy is a volume
integral �Fex=�dr�. The excess free energy density �
is a simple function of a set of weighted densities 	n�
,
�=3,2 ,1 ,0 ,V1,V2 defined as convolutions of the average
segment density with the weight functions w�. The latter
depends on the geometrical properties of the segments and is
given explicitly in Refs. 31 and 54.

In the theory of Yu and Wu,31 the excess free energy
density is represented as a sum of two contributions,
�=�HS+�P. �HS describes the reference mixture of hard
spheres and for this contribution we choose the elegant and
inspiring White-Bear version.55,56

The excess free energy density due to the chain connec-
tivity �P is an “inhomogeneous counterpart” of Wertheim’s
TPT. The TPT approach was originally devised to treat an
associating fluid in which a molecule has sticky spots located
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on its surface. In the limit of complete association a chain
molecule is formed, and the free energy of the chain fluid is
related to the free energy of a reference fluid at the same
density and temperature.

In this work, we use a variant of this approach known as
first order perturbation theory �TPT1�,

�P
�TPT1� =

1 − M

M
n0� ln�yHS� , �5�

where �=1−nV2 ·nV2 / �n2�2. yHS is the expression for the con-
tact value of the hard sphere radial distribution function in
the reference, hard sphere fluid

yHS =
1

1 − n3
+

n2	�

4�1 − n3�2 +
�n2	�2�

72�1 − n3�3 . �6�

In the first order approximation only the graphs containing at
most one associating bond are included; therefore, only the
number of bonds is taken into account. This means that the
resulting equation of state is the same for linear and branched
chains. On the other hand, the only information required by
TPT1 is the radial distribution function in the reference fluid
of unconnected monomers. This is a great advantage of
TPT1 because much is known about the radial distribution
function for simple fluids. The topology of a polymer mol-
ecule and correlations between three and more segments can
be progressively incorporated into the framework by consid-
ering the TPT of higher order, where graphs containing two
and more associating bonds are included, but this issue will
not be discussed in detail here.

Using variational principle �� /���R�=0, one obtains
the following equation for the density profile:

�PS�r� = exp����� dR�
i=1

M

��r − ri�


exp�− �Vint�R� − ��
l=1

M

�l�rl�� , �7�

where �l�rl� is

�l�rl� =
�Fex

��PS�rl�
+ vext�rl� . �8�

In order to arrive at a tractable theory, Vint must be specified.
In many DFT studies, it has been assumed that the intramo-
lecular potential may be described by the bonding contribu-
tion only; hence,

exp�− �Vint�R�� = 
i=1

M−1

���ri+1 − ri� − 	�/4�	2. �9�

The above equation means that the intramolecular potential
incorporates only the connectivity constraint but no excluded
volume effects. We will refer to this as a phantom chain
model. This is a reasonable approximation in the melt re-
gime, where the screening effects lead to almost the ideal
chain statistics but is progressively worse as the density de-
creases. Using Eq. �9� one can rewrite Eq. �7� as

�PS�r� = exp�����
i=1

M

exp�− ��i�r��Gi�r�GM+1−i�r� , �10�

where the propagator functions Gi�r� are determined from
the recurrence relation,

Gi�r� =� dr� exp�− ��i�r���
��	PS − �r − r���

4�	PS
2 Gj−1�r��

�11�

for i=2,3 , . . . ,M and with G1�r��1.
In order to incorporate the intramolecular excluded vol-

ume interactions, it is necessary to perform single chain
simulations. This is possible because the above specified
DFT can be recast in a form of SCFT. In the Appendix we
point out the connection between DFT and SCFT. The SCFT
formalism allows for convenient evaluation of many impor-
tant chain properties such as end-to-end vector profiles or the
center of mass profile. We will refer to the model incorpo-
rating the full intramolecular interactions as the self-avoiding
chain model.

Using definition P�R�=exp�−�Vint�R�� and noting that it
represents the intramolecular probability density of a chain
with conformation R, Eq. �7� may be rewritten as

�PS�r� = exp����� dR�
i=1

M

��r − ri�P�R�


exp�− ��
l=1

M

�l�rl�� . �12�

Practical realization of the above equation may be car-
ried out by writing it as a canonical average over the single
chain probability distribution,

�PS�r� = exp������
i=1

M

��r − ri�e−��l=1
M �l�rl��

intra

. �13�

There are several ways one can implement this calculation.
The simplest choice is to evaluate the average on the fly
while performing a single chain MC simulation. A related
method is to produce independent chain conformations with
a Rosenbluth scheme.57 For strong fields, the chain confor-
mations could largely deviate from the single chain limit, so
it can prove convenient to introduce the fields within the
Rosenbluth weights. In practice, this amounts to sampling
chains from the modified distribution,

Pbias = 
i=1

M
e−��ui�ri�+�i�ri��

wi
, �14�

where ui is the intramolecular energy felt by segment i with
all segments j i, while wi are discretized partition functions
of the form,

wi = �
k=1

n

e−��ui�ri
�k��+�i�ri

�k���. �15�

In this equation, the sum runs over n trial segment positions.
Denoting the global Rosenbluth factor W=i

Mwi, one notices
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that P=WPbias. Accordingly, the canonical average may be
obtained by correcting for the bias with the Rosenbluth fac-
tor,

�PS�r� =��
i

M

��r − ri�W�
bias

. �16�

Whereas the Rosenbluth scheme is a significant improve-
ment over the single chain simulation, the convergence of the
self-consistent procedure requires several iterations. Hence,
generating one independent set of chain conformation for
each iteration turns out to be cumbersome.

The way out is to simply produce a priori a large initial
sample of single chain conformations, which can then be
employed to generate averages for all iterations. This sample
can be obtained using either a standard single chain MC
simulation or with a Rosenbluth scheme as described above,
with no � bias in Eqs. �14� and �15�. Unfortunately, for large
fields a very large number of chains are required for the
chain properties to converge, and the procedure then be-
comes memory demanding.

In practice, we solved for self-consistency by employing
a standard Picard method. The convergence is then slow and
producing an initial sample of conformations is far more
efficient. Faster convergence may be obtained using
Newton–Raphson based methods,2,44 and then on the fly bi-
ased sampling could become competitive.

The outlined procedure can be applied either to the
phantom chain model �Eq. �9�� or to the self-avoiding chain
model. After the convergence is attained the resulting density
profile can be used to obtain other conformation properties
such as end-to-end vector, bond orientation vector, and cen-
ter of mass profile. It is also possible to use a mixed strategy
by taking the effective field obtained from the converged
solution of the phantom chain model as an input for calcu-
lating the conformation properties of the self-avoiding chain
model. This procedure is not self-consistent but provides a
reasonable description at lower computational cost.21 We will
refer to this as the mixed method.

III. RESULTS

A. Model and simulations

The model considered is the same as that studied in pre-
vious work.58,59 Athermal chains of tangent hard spheres
with diameter 	 and M segments long are adsorbed on a
purely repulsive wall of the form

Vext�z� = ��, z  	/2
0, z � 	/2.

� �17�

An NpT code for the simulation of dumbbells60 was ex-
tended for the simulation of either rigid or chain molecules
in the NVT, NpT, or grand canonical ensemble in either bulk
or slit pore geometry. Translational and rotational move-
ments were supplemented with configurational bias
displacements61–63 and deletion/insertion attempts.64 The en-
ergy was efficiently evaluated with the help of a link cell list,
as described in Ref. 65. Overall translation, rotation, con-
figurational bias partial chain regrowth, and configurational

bias insertion/deletion attempts were performed in the ratio
of 15:15:35:35. Simulations were carried out inside the slit
pores with size of 15
15
35 in units of hard sphere
diameter.

We have calculated segment densities and center of mass
densities. To describe the structure of the polymer close to
the wall, we have also computed the average bond distance
and end-to-end squared vector components as a function of z.
Hence, we define a bond vector pertaining to chain segment
i as bi=ri+1−ri and an chain end-to-end vector as Ree=rM

−r1. The parallel and perpendicular squared components are
then computed as bpar

2 =1 /2�bx
2+by

2� and bper
2 =bz

2 �with like-
wise definition for the components of Ree�. In order to cal-
culate their value as a function of perpendicular distance to
the substrate, we locate bi vectors at segment i and Ree at the
chain’s center of mass.

In this study we considered chains of length M =4, 8, 12,
and 16. For each chain, the input chemical potential was set
so as to achieve fixed segment densities of 0.01, 0.2, 0.4, and
0.6 /	3 �as tabulated in Ref. 59�. However, for the longest
chains at the highest density, test particle insertions were too
inefficient and the chemical potentials could not be deter-
mined accurately. Hence, the resulting bulk densities are
somewhat smaller. In order to facilitate the discussion we
will only show results for the shortest and longest chains. We
have checked that all our conclusions hold also for the inter-
mediate size chains M =8 and M =12.

B. Local properties

We start the analysis of the local properties with the total
segment density profiles. Figures 1 and 2 show the total den-
sity profiles evaluated using self-avoiding �solid lines� and
phantom chain �dashed lines� models. The theoretical results
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ρ P
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FIG. 1. Total segment density profiles for polymer fluids at a hard wall. The
bulk segment densities and chain lengths are �a� �ps

�b�=0.01	3, M =4;
�b� �ps

�b�=0.2	3, M =4; �c� �ps
�b�=0.01	3, M =16; and �d� �ps

�b�=0.2	3, M =16.
The circles denote GCMC data; the solid and the dashed lines denote SCFT
and DFT results, respectively.
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are compared with grand canonical MC �GCMC� data
�circles�. The profiles displayed in Fig. 1 were calculated for
low densities, �PS

�b�	3=0.01 and 0.2, which means that the
chains are in the dilute regime. At very low density, �PS

�b�	3

=0.01, the self-avoiding SCFT approach is clearly superior.
While for the shorter chain �cf. Fig. 1�a�� the phantom chain
SCFT leads to only slightly worse result, for the longer chain
�cf. Fig. 1�c�� the discrepancy becomes very well visible.
Only very close to the wall both approaches lead to similar
results. This is a consequence of the fact that the contact
value of the profile of the two approaches must be identical.
For higher density �cf. Figs. 1�d� and 1�d��, we observe that
for the shorter chain phantom chain, SCFT gives slightly
better agreement with simulation than the self-avoiding chain
SCFT. However, for the longer chain the self-avoiding SCFT
approach seems to perform better than phantom chain SCFT
but again the difference is minor.

The situation changes at higher bulk segment density.
The profiles displayed in Fig. 2 were calculated for moderate
and high densities, �PS

�b�	3=0.4 and 0.6. We observe that at
moderate bulk density neither approach leads to good predic-
tion of the simulation data �cf. Figs. 2�a� and 2�c��. The
microstructure and, in particular, local packing effects are
described only qualitatively. The phantom chain SCFT seems
to perform better than the self-avoiding SCFT version, par-
ticularly at distances around z�1.5	. The contact value of
the profile for the longer chain system �cf. Fig. 2�c�� dis-
agrees with simulation and this suggests that a better equa-
tion of state would improve the theoretical predictions. For
dense systems �cf. Figs. 2�b� and 2�d��, both theories give
very similar results and lead to overall good agreement with
simulations.

Another important local property is the orientation of

bonds between segments within a chain. Figures 3 and 4
show the results obtained for the corresponding systems
studied in Figs. 1 and 2. The solid and dashed lines denote
the self-avoiding and phantom chain SCFT approaches, re-
spectively. In addition, marked as red dotted lines, we
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FIG. 2. Total segment density profiles for polymer fluids at a hard wall.
The bulk segment densities and chain lengths are �a� �ps

�b�=0.4	3, M =4; �b�
�ps

�b�=0.6	3, M =4; �c� �ps
�b�=0.4	3, M =16; and �d� �ps

�b�=0.6	3, M =16. The
circles denote GCMC data; the solid and the dashed lines denote SCFT and
DFT results, respectively.
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FIG. 3. �Color online� Mean square parallel and perpendicular components
of the vector between bonded neighbors along the chain as a function of the
distance to the wall. The bulk segment densities and chain lengths are �a�
�ps

�b�=0.01	3, M =4; �b� �ps
�b�=0.2	3, M =4; �c� �ps

�b�=0.01	3, M =16; and �d�
�ps

�b�=0.2	3, M =16. The circles denote GCMC data; the solid and the dashed
lines denote SCFT and DFT results, respectively. The red dotted lines are
the results of the mixed method �see text�.
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FIG. 4. �Color online� Mean square parallel and perpendicular components
of the vector between bonded neighbors along the chain as a function of the
distance to the wall. The bulk segment densities and chain lengths are �a�
�ps

�b�=0.4	3, M =4; �b� �ps
�b�=0.6	3, M =4; �c� �ps

�b�=0.4	3, M =16; and
�d� �ps

�b�=0.6	3, M =16. The circles denote GCMC data; the solid and the
dashed lines denote SCFT and DFT results, respectively. The red dotted
lines are the results of the mixed method �see text�.
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present the results obtained using the mixed method. At very
low densities �cf. Figs. 3�a� and 3�c��, the self-avoiding
SCFT gives a good prediction of the bond ordering at a wall.
As density increases �cf. Figs. 3�b� and 3�d��, the self-
avoiding SCFT approach overestimates the ordering of the
bonds at the interface, while phantom chain SCFT predicts
almost perfectly the distribution of bonds for the shorter
chain �cf. Fig. 3�b�� or underestimates the disparity of the
both components of the orientation vector for longer chain
�cf. Fig. 3�d��. A characteristic feature of bond distributions
for moderate and high density systems �cf. Fig. 4� is the
appearance of two regions. In the first region, adjacent to the
wall �z1	�, the bonds prefer the parallel orientation to the
wall. In the second region, located at z�1.5	, the bonds
prefer the perpendicular orientation to the wall. All theoreti-
cal approaches satisfactorily capture the main features of the
bond orientation with phantom chain SCFT performing
slightly better in the first region. We note here that the mixed
method gives bond orientations almost the same as the self-
avoiding SCFT approach.

C. Global chain properties

We now turn to the global chain properties. Figures 5
and 6 show the mean square parallel and perpendicular com-
ponents of the end-to-end vector of chains at a hard wall. In
the direct vicinity of the wall, polymer coil resembles, on
average, a soaplike object with the longer axis oriented par-
allel to the wall. At very low and low densities �cf. Fig. 5�,
we observe that phantom chain SCFT only qualitatively
agrees with simulation, while self-avoiding SCFT yields an
excellent agreement with MC data. At moderate and high
densities, we note that systematic discrepancies arise in the

self-avoiding SCFT approach, especially for the longer chain
�cf. Figs. 6�c� and 6�d��. This is associated with the fact that
for dense systems the polymer coils adopt more compact
conformations than in the diluted regime, and this is not
taken into account in the self-avoiding SCFT approach. The
mixed method gives results almost identical to those in self-
avoiding SCFT approach with the exception of the longest
and densest system. At the highest densities, and particularly,
for longer chains, neither self-avoiding nor phantom chain
SCFT approach is capable of predicting the correct bulk
value of the end-to-end distance. Self-avoiding SCFT pre-
dicts the exact zero density limit result, while phantom chain
SCFT yields results corresponding to purely Gaussian statis-
tics �note the perfect agreement of the asymptotic parallel
and perpendicular components of Ree predicted by phantom
chain SCFT in Figs. 5 and 6 with the known result
Ree

2 =1 /3�M −1�	2�.
Finally, we present the center of mass density profiles of

the studied systems. At very low densities �cf. Figs. 7�a� and
7�c��, we observe that the self-avoiding SCFT approach leads
to an excellent prediction of �CM�z�. As density increases �cf.
Figs. 7�b� and 7�d��, the profiles develop a peak and the
phantom chain SCFT approach predicts it maximum closer
to the wall than the simulation results. On the other hand,
self-avoiding SCFT correctly predicts the position of the
peak but its magnitude is underestimated. These trends are
also visible for medium and high densities �cf. Fig. 8�. How-
ever, for the longer chain we notice that additionally the
self-avoiding SCFT approach yields a peak that is shifted
further away from the wall. Similar to the corresponding
end-to-end vector result, this discrepancy can be attributed to
the fact that the chain conformations used in self-avoiding
SCFT were generated at zero density; hence, on average, the
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polymer coil in self-avoiding SCFT is bigger than at high
density. As a consequence, this must expel the polymer a bit
farther from the wall. In all but the very low density systems,
the mixed method leads to a bad prediction of the center of
mass profile and the disagreement gets worse as the chain
length increases.

IV. DISCUSSION AND CONCLUSIONS

The results showed in Sec. III indicate that the incorpo-
ration of the intramolecular excluded volume interactions
improve theoretical predictions in the dilute regime. This
comes from the fact that the self-avoiding SCFT approach
leads to the exact solution in the zero density limit and this
outweighs the inability of TPT1 theory to obtain the correct
second virial coefficient. However, as density increases we
observe that both SCFT variants lead to deteriorated predic-
tions. Indeed, it turns out that the most troublesome is the
correct treatment of the semidiluted regime, where both
equation of state and chain-chain correlations are important
and it is difficult to devise a good but tractable microscopic
theory. The phantom chain SCFT approach leads to better
predictions in this regime probably because of some cancel-
lations of errors. On the other hand, in the concentrated or
melt regime, where local packing effects dominate, both
phantom chain and self-avoiding chain SCFT lead to very
similar predictions for the profile.

The fact that the phantom chain SCFT becomes progres-
sively better as density increases can be traced back to the
opposing effects of intrachain correlations and correlation-
hole interchain interactions. A rough measure of the limit of
when the incorporation of the self-avoiding chain statistics
improves the theoretical results may therefore be given by
the crossover density between dilute and semidilute �PS

�b�,�	3

=3M /4�Rg
3, where Rg is the gyration radius measured at

zero density. For example, for M =16, we find Rg=2.33 and
�PS

�b�,�	3=0.3. Indeed, for systems denser than this crossover
density �i.e., �PS

�b�=0.4 and 0.6�, the phantom chain SCFT
gives better results. Since �PS

�b�,� scales as M−0.8, the bulk seg-
ment density range, for which self-avoiding chain statistics
improves theoretical predictions, decreases with chain
length.

However, we observe that neither approach leads to
quantitative predictions of the global properties. Phantom
chain SCFT leads to Gaussian chain statistics and therefore
corresponds essentially to the Helfand–Tagami approach
with a Gaussian bead polymer replacing the Gaussian thread.
Since both phantom chain and self-avoiding chain SCFT
consider an isolated polymer coil, the effect of shrinking of
polymer with the density is not captured. Dealing with this
problem would require a coupling between the intramolecu-
lar contribution and the excess free energy contribution, and
this is not a simple task. However, within the SCFT frame-
work, it is possible to at least partially cure this discrepancy
by taking chain conformations generated at nonzero bulk
density.45 This will guarantee the correct value of the end-to-
end vector in the bulk limit but at the expense of additional
many-chain simulations. This solution should also partially
help the performance of the self-avoiding chain SCFT in the
semidiluted regime but must be coupled with better prescrip-
tions for the excess free energy. For all but very dilute sys-
tems, it is possible to obtain at least qualitative predictions
for the end-to-end vector by means of the mixed method.
This approach relies on using the effective field obtained
from phantom chain SCFT �or polymer DFT, by integrating
Eqs. �10� and �11�� and coupling this for the purpose of cal-
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culating only the end-to-end vector, single chain simulation
with intramolecular excluded volume interactions. While this
procedure is not self-consistent, it leads to reasonable predic-
tions but at low computational cost. Another possible way of
improving SCFT theory is to improve the excess free energy
functional. Within this formalism a simple procedure is to
improve the equation of state or to split the excess free en-
ergy into contributions resulting from the inner and end seg-
ments, similar in spirit to Ref. 66.

In conclusion, by means of SCFT we have studied the
properties of athermal polymers at hard walls. We have
showed the relation between the two theories and discussed
several methods of practical implementation. The incorpora-
tion of intramolecular excluded volume interactions leads to
an improved description of the low density regime but it
does not produce any significant improvement in the semidi-
luted and concentrated regimes. A good description in the
whole range of concentrations would require to account for
the solvation effects. However, at present there seems to be
no simple answer to this problem and further studies are
required.
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APPENDIX: RELATION BETWEEN SCFT AND DFT

The canonical partition function for the polymer fluid of
N polymers with M segments each is given by

Z =
�−3MN

N!
� 

i

N

dRi exp�− ��
i=1

N

�Vint + Vrest + Vext�� ,

�A1�

where � is the thermal de Broglie wavelength.
The total energy of the system has been written as a sum

of three contributions: Vint is the internal or intramolecular
contribution, which only depends on single chain coordi-
nates; Vrest, which stands for all the remaining inter- or in-
tramolecular interactions and will generally depend on all
degrees of freedom of the system; and an external field, Vext,
which depends on the segment positions alone. Otherwise,
the precise nature of these contributions is left so far unspeci-
fied for the sake of generality.

We can now introduce the single molecule partition
function for the internal contribution as

Zint = �−3M� dRe−�Vint. �A2�

This allows one to write the total partition function as an
average over single molecule internal degrees of freedom,

Z =
Zint

N

N!
� 

i=1

N

dRiPi�Ri�exp�− ��
i

�Vrest + Vext�� . �A3�

In SCFT, the complicated Vrest term is coarse grained and
described by fex��PS�r��,

Z =
Zint

N

N!
� 

i

N

dRiPi�Ri�


exp�− �� �fex��PS�r�� + vext�r��PS�r��dr� , �A4�

where vext�r� is the field felt by a single segment located at r.
This integral is still very involved, but using a saddle

point approximation in functional space, one obtains Eqs. �8�
and �12� as the mean field solutions. The saddle point result
for the free energy reads as

�F = �Fint
ig ��� + �� fex�r�dr − �� ��r���r�dr . �A5�

The first term in the right hand side corresponds to the ideal
gas free energy in the mean field,

�Fint
ig ��� = − N ln Z� + N ln N − N , �A6�

with the single chain partition function,

Z� = �−3M� dR exp�− �Vint − ��
j

��r j�� . �A7�

Clearly, the saddle point approximation to the free en-
ergy in the SCFT framework is not trivially related to that of
DFT �cf. Eqs. �2� and �A5��. Thompson42 argued that for
fluids of monomers �M =1�, the third term in the right hand
side of Eq. �A5� vanishes, so that SCFT and DFT become
identical. Actually, the connection is far more general and
holds independent of M, as shown below.

In order to relate SCFT and DFT results for the free
energy, we introduce a single chain probability density of the
form

P��R� =
�−3M exp	− �Vint − �� j

��r j�

Z�

, �A8�

using this distribution we can express �Fint
ig ��� in terms of a

Boltzmann entropy and an average energy contribution,

�Fint
ig ��� =� P��R��ln P��R� − 1�dR

+ �� VintP��R�dR + �� �
i

��ri�P��R�dR .

�A9�

One can clearly recognize the similarity with the ideal free
energy term that is usual in DFT. The difference lies in the
third term of the right hand side, an average field, which is
absent in DFT. In order to proceed, we introduce at this stage
an extra integration in the average field term with the help of
a Dirac function,
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� �
i

��ri�P��R� =� ��r���� �
j

��r� − R j�P��R�dR�dr�.

�A10�

Comparing the term in brackets with Eq. �12� we recognize
the solution for the single chain density profile so that the
ideal gas free energy in the field becomes

�Fint
ig ��� =� P��R��ln P� − 1�dR

+ �� VintP�dR +� ��r���r�dr . �A11�

Substitution of the above result into Eq. �A5� finally yields
the desired result �c.f. Eq. �2��,

�F =� P��R��ln P��R� − 1�dR

+ �� Vint�R�P��R�dR + �� fex�r�dr . �A12�

The key point of this prove was the description of the parti-
tion function of the ideal gas in the field in terms of the
corresponding probability distribution �Eq. �A9��, leading to
an entropy term, a mean intramolecular energy, and a re-
maining external field contribution which cancels exactly
that of Eq. �A5�. Note at this stage that the precise form of
the internal and external contributions to the energy was left
undefined. Therefore, one can choose rather arbitrarily what
part of the intramolecular contributions is to be attributed to
single chains. Typically, two possible choices can be consid-
ered. One can just incorporate the bonding potential of the
intramolecular chain interactions. The single chain from
which conformations are sampled is then a Gaussian chain.
Alternatively, one can incorporate all the intramolecular con-
tributions into the single chain statistics, which is expected to
be more accurate but also more complicated to sample. At
any rate, both approaches are acceptable within the formal-
ism, with the only effect of changing the definition of the
excess free energy, which includes excluded volume interac-
tions in the latter choice and does not in the former case.
Apparently, ignoring the intrachain structure dependence on
the excess free energy will be a more severe approximation
when no excluded volume effects are incorporated into the
single chain statistics.

1 F. Schmid, J. Phys.: Condens. Matter 10, 8105 �1998�.
2 M. Müller and L. G. MacDowell, J. Phys.: Condens. Matter 15, R609
�2003�.

3 S. F. Edwards, Proc. Phys. Soc. London 85, 613 �1965�.
4 E. Helfand and Y. Tagami, J. Polym. Sci., Part B: Polym. Lett. 9, 741
�1971�.

5 E. Helfand, J. Chem. Phys. 56, 3592 �1972�.
6 E. Helfand and Y. Tagami, J. Chem. Phys. 57, 1812 �1972�.
7 N. Saito, K. Takahashi, and Y. Yunoki, J. Phys. Soc. Jpn. 22, 219 �1967�.
8 D. C. Morse and G. H. Fredrickson, Phys. Rev. Lett. 73, 3235 �1994�.
9 F. Schmid and M. Müller, Macromolecules 28, 8639 �1995�.

10 K. Ch. Daoulas, D. N. Theodorou, V. A. Harmandaris, N. Ch. Karayian-
nis, and V. G. Mavrantzas, Macromolecules 38, 7134 �2005�.

11 J. M. H. M. Scheutjens and G. J. Fleer, Macromolecules 83, 1619 �1979�.

12 J. M. H. M. Scheutjens and G. J. Fleer, Macromolecules 84, 178 �1980�.
13 J. Wu and Z. Li, Annu. Rev. Phys. Chem. 58, 85 �2007�.
14 R. Evans, in Fundamentals of Inhomogeneous Fluids, edited by D. Hend-

erson �Dekker, New York, 1992�, p. 85.
15 D. Chandler, J. D. McCoy, and S. J. Singer, J. Chem. Phys. 85, 5971

�1986�.
16 J. G. Curro and K. S. Schweizer, J. Chem. Phys. 87, 6411 �2000�.
17 A. L. Frischknecht, J. D. Weinhold, A. G. Salinger, J. G. Curro, L. J. D.

Frink, and J. D. McCoy, J. Chem. Phys. 117, 10385 �2002�.
18 J. B. Hooper, J. D. McCoy, and J. G. Curro, J. Chem. Phys. 112, 3090

�2000�.
19 C. E. Woodward, J. Chem. Phys. 94, 3183 �1991�.
20 C. E. Woodward and A. Yethiraj, J. Chem. Phys. 100, 3181 �1994�.
21 Z. Ye, J. Cai, H. Liu, and Y. Hu, J. Chem. Phys. 123, 194902 �2005�.
22 C. N. Patra and A. Yethiraj, J. Chem. Phys. 118, 4702 �2003�.
23 J. Forsman and C. Woodward, Macromolecules 39, 1261 �2006�.
24 C. Woodward and J. Forsman, Phys. Rev. E 74, 010801�R� �2006�.
25 C. Woodward and J. Forsman, Phys. Rev. Lett. 100, 098301 �2008�.
26 C. N. Patra, J. Chem. Phys. 121, 3930 �2004�.
27 C. N. Patra, J. Chem. Phys. 126, 074905 �2007�.
28 M. S. Wertheim, J. Chem. Phys. 87, 7323 �1987�.
29 E. Kierlik and M. L. Rosinberg, J. Chem. Phys. 99, 3950 �1993�.
30 E. Kierlik and M. L. Rosinberg, J. Chem. Phys. 100, 1716 �1994�.
31 Y. X. Yu and J. Z. Wu, J. Chem. Phys. 117, 2368 �2002�.
32 P. Bryk and S. Sokołowski, J. Chem. Phys. 120, 8299 �2004�.
33 P. Bryk and S. Sokołowski, J. Chem. Phys. 121, 11314 �2004�.
34 P. Bryk, K. Bucior, S. Sokołowski, and G. Żukociski, J. Phys. Chem. B

109, 2977 �2005�.
35 Z. Li and J. Z. Wu, Phys. Rev. Lett. 96, 048302 �2006�.
36 Y.-X. Yu, G.-H. Gao, and X.-L. Wang, J. Phys. Chem. B 110, 14418

�2006�.
37 A. Malijevsky, P. Bryk, and S. Sokołowski, Phys. Rev. E 72, 032801

�2005�.
38 J. P. Donley, J. J. Rajasekaran, J. D. McCoy, and J. G. Curro, J. Chem.

Phys. 103, 5061 �1995�.
39 S. Sen, J. M. Cohen, J. D. McCoy, and J. G. Curro, J. Chem. Phys. 101,

9010 �1994�.
40 K. F. Freed, J. Chem. Phys. 103, 3230 �1995�.
41 R. B. Thompson, Phys. Rev. E 74, 041501 �2006�.
42 R. B. Thompson, Phys. Rev. E 73, 020502 �2006�.
43 M. Müller and L. G. MacDowell, Macromolecules 33, 3902 �2000�.
44 A. Yethiraj and C. E. Woodward, J. Chem. Phys. 102, 5499 �1995�.
45 M. Müller, L. G. MacDowell, and A. Yethiraj, J. Chem. Phys. 118, 2929

�2003�.
46 C. N. Patra and A. Yethiraj, J. Chem. Phys. 112, 1579 �2000�.
47 H. Chen, Z. Ye, J. Cai, H. Liu, Y. Hu, and J. Jiang, J. Phys. Chem. B 111,

5927 �2007�.
48 D. Cao, T. Jiang, and J. Z. Wu, J. Chem. Phys. 124, 164904 �2006�.
49 D. Cao, M. Zhu, and W. Wang, J. Phys. Chem. B 110, 21882 �2006�.
50 T. Jiang and J. Z. Wu, J. Chem. Phys. 127, 034902 �2007�.
51 L. Cheng and D. Cao, J. Phys. Chem. B 111, 10775 �2007�.
52 L. Cheng and D. Cao, J. Chem. Phys. 128, 074902 �2008�.
53 S. Tripathi and W. G. Chapman, Phys. Rev. Lett. 94, 087801 �2005�.
54 Y. Rosenfeld, Phys. Rev. Lett. 63, 980 �1989�.
55 R. Roth, R. Evans, A. Lang, and G. Kahl, J. Phys.: Condens. Matter 14,

12063 �2002�.
56 Y. X. Yu and J. Z. Wu, J. Chem. Phys. 117, 10156 �2002�.
57 M. N. Rosenbluth and A. W. Rosenbluth, J. Chem. Phys. 23, 356 �1955�.
58 A. Yethiraj and C. K. Hall, Macromolecules 23, 1865 �1990�.
59 L. G. MacDowell and P. Bryk, Phys. Rev. E 75, 061609 �2007�.
60 C. Vega, E. P. A. Paras, and P. A. Monson, J. Chem. Phys. 96, 9060

�1992�.
61 D. Frenkel, G. C. A. M. Mooij, and B. Smit, J. Phys.: Condens. Matter 3,

3053 �1991�.
62 J. I. Siepmann and D. Frenkel, Mol. Phys. 75, 59 �1992�.
63 J. J. de Pablo, M. Laso, and U. W. Suter, J. Chem. Phys. 96, 2395 �1992�.
64 B. Smit, Mol. Phys. 85, 153 �1995�.
65 L. G. MacDowell, Ph.D. thesis, Universidad Complutense de Madrid,

2000.
66 M. Turesson, J. Forsman, and T. Akesson, Phys. Rev. E 76, 021801

�2007�.

104901-9 Polymers at interfaces J. Chem. Phys. 129, 104901 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1088/0953-8984/10/37/002
http://dx.doi.org/10.1088/0370-1328/85/4/301
http://dx.doi.org/10.1002/pol.1971.110091006
http://dx.doi.org/10.1063/1.1677735
http://dx.doi.org/10.1063/1.1678491
http://dx.doi.org/10.1143/JPSJ.22.219
http://dx.doi.org/10.1103/PhysRevLett.73.3235
http://dx.doi.org/10.1021/ma00129a024
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104650
http://dx.doi.org/10.1063/1.451510
http://dx.doi.org/10.1063/1.1518685
http://dx.doi.org/10.1063/1.480884
http://dx.doi.org/10.1063/1.459787
http://dx.doi.org/10.1063/1.466409
http://dx.doi.org/10.1063/1.2117009
http://dx.doi.org/10.1063/1.1543141
http://dx.doi.org/10.1021/ma051934g
http://dx.doi.org/10.1103/PhysRevE.74.010801
http://dx.doi.org/10.1103/PhysRevLett.100.098301
http://dx.doi.org/10.1063/1.1776118
http://dx.doi.org/10.1063/1.2567271
http://dx.doi.org/10.1063/1.453326
http://dx.doi.org/10.1063/1.466142
http://dx.doi.org/10.1063/1.466599
http://dx.doi.org/10.1063/1.1491240
http://dx.doi.org/10.1063/1.1695554
http://dx.doi.org/10.1063/1.1814075
http://dx.doi.org/10.1021/jp0468511
http://dx.doi.org/10.1103/PhysRevLett.96.048302
http://dx.doi.org/10.1021/jp060986k
http://dx.doi.org/10.1103/PhysRevE.72.032801
http://dx.doi.org/10.1063/1.470592
http://dx.doi.org/10.1063/1.470592
http://dx.doi.org/10.1063/1.468028
http://dx.doi.org/10.1063/1.470255
http://dx.doi.org/10.1103/PhysRevE.74.041501
http://dx.doi.org/10.1103/PhysRevE.73.020502
http://dx.doi.org/10.1021/ma991796t
http://dx.doi.org/10.1063/1.469279
http://dx.doi.org/10.1063/1.1535893
http://dx.doi.org/10.1063/1.480706
http://dx.doi.org/10.1063/1.2186323
http://dx.doi.org/10.1021/jp064040m
http://dx.doi.org/10.1063/1.2751497
http://dx.doi.org/10.1021/jp072631m
http://dx.doi.org/10.1063/1.2838198
http://dx.doi.org/10.1103/PhysRevLett.94.087801
http://dx.doi.org/10.1103/PhysRevLett.63.980
http://dx.doi.org/10.1088/0953-8984/14/46/313
http://dx.doi.org/10.1063/1.1520530
http://dx.doi.org/10.1063/1.1741967
http://dx.doi.org/10.1021/ma00208a052
http://dx.doi.org/10.1103/PhysRevE.75.061609
http://dx.doi.org/10.1063/1.462214
http://dx.doi.org/10.1080/00268979200100061
http://dx.doi.org/10.1063/1.462037
http://dx.doi.org/10.1080/00268979500101011
http://dx.doi.org/10.1103/PhysRevE.76.021801

