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Monte Carlo simulations are presented for a coarse-grained model of real quadrupolar fluids.
Molecules are represented by particles interacting with Lennard—Jones forces plus the thermally
averaged quadrupole-quadrupole interaction. The properties discussed include the vapor-liquid
coexistence curve, the vapor pressure along coexistence, and the surface tension. The full isotherms
are also accessible over a wide range of temperatures and densities. It is shown that the critical
parameters (critical temperature, density, and pressure) depend almost linearly on a quadrupolar
parameter g=Q**/T*, where Q* is the reduced quadrupole moment of the molecule and 7* the
reduced temperature. The model can be applied to a variety of small quadrupolar molecules. We
focus on carbon dioxide as a test case, but consider nitrogen and benzene, too. Experimental critical
temperature, density, and quadrupolar moment are sufficient to fix the parameters of the model. The
resulting agreement with experiments is excellent and marks a significant improvement over
approaches which neglect quadrupolar effects. The same coarse-grained model was also applied in
the framework of perturbation theory in the mean spherical approximation. As expected, the latter
deviates from the Monte Carlo results in the critical region, but is reasonably accurate at lower

temperatures. © 2008 American Institute of Physics. [DOI: 10.1063/1.2837291]

I. INTRODUCTION

Solvents play an essential role in the design and process-
ing of many molecular materials (e.g., oligomers, polymers,
etc.). In comparison to a melt, the molecular mobility of
dissolved substances increases considerably in solution. Not
only the flow properties can be controlled easily in solution,
but also the phase behavior (and hence the morphology) of
the dissolved materials, e.g., by changing the thermodynamic
state conditions such as temperature, pressure, and concen-
tration.

A particularly important solvent is supercritical carbon
dioxide, because the material is inexpensive, nonpoisonous,
not reactive, and thermally stable. Hence, its application as a
solvent is widespread.l_3 However, the phase behavior of
polymer-solvent systems or other binary fluid mixtures is
rather complex in general. When the thermodynamic control
parameters temperature 7, pressure p, and solute molar frac-
tion x are varied, various liquid-vapor and fluid-fluid phase
equilibria occur, and many different types of (rather compli-
cated) phase diagrams can be observed.*> Even for simple
binary fluid mixtures, e.g., carbon dioxide plus short alkanes
such as hexadecane, the phase diagram is only known rather
incompletely from experiment.ﬁ’7 These uncertainties also
hamper the judgment of the accuracy of the theoretical mod-

YE]ectronic mail: mognetti @uni-mainz.de.
Y Electronic mail: kurt.binder@uni-mainz.de.

0021-9606/2008/128(10)/104501/13/$23.00

128, 104501-1

eling of such systems.gf]1 In fact, due to the large control
parameter space that needs to be explored, comprehensive
experimental work would be very cumbersome, and a mod-
eling approach seems to be the method of choice. However,
the large number of states (7, p,x) that need to be simulated
and the complexity of the systems renders a fully chemically
realistic all-atom simulation practically impossible. Thus, the
construction of a suitable coarse-grained model for such sys-
tems containing polymers (or oligomers, respectively) is
very desirable. While there is a rich literature on the con-
struction of  coarse-grained models for (flexible)
polymers,lz_'9 comparatively little attention has been paid to
the question on how a coarse-grained solvent molecule such
as CO, should be described. Iwai et al."" and Virnau and
co-workers®'” simply used particles interacting with simple
Lennard—Jones forces among themselves and with the beads
of the bead-spring chain that represents effective subunits of
the polymer. While particles interacting with Lennard—Jones
potentials describe noble gases such as liquid argon or neon
rather well, it is clear that a “Lennard—Jonesium” is a some-
what unsatisfactory description of a carbon dioxide mol-
ecule. While considerable attention has been paid to atomis-
tic models of C02,20735 we are not aware of comprehensive
systematic studies of coarse-grained models for this molecu-
lar fluid. With respect to the atomistic models for CO,, we
note that there is no consensus in the literature on a unique
form of the interaction potential and its parameters. Starting
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from the Murthy—Singer-McDonald (MSM) model,” several
potentials have been proposed (for a recent comparison see
Ref. 29). In Ref. 27, two variants of the elementary physical
model (EPM) force field were suggested, that yielded critical
temperatures of 7,=313.4*0.7 and 312.8 +3.0 K, respec-
tively, while the experimental value is 7,=304.2 K.*® In
view of this 3% discrepancy between the atomistic models
and the experiment, it was suggested27 to use the experimen-
tal critical temperature and rescale the energy parameters of
the model to reproduce the correct value of the critical tem-
perature (EPM2). In fact, Virnau and co—workers,g’10 using a
simple “Lennard—Jonesium” to model CO,, fixed the
Lennard—Jones parameters to match both the critical tem-
perature 7. and the critical density p.. Since the atomistic
models underestimate the critical density (yielding27
453.7+4.3 or 449+ 16 kg/m? instead of the experimental
value®® p.=468.0 kg/m?), they also require a corresponding
rescaling of the interaction range parameters. Hence, EPM?2
needs the same input from the experimental critical data as
the coarse-grained model of Virnau and co-workers.®'? For
the resulting model, the coexistence densities predicted for
the liquid branch in the temperature region 230 K<T
<280 K deviate distinctly less from the experimental
results®® than the corresponding results of the coarse-grained
model.*!°

As indicated above, the main interest for obtaining an
accurate coarse-grained model for CO, is its potential appli-
cation in multicomponent systems, e.g., polymer solutions in
which CO, acts as a solvent.*!® For such systems, also,
many attempts were undertaken to derive approximate ana-
lytical equations of state (e.g., Refs. 37 and 38) and it is, of
course, also highly desirable to validate such equation of
state theories by simulations. However, the coarse-grained
model for CO, of Virnau and co-workers,&10 when combined
with a suitable coarse-grained model for the alkanes, re-
quired rather large deviations from the simple Lorentz—
Berthelot mixing rules to account for the available experi-
mental data.*” Most likely, the somewhat oversimplified
CO, model is responsible for most of these deviations. Ap-
proximating CO, as a Lennard—Jones particle without con-
sidering its rather large quadrupolar moment (|Q|=4.3 D A)
is probably not sufficient—the unit D (debye) equals 107'% in
CGS units which are adopted throughout the manuscript.

In the present paper we explore a slightly more involved
coarse-grained model for C02.3 %49 The molecule is still de-
scribed as a Lennard—Jones particle, but we also include the
experimentally known quadrupole moment as an input pa-
rameter, together with critical temperature and critical den-
sity. A precondition for the usefulness of coarse-grained
models is that simulation codes execute very fast. The
angular-dependent quadrupole-quadrupole interaction re-
quires significant computational resources which would be a
serious drawback to such a model. However, compared to the
Lennard—Jones forces, the quadrupolar interaction is still a
rather weak perturbation. Therefore, we apply one further
approximation:39 the angular dependence is averaged over in
a second order thermodynamic perturbation calculation.
Thus, an effective isotropic potential is obtained. Rather en-
couraging results using such an approximation have been
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reported in the literature.*’ Miiller and Gelb*” estimate coex-
istence curves from nonequilibrium molecular dynamics
(NEMD) simulations of temperature quenches from the one-
phase region into the two-phase region, where one then waits
until the system has phase separated into the two coexisting
phases.‘”’42 In this manuscript we apply grand canonical
Monte Carlo methods,‘Bf45 combined with a finite size
scaling“sf47 analysis. This allows us to locate precisely the
critical point of the model. Note that a direct estimation of
the critical point from the simulation is difficult if either
Gibbs ensemble tf:chniques48’49 or the temperature quench
technique“o’41 are applied. In these cases, one relies on a fit of
the coexistence data to a suitable power law extrapolation.
With the present techniques, one can obtain the critical prop-
erties very accurately. This precision is required because the
critical properties are used to gauge the Lennard—Jones pa-
rameters of the model.

In Sec. II, we give a more detailed description of our
model and simulation techniques. Section III describes our
results for carbon dioxide and compares them to previous
approaches. Section IV discusses the application of the
model to other quadrupolar fluids, namely, nitrogen and ben-
zene. Section V describes the application of first order per-
turbation theory in the mean spherical approximation (PT-
MSA) to precisely the same model which was used in the
simulation, thus allowing a meaningful comparison. Finally,
Sec. VI concludes the discussion and gives an outlook on
future work.

Il. MODEL AND SIMULATION TECHNIQUE
A. Choice of model

Our model system consists of neutral spherical particles
which carry a quadrupolar moment Q and interact with each
other both via the Lennard—Jones potential,

I ERE!
Tij Tij

and the quadrupole-quadrupole interaction,™
30?
USQ = meQ(Hi, Qj, ¢,‘j)- (2)
ij

The angle-dependent part is given by
- 2 2 2 2
fQ=1-5cos? 6, -5 cos 0;+ 17 cos” 6; cos” 0;
+2 sin’ 6, sin 6, cos*(¢; — b))
— 16 sin 6, cos 6 sin 6; cos 6, cos(¢; — ;). (3)

In Egs. (1) and (2), r;;=|r;—7j| is the distance between
molecules at sites 7, 7;, while (6;,¢;) are the polar angles
characterizing the mutual orientations of the (linear) mol-
ecules (6; are the angles between the axis joining the two
molecules and the quadrupole vectors of the molecules; ¢;
are the rotational orientations of the quadrupole vectors rela-
tive to the joining axis). In Eq. (1), € and o set the scales of
energy and distance for the Lennard-Jones (LJ) interaction,
respectively.

The angular-dependent part of the potential [Egs. (2) and
(3)] slows down the speed of the algorithm considerably.
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Therefore, following Ref. 39, we average over the angles of
the quadrupolar potential to create an effective isotropic rep-
resentation. More precisely, one expands the Boltzmann fac-
tor exp(—BUgQ), with B=(kgT)~', in a Taylor series to sec-
ond order in S. After taking averages over the angles, the
following temperature-dependent isotropic potential is ob-
tained:

4
QQ_ _ X

U= )
ij

For the potentials of Egs. (1)—(4), one can employ the
standard procedure43’ of cuttmg and shifting to zero at a
cutoff distance r;;=r. =220 typically applied to Lennard—

ij
Jones systems. The total potential then reads

Ury)
B {48[(0’/7‘,-.]‘)12 - (o'/r,~j)6 - 2loq(cr/r,«j)10 + S], r<r,
0, r=r,..
(5)
The reduced quadrupolar interaction parameter is defined as
4
q= %.ICBTWC% q.=4(T.). (6)

q. and T, are the values of the reduced quadrupole parameter
and temperature at the critical point. S shifts the cut potential
to zero at r;=r,, SO that U(r ) is continuous everywhere,

127 7.4

()
~ 16384 " 5256°

Note that Eq. (6) is given in CGS units. In SI units, there is
an additional factor (4me,)~2. It is clear that U(r;) is explic-
itly temperature dependent because g and S are temperature
dependent. Hence, special care needs to be exerted when
temperature derivatives are taken. For instance, the fluctua-
tion relation linking the specific heat to the fluctuations of
the potential energy no longer holds for Eq. (5). We also note
that Eq. (5) differs from the potential obtained when one cuts
off Egs. (1) and (2) at r;;=r.. Indeed, continuity of USQ
would require an orientation-dependent shift of the potential.
It is also well known’' that the relation between the critical
temperature of a fluid and the energy scale ¢ of the LJ inter-
action depends rather strongly on the cutoff r... Our choice of
a rather small value for the cutoff is mainly motivated by the
desire to have a very fast simulation algorithm, but larger
cutoffs will lead to very similar results. As we will demon-
strate later, differences in the phase diagram almost disap-
pear when simulation data are rescaled to match the experi-
mental critical point for different r.. A further motivation for
this choice of the cutoff is that, for ¢g=0, our model reduces
to that of Refs. 8 and 10.

Our strategy will be to compute the critical temperature
T.(g.) and the critical density p.(q.) from the simulation,
using the potential from Egq. (5). Following previous
work,g’lo ¢ and o are determined by the condition that these
critical parameters match precisely their experimental coun-
terparts. In the following, 7* and p* will refer to tempera-
tures and densities (and other quantities that will be intro-

J. Chem. Phys. 128, 104501 (2008)

-- T°(a)/T*(0)

14+ Tl e\ e 4
— p*(a.)/p*(0) P

Ll PP ]
//./ /’(

’o.’/ ,/’ 1

12t £ - g

0 0.1 0.2 0.3 0.4 0.5

FIG. 1. Master curves: normallzed critical temperature T*(qp)/ T*(O) nor-
malized critical density p’ “(q0)/ P, *(0), and normalized ‘critical’ pressure
. *(q)! P, *(0) plotted vs the quadrupolar parameter g.. Symbols represent
simulation data, curves are the interpolating functions [Eqs. (9a) and (9b)],
and p*(q,)/p*(0)=(1+0.674 23¢,+0.274 3494?) with p*(0)=0.087 221.

duced with “*”) expressed in units of £(q,), o(g,), and My,
the molar mass of the fluid. We need to consider that the
parameter ¢, Eq. (6), depends itself on € and o, and not only
on the (given) experimental value for Q. This difficulty is
related to the quadrupolar interaction in Eq. (5), which shifts
the critical point in the (T, p) plane relative to its position for
0=0. Even if one is only interested in a single choice of Q,
a simulation of a single model system (i.e., one choice of &,
o and Q or g, respectively) is never sufficient to deal with
this problem. However, this puzzle can be solved by deter-
mining the critical lines Tj(qc) and pj(qc) as a function of
the (dimensionless) parameter g,.. Figure 1 shows the results
of this calculation and demonstrates that both T*(qc)/T*(O)
and p “(g.)/ P, *(0) are very smooth functions of q,- These
curves are almost linear, so recording a few (altogether nine)
choices of nonzero g, was sufficient to obtain good accuracy.
In the range of 0 < ¢,.=<0.5, the critical temperature increases
by almost 30% while the critical density increases by about
10%.

Having determined T*(qc) and p_ *(g.), one can compute
easily &(q,) and o(q,) such that the model corresponds to a
specific experimental system 7.y, and p.cy,. Equation (6)
must hold together with

pc (QC)MM01:| . (8)
pc,expNA

Here, M\, is the molar mass of the simple molecule and
N, is Avogadro’s number. These equations are solved by a
simple iteration procedure, using the following fit functions
representing the data of Fig. 1,

T(q.)IT (0)=1+0.461 11g,+0.175 71q;, (9a)

S(qc) = kBTc,exp/Tj(qc)a Oj(qc) = |:

P (q)/p (0)=1+0.192 98, (9b)

where T’ (g,=0)=0.998 21 and p(¢,=0)=0.322 76. Appen-
dix B explains in detail how simulation parameters are de-
rived from experimental data. We note that the limiting fac-
tor for the accuracy of our procedure is not at all the limited
accuracy of Egs. (9a) and (9b), but rather the uncertainty
with which the physical quadrupole moment Q of the mol-
ecule, needed as an input to Eq. (6), is known. Considering
CO, as an example, we take 0=-4.3*0.2 D A. However,
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since Q is raised to the fourth power in Eq. (6), the 5%
uncertainty in Q becomes a 30% uncertainty in the reduced
simulation parameter g. For 0=-4.3 D A, we obtain

q.=0387, £=3491x1072'], o¢=3785A. (10)

The uncertainty in Q would actually allow for a range of
0.32<¢.<0.47 with corresponding changes of ¢ and ¢. In
view of these uncertainties, one could not hope for a perfect
agreement between the simulation results (for other quanti-
ties rather than p, and T,) and experiment, even if the form
of the coarse-grained potential, Egs. (5)—(7), were perfectly
accurate.

Already at this point, we note that nothing in the model
[Egs. (5)—(7)] is specific to CO,. Hence, Fig. 1 [or Egs. (9a)
and (9b), respectively] can be used for modeling other qua-
drupolar fluids, too. This fact will be taken up in Sec. IV and
Appendix B. We also note that € and o are independent of
the state of the system once they are fixed. ¢, however, is
given by g=¢q,-T,/T [according to Eq. (6)], which needs to
be considered when coexistence curve and interfacial tension
are calculated.

B. Comments on the simulation technique

In this section we comment briefly on the Monte Carlo
simulation techniques which are required for the computa-
tion of Fig. 1 and other physical properties. As in previous
work,*'? extensive simulations were undertaken in the uvr
ensemble, where the box volume V=L3, the chemical poten-
tial u of the particles, and the temperature are fixed. The
particle number fluctuates, since the elementary Monte Carlo
move consists of random insertions or deletions of particles.
Thus, long wavelength fluctuations of the density are equili-
brated easily. In contrast, molecular dynamics or canonical
ensemble Monte Carlo methods that conserve the particle
number in the system suffer from a slow equilibration of
long wavelength density fluctuations (“hydrodynamic slow-
ing down”*). The temperature quench simulations encounter
the additional difficulty that vapor-liquid interfaces extend-
ing throughout the simulation box are formed. Such inter-
faces are notoriously slowly relaxing and strongly fluctuating
objects and thus avoided in Gibbs ensemble techniques.48’49

For the sake of efficiency, histogram extrapolation tech-
niques are used. In a typical MC run, the particle number n
and the total energy E are recorded at regular intervals. The
resulting distribution P, 7(n,E) can then be extrapolated to
neighboring values of w' and 7' using the following
expression:52

1
PM’,T’(n’E) = X/P;L,T(n,E)

o (- (73] v

with A being a normalization constant. Here, we have as-
sumed that g, remains constant. Extrapolations at constant Q
would require an additional reweighting factor related to the
temperature dependence of the potential [Eq. (5)]. Of course,
Eq. (11) is only accurate when P, (n,E) and P, 1 (n,E)
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FIG. 2. Second and fourth order cumulants U, and U, plotted for g=0.3 vs
T*=kyT/e for three choices of L. Broken horizontal values indicate the
theoretical values established for the Ising universality class (Refs. 44 and
45). From the intersections, one can conclude Tf=1.152i0.003 for this
particular case. Inset: the slope of the fourth order cumulants (Y;) as a
function of the box size, on a log-log scale. The data points fall on a straight
line with a slope equal to 1.584 in agreement with the finite size prediction
1/v, with v=0.630 for the Ising universality class (Ref. 65).

overlap strongly. Nevertheless, reweighting is very useful for
M near weq.x(T), where two-phase coexistence between vapor
and liquid occurs. In this region, P, 7(n)=[dEP, 1(n,E) has
a two-peak structure: one peak occurs at pgiexxn/ V, the va-
por density at coexistence, while the other peak at pg))ex
~n/V, the liquid density at coexistence. For =t x(T), the
areas underneath both peaks are equal (“equal area
rule™*), but unfortunately p...(7) is not known before-
hand. However, if one has P #,T(n), for some u close enough
t0 Meoex(T), One can try to reweight the data according to
Eq. (11) with no additional simulation effort. In this way, the
coexistence curve can be located precisely. The correspond-
ing pressure is computed from the virial equation. All these
procedures have already been applied in previous work
for g.=0. For more details, the reader is referred to Refs. 8
and 10.

Following a path along w= pteex(T) in the (u,7) plane
and recording moments of the density distribution, we calcu-
late the second and fourth order cumulants,

Uy=(MH{M))?,  Uy=MHM?)?, M =p-{p).

(12)

Reasonably accurate estimates for 7. can be obtained
from the intersection point of either U,(T) or U,(T) for dif-
ferent L. The justification of this simple recipe follows from
the theory of finite size scaling.43_47 Figure 2 shows that T.
can be determined with a relative accuracy of about 3/103
with moderate computational effort. The lack of perfect in-
tersections in the size range 9o < L=< 13.50 indicates that the
asymptotic region of finite size scaling has not been reached
yet, and corrections to finite size scaling are still present.
However, the estimate kz7,./e=1.152%0.003 is clearly ac-
curate enough for our present purposes. Note that the simple
analysis presented in Fig. 2 ignores “field mixing” effects®
between density and energy per particle. Of course, for a
high precision study of critical exponents and critical ampli-
tudes, more sophisticated finite size scaling methods are
available,” but this is beyond the scope of the present inves-
tigation.

For temperatures distinctly below 7., the double-peak
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distribution P, 7(n) exhibits a deep minimum for densities
p in between the two coexisting phases pcoex[vapor] and
COex[hquid] %% Consequently, a system starting with a low
vaporlike density would hardly ever make the transition to
the liquidlike state or vice versa. Hence, the relative weights
of the two phases would not be sampled correctly. This dif-
ficulty is overcame by biased sampling methods that “drive”
the system through the coexistence region such as “multica-
nonical sampling,”57 “Wang—Landau sampling,”58 or “suc-
cessive umbrella sampling”59 which has been used in this
work. In the simplest implementation, the algorithm is con-
strained to sample configurations with only two particles n
€(0,1) in the beginning, and (1,2)---(n—1,n) later on,
spanning the relevant range of densities. The probability dis-
tribution can then be calculated recursively,

P(n)
=H \H,,""H,,, 13
P(0) 1,0012,1 -1 (13)
with H; ;_; being the frequency of occurrence of the jth par-

ticle over the frequency of occurrence of the (j—1)th particle
in the sampling of the (j—1,;) window. For a more detailed
description of this method and its extension we refer to the
works of Virnau and co-workers.>'* Biased grand canoni-
cal methods have the additional advantage that the minimum
in P, 7(n) at densities near the density of the rectilinear di-
ameter py(7T),

Pa(T) = (plob + Pon)/2, (14)

. s 43-45,56
is also sampled rather accurately. This minimum cor-

responds to a free energy barrier AF=~2y(T)L* which arises
from the formation of two (planar) vapor-liquid interfaces of
area L?, each connected with itself via periodic boundary
conditions. In this expression, y(7) is the vapor-liquid inter-
facial tension. For p near p,(T), the system is in a state of
two-phase coexistence, a slablike liquid domain is separated
from the vapor via those interfaces. Coexisting gas and lig-
uid phases have the same free energy. Therefore, AF is the
free energy of the interface. It has been amply verified for a
variety of systems56‘60_64 that the relation™®

P, 1(ng)/ P, 1(neoex) o exp[— 2 T)L*/kpT], (15)

[where n,=p(T)L? and ny.= pg’gﬁ] is a valid description

of the simulation results, and can be used to extract rather
accurate estimates for y(T).

Close to T,, the estimates for pwix, pgoex, pg and T)
suffer from systematic finite size effects. It turns out, how-
ever, that the finite size effects for p, are numerically rather
small. Therefore, the critical density p, can be estimated
from p,=p.(T,) with Eq. (14). pg))ex and pg))ex are just the
peak values of the density resulting from the equal area rule
at T,. [We note that pcoeX(T )> pCOCX(T ) for any finite L. The
peak values only merge into a single point p,. at 7. in the
thermodynamic limit. ]

The behavior of the density near the critical point can
then be obtained, too. In the critical region, the critical ex-
ponent 3 has to take the value 8=0.325 of the Ising model
universality class,65

J. Chem. Phys. 128, 104501 (2008)
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FIG. 3. Coexistence curve of CO, plotted in the temperature-density plane.
The broken curve denotes the experimental data (from NIST, Ref. 66), the
full curve is the result for the L] model without quadrupolar interactions
(Ref. 8). Solid square denotes the critical point of CO,. (X) and (%) are the
results of the present uVT work for two choices of g.=¢(7,) as indicated in
the figure. (O) are the results of the spherical averaged model investigated in
Ref. 42.

)= pT) == B(1 = TIT.)P
(16)

P2 = pdT) = +B(1 - TIT,)P.

Here, the critical amplitude B can be estimated by fitting
the actual simulation data in the range of 0.02<1-T/T.
<0.1 to Eq. (16). Note that the left boundary of this interval
is chosen such that, for the typical linear dimensions finite
size effects on the peak position estimates for p oo ex, P, O)ex are
still very small. The right boundary of the interval is chosen
in order to justify the neglect of correction terms to the lead-
ing term written in Eq. (16) which only describes the
asymptotic behavior in the 1imit® 1-7/ T.—0.

Our data for the coexistence curve and interfacial tension
were derived from an elongated box L X L X 2L with size L
=90 and L=6.740 (the latter only very far from the critical
point). The critical points (Figs. 1 and 2) were computed
using cubic boxes of sizes of 90 and 11.30. In a few cases,
a larger box L=13.5¢ was implemented to check the finite
size effects. After coexistence densities were determined,
simulations at coexistence gas density were carried out in the
NVT ensemble to obtain the coexistence pressure from the
standard virial expression.

lll. NUMERICAL RESULTS FOR CARBON DIOXIDE:
COMPARISON WITH EXPERIMENT AND
SIMULATIONS OF ATOMISTIC MODELS

Figures 3-5 present the coexistence curve, the vapor
pressure at coexistence, and the interfacial tension as a func-
tion of temperature, and compare them to pertinent experi-
mental data.®® If quadrupolar interactions are neglected (g,
=0), a distinct discrepancy between the experimental data
and the simulations can be observed for the liquid branch of
the coexistence curve.® Agreement with experiments im-
proves considerably for the isotropic quadrupolar model. A
value of g.=0.387 was used which corresponds to the experi-
mental value of the CO, quadrupolar moment |Q|=4.3 D A
[Eq. (10)] as discussed above. It is also very gratifying that
both coexistence pressure (Fig. 4) and interfacial tension
(Fig. 5) are in almost perfect quantitative agreement with
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FIG. 4. Coexistence pressure of CO, plotted vs temperature. The broken
curve denotes the experimental data (Ref. 66), while the full curve denotes
the results for the LJ model without quadrupolar interactions. (X) and (*)
are the results of the present NVT work for two choices of ¢.=¢(T,) as
indicated in the figure.

experimental data, although for these quantities there is no
adjustable parameter available whatsoever. In particular, the
interfacial tension for ¢.=0 deviates from the experimental
data rather distinctly, while for ¢.=0.387 there is excellent
agreement.

A small but systematic discrepancy is still present for the
liquid branch of the coexistence curve (Fig. 3). Hence, we
have also tried to take ¢, as an adjustable parameter to opti-
mize the agreement between the simulated coexistence curve
and the experiments. The rationale for doing so is twofold:
First, there is a considerable uncertainty in the experimental
value for Q, leading to a 30% uncertainty in g,—it is not
even clear that the value of Q for CO, in the vapor phase and
in the liquid are exactly the same. Secondly, it might be
better to choose an effective value for Q because our spheri-
cally symmetric model [Eq. (5)] is a rather incomplete de-
scription for the interactions between elongated CO, mol-
ecules. In principle, the systematic coarse graining of a
chemically realistic model could lead to some effective value
for Q, which is larger than the experimental one.

Thus, Figs. 3-5 also include some simulation results for
a second choice of g., namely, g.=0.470. Figure 3 shows
that now the agreement between simulation and experiment
for the liquid branch of the coexistence curve is better than
for q.=0.387, but for the vapor branch it is slightly worse.
The same slight deterioration of the agreement can also be

N x  q=0.470
\
15} *  q=0387 o
N - qc=0

Exp. (NIST)

y [mN/m]

1 1 1 n
240 260 280 300
Temperature [K]

1
220

FIG. 5. Interface tension y(7) of CO, plotted vs temperature. The broken
curve denotes the experimental data (from NIST, Ref. 66), while the full
curve denotes the results for the LJ model without quadrupolar interactions
(Ref. 8). (X) and (*) are the results of the present work for two choices of
q.=q(T.) as indicated in the figure.
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FIG. 6. Coexistence curve of CO, plotted in the temperature-density plane.
The broken curve denotes the experimental data (from NIST, Ref. 66), while
the full curve denotes the results for LJ model without quadrupolar interac-
tions (Ref. 8). (@) denotes the critical point of CO,. (*) and (X) denote the
results of this work for ¢.=0.387 and ¢,=0.470, respectively. (+) are the
results of the EPM model introduced in Ref. 27. (V) are the results from
Ref. 27 for the EPM model with flexible molecules, which give essentially
the same thermodynamic properties as the rigid molecules. (<) are the re-
sults of Ref. 27 for the rescaled EPM model (EPM2). (O) and (CJ) corre-
spond to simulations (Ref. 30) of two ab initio potentials (Refs. 31 and 32).

observed for the coexistence pressure (Fig. 4) and the inter-
face tension (Fig. 5). We conclude that an absolutely perfect
agreement between any simplified model, such as Eq. (5),
and a real system simply cannot be expected. Some uncer-
tainty about the optimum choice of the parameters of such a
coarse-grained model is simply inevitable. Actually, the level
of agreement between experiment and our model is very
good for both choices of ¢g,.. This is gratifying, since the
model will serve as an excellent starting point for the coarse-
grained modeling of various polymer solutions containing
CO, as a solvent.

A model of the type of Eq. (5) (named isotropic multi-
polar or IMP) was also used in Refs. 40 and 42 and the
vapor-liquid coexistence curve of CO, was determined with
temperature quench MD techniques.41 The simulation results
of Ref. 42 are reported in Fig. 3 (see O), too. Although large
systems were used, error bars in the determination of the
coexisting densities using NEMD are large in comparison
with ours as discussed above. (Errors for our simulations are
smaller than the size of the symbols and therefore not shown
in Figs. 3-5.) We also note that Ref. 42 uses Lennard—Jones
parameters that differ significantly from ours, namely, /kp
=215.0 K and 0=3.748 A while we use £/kz=252.8 and o
=3.785 A for |Q|=4.3 D A. This is mainly related to the
larger cutoff radius of 40 used in Ref. 42, which increases
the critical temperature. Our agreement with experimental
results (i.e., coexistence curve Fig. 3, coexistence pressure
Fig. 4, and isobar Fig. 8) is, however, clearly very good
because our grand canonical simulations allows for a very
precise determination of the critical point.

Let us ask how our simulation results for the coarse-
grained model compare to the results obtained for atomistic
models of CO,. Figures 6—8 present such comparisons for
the coexistence densities and pressures with some results
available in literature. The EPM model®’ (denoted by + in
Figs. 6 and 7) overestimates the vapor density at coexistence
and underestimates the coexistence pressure systematically,
while the liquid densities are underestimated only for T
=260 K. For T=280 K, the liquid densities of the atomistic
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FIG. 7. Coexistence pressure of CO, plotted vs temperature. Labeling of
curves and symbols is the same as in Fig. 6. We also show simulations of an
optimized EPM2 model (Ref. 29) (see ¢ ) which is in good agreement with
experiments. We stress that the nice agreement of our model with experi-
ments near the critical point is not given a priory because our method only
fixes the critical temperature and the critical density.

simulation are too large due to the overestimation of T..
When the atomistic model is rescaled”’ (EPM2) so that the
critical temperature and density are matched (denoted by <
in Figs. 6 and 7), the agreement between the model calcula-
tion and experiment is almost as good as for our coarse-
grained model. However, the rescaled data for the coexist-
ence pressure are slightly but systematically too large. The
coexistence line for the EPM2 model has also been obtained
in Ref. 28, in agreement with the previous work.”’ In Fig. 8
we include simulation results of Ref. 28 for the EPM2 model
for the supercritical isobar (200 bar). Both models work very
good in the supercritical region, although the coarse-grained
model gives slightly better agreement with experimental data
for both choices of ¢, used in this work. Recently,29 another
optimized version of the EPM2 model has been proposed in
which the atomistic energies, lengths, and charges have been
rescaled to optimize agreement with the coexistence experi-
ments. As a consequence, the agreement with experimental
results is very good, in particular, for the coexistence pres-
sure (see ¢ in Fig. 7). Simulations fit the experimental curve
perfectly below 270 K, while for higher temperature, small

700H% o N
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2 600 \ < EPM2 N
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S 4
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[0} \
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FIG. 8. Supercritical isobar for p=200 bars. The broken curve denotes the
experimental data (Ref. 66) (X) and () are the results of the present NVT
work for two choices of ¢.=¢q(T.) as indicated in the figure. (<) are the
prediction of the atomistic EPM2 model given in Ref. 28. The coexistence
curve near the critical point is also reported.
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FIG. 9. Estimates for the quadrupolar parameter ¢, for various quadrupolar
fluids characterized by parameter Ay, [Eq. (17)]. The corresponding experi-
mentally measured quadrupole moments Q of these systems are quoted in
brackets (see also Table I).

deviations appear. In Ref. 33, two center Lennard—Jones
models which include a quadrupolar point have been studied
extensively, and coexistence densities and pressure were ob-
tained. Tuning atomistic parameters, the agreement with the
experimental curve has been optimized3 * without any physi-
cal input. As a result, a quadrupolar moment for CO, pre-
dicted in Ref. 34 equals |Q|=3.7938 D A which is quite off
from the experimental value of 4.3 D A. Finally, there is also
a recent simulation,30 which uses two ab initio potentials
named BBV (Ref. 31) (denoted by [ in Figs. 6 and 7) and
SAPT-s (Ref. 32) (denoted by O in Figs. 6 and 7). Results
are quite off the respective experimental values, but unlike to
the previously mentioned models, no fitting procedures have
been applied. No data on the interfacial free energy of the
atomistic model are available so far to which we could com-
pare our results. Figures 6 and 7 demonstrate that the res-
caled atomistic model agrees better with experiment than the
simple LJ model which ignores the quadrupolar interaction
completely.g’10 However, in comparison with the present
model [Eq. (5)], the atomistic models offer no advantages,
even if one rescales the parameters to match the critical
point. In fact, the use of Coulomb interactions in the atom-
istic models makes the code considerably slower.

IV. OTHER QUADRUPOLAR FLUIDS

For a detailed discussion on how to derive simulation
parameters for an arbitrary quadrupolar substance, the reader
is referred to Appendix B. Here, we would like to focus on
testing the model for other quadrupolar substances. Using
literature data for Q, T, .y, and p, ¢y, for various molecular
fluids, we can use our master curves (Fig. 1) to predict the
value of ¢, and describe these fluids with our model, Eq. (5).
Inserting Eq. (8) into Eq. (6), we obtain

_ Q4 |: pc,expNA :| 1073 T:(qc)
(kBTc,exp)2 MMol Pj (qc) 103
T (q.)

R NCARE

qc

=\ (17)

Note that A, contains all the experimental parameters
which are required to define the model. Figure 9 plots ¢, as a
function of A, for CS,, N, CO,, C,H,, and C¢Hg.
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FIG. 10. Lennard-Jones results (¢.=0) for N,. From top to bottom: coex-
istence curve in the temperature-density plane, vapor pressure vs tempera-
ture, and interface tension vs temperature. Symbols correspond to simula-
tions of a simple Lennard—Jones model without quadrupolar moment
obtained from wVT simulations (Ref. 8) (coexistence densities and interface
tensions) and NVT simulations (pressure). The broken curves denote the
experimental data (from NIST, Ref. 66).

One recognizes immediately that, for N, and CS,, the
effects of the quadrupolar interactions can only be minor,
since ¢, is very small. Consequently, the simple LJ model
(where quadrupolar effects are completely neglected) should
be a reasonable description of the coexistence densities, co-
existence pressures, and interfacial free energies of those flu-
ids. Fixing the LJ parameters for N, via 7. and p,. as done in
our previous work,>!” we can test immediately this hypoth-
esis (Fig. 10). As expected, the deviations from the simple LJ
fluid are indeed much less pronounced than for CO,. Note
that these deviations between the measured and the predicted
coexistence curves for these fluids with small ¢, are compa-
rable to the deviations found between the simple Lennard—
Jones coexistence curve and the experimental results for
noble gases such as Ne, Ar, Kr, and Xe. These systems are
considered to be the best experimental realization of a
Lennard-Jones fluid (Fig. 11). In a rescaled representation
(T/T, plotted versus p/p,), however, the various noble gases
do not exactly satisfy a “law of corresponding states.” This
implies that even for systems with perfectly spherical atoms,
a description in terms of (classical) point particles interacting
with purely pairwise potentials of the same functional form
(with one parameter for the strength and another for the
range) is not strictly valid.

These small deviations may be due to the need for three-
body forces,®” or quantum corrections which account for dif-
ferences in atomic masses. The inclusion of the three body
interaction is computationally extremely expensive. Indeed,
in the evaluation of the total energy of the system, one would

J. Chem. Phys. 128, 104501 (2008)
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FIG. 11. Coexistence curves (T/T, plotted vs p/p,) for various noble gases
in comparison with the prediction of the cut-and-shifted Lennard—Jones
model (LJ) (Ref. 8) and the full Lennard-Jones model (Ref. 63).

need to evaluate a total number of contributions that scales
like N? instead of N? as for the two body interactions (N,
being the total number of molecules). For this reason the
inclusion of such effects in our simple (and cheap) modeling
is out of discussion, especially in view of more complicated
polymer solution applications. There are several attemptsﬁg’69
which try to capture the three body interaction in an effective
(density dependent) two body interaction. These methods
cannot be used in nonhomogeneous fluids and generally
where strong density fluctuations are present, such as near
the critical point. The fact that the method proposed in this
work is based on a careful investigation of the critical points
of the coarse-grained models invalidates the scheme pro-
posed in Refs. 68 and 69. However, in Ref. 67, a quantitative
estimate of the effects of the three body interaction is given
starting from a careful scaling investigation of the rectilinear

diameter (14),
o) eali-5)
— +A L=+,
T. T.

(18)

paT)

=1+A _a<1 -
pu(T.) !

with a=~0.11. The authors show that, in Eq. (18), A;_, is
related to the field mixing effect (indeed the lack of the par-
ticle hole symmetry), while A; could give an estimate of the
three body interaction. A mean field van der Waals equation
predicts67 A;=2/5. Deviations of the experimental data from
this law of corresponding states (A;=2/5) are supposed to be
related to the emergence of another energy scale such as that
of three body interactions. Figure 4 of Ref. 67 suggests (for
CO,) A;=0.95 which differs significantly from the van der
Waals value A;=0.4 but is comparable with other fluids, in
particular, xenon. Comparing now the predictions for xenon
(Fig. 11) and carbon dioxide (Fig. 3), one can easily con-
clude that, in our case, the quadrupolar interactions are much
more relevant than three body interactions.

For the sake of completeness, in Fig. 11, we have also
included the full LJ potential. In an unscaled representation,
one would of course observe large differences between the
results for the full Lennard—Jones potential and those for the
cut-and-shift Lennard—Jones potential. In a scaled represen-
tation, these differences vanish almost completely (except for
small densities on the gas branch of the binodal), so that, due
to its computational efficiency, the cut-and-shift potential
should be preferred in coarse-grained simulations.
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FIG. 12. New predictions for benzene (C¢Hg). From top to bottom: coex-
istence curve in the temperature-density plane, vapor pressure vs tempera-
ture, and interface tension vs temperature. The broken curves denote the
experimental data (Ref. 66), the full curve is the result of the simple
Lennard-Jones model. () denote the present results which include an iso-
tropic quadrupolar interaction for g, =¢(T,) corresponding to Q=12 D A.

The case of benzene (C¢Hg) is even more interesting.
Depending on which experimental value is adopted for Q,
one finds ¢, in the range from ¢,=0.121 (for =10 D A) to
q,=0.247 (for 0=12 D A). Figure 12 compares experimen-
tal values for the coexistence densities, coexistence pressure,
and interfacial tension with our predictions, using ¢,.=0.247.
In this case, we also observe a clear improvement of the
agreement with experimental data with respect to the pure
Lennard-Jones case (¢.=0 in Fig. 12). Deviations are of the
same order of magnitude as for nitrogen (Fig. 10) and noble
gases (Fig. 11).

V. PREDICTIONS FOR THE EQUATION OF STATE
RESULTING FROM PERTURBATION THEORY (PT)

In this section, we present results for coexistence densi-
ties and coexistence pressures (Fig. 13), which were obtained
analytically using an equation of state’” in the mean spheri-
cal approximation (PT-MSA).” As is well known,”" such
approaches should work well at temperatures and densities
away from the critical region.7l This expectation is recon-
firmed by our results (Fig. 13), which show good agreement
at temperatures below 0.97.. For 0.97,.<T<1.2T,, there are
distinct deviations between simulations and theory because
PT-MSA overestimates the critical temperature by about 10%
and, furthermore, the slope of the binodal in the critical re-
gion is mean-field-like in PT-MSA and of Ising-type in the
simulation. For low temperatures, the deviations are quanti-
tatively smaller; however, the MC results and PT-MSA re-
sults cross at T*=~1 (if ¢.=0.387) and T*=~1.05 (if ¢,
=0.470) on the liquid branch. Note that our comparison in-
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FIG. 13. Coexistence densities and coexistence vapor pressure: A compari-
son between the MC simulations and the PT-MSA prediction. The two
choices of q,=q(T,) used in this work are included as indicated.

volves no adjustable parameter whatsoever. For many prac-
tical applications, one will be interested in the temperatures
and/or densities outside the critical region. Hence, the results
shown in Fig. 13 are encouraging in that a relatively simple
analytic method such as PT-MSA (see Appendix A for some
details on this method) works well as a description of the
equation of state for molecular fluids such as CO, away from
the critical region if an isotropic quadrupolar interaction is
included. To some extent, this minimizes the need for mas-
sive Monte Carlo (MC) efforts to explore phase space. Even
though MC simulations are required to determine &, o, and
g from T, oy, Peexps and O, the results are already contained
in Fig. 1 and Egs. (9a) and (9b). Therefore, no new efforts
with MC simulations will be needed for any future applica-
tions of PT-MSA in the context of our model.

VI. CONCLUSIONS

In the present work, the thermodynamic properties of a
coarse-grained model for quadrupolar fluids were investi-
gated. A particular emphasis was placed on the question to
which extent the equation of state and the interfacial tension
between coexisting vapor and liquid phases can be described
accurately.

The aim of this work hence is not a chemically detailed
modeling of quadrupolar fluids on an atomistic level, but
rather to derive a model which is both simple and accurate
enough that it can serve as a starting point for the description
of binary fluid mixtures, solvents in polymer solutions, etc..
Obtaining efficient models for such purposes is a topic of
great current interest.

As experimental input parameters, our description only
requires knowledge of the experimental critical temperature
T, cxp and the critical density p, ., of the fluid and the ex-
perimental quadrupole moment Q of the molecule. The qua-
drupolar  interaction is treated in a  spherical
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approximation”’40 which can be derived from thermody-
namic perturbation theory. This leads to an effective potential
proportional to Q*/ (Tr}jo), where T denotes the temperature
and r;; the distance between the centers of mass of molecules
i and j. The application of the isotropic quadrupolar interac-
tion is mainly motivated by the desire to have a very fast
simulation code. Steric and dispersion forces are simply
modeled by a Lennard—Jones potential involving parameters
e and o, which define the strength and the range of the
interaction, respectively. In practice, the potential is cut and
shifted to zero at a cutoff range rc=2§‘"2, which is again
motivated by our desire to speed up calculations. We also
provide evidence that this particular approximation mostly
affects the conversion factor from & to experimental tem-
perature and, hence, does not alter results significantly.

For the description of a real system, simulation param-
eters &, o, and q.=0*/(0"'%5T, .,) need to be determined
from experimental values T ., Peexps and Q in physical
units. To address this problem, we have determined master
curves Tf(qc)/ T:(O) and pj(qc)/ pf(O) as a function of g,
[Fig. 1, Egs. (92) and (9b)]. This task is performed easily
using grand canonical Monte Carlo simulations
bination with reweighting, successive umbrella sampling,59
and finite-size scaling methods.”™*” With modest computa-
tional effort, these master curves are determined with a rela-
tive accuracy which is distinctly better than 1%.

Carbon dioxide is a prototype of a linear elongated mol-
ecule with a rather large quadrupole moment. Comparing our
predictions for the coexistence curve, vapor pressure at co-
existence, and interfacial tension with corresponding experi-
mental data,’® we found encouragingly good agreement
(Figs. 3-5). Note that after having fixed the scales for tem-
perature and density via € and o, no further parameters need
to be adjusted, neither for the pressure (Fig. 4), nor for the
interfacial tension (Fig. 5). The level of agreement which we
have achieved is clearly nontrivial. However, the inclusion of
quadrupolar effects is essential to the model, and agreement
with experiments deteriorates significantly if CO, is de-
scribed by a Lennard—Jones particle without quadrupole mo-
ment.

Our model produces rather accurate off-critical iso-
therms, too. As expected, the comparisons also reveal small
discrepancies, since such a simple model cannot be abso-
lutely perfect. However, a more realistic model, based on an
all atom description of CO, which involves considerably
more complicated potentials, performs distinctly worse in
comparison to our model—except if experimental critical pa-
rameters are used to empirically recalibrate the atomistic po-
tential. In our view, such a procedure looses the advantage of
a fully predictive modeling that does not need experimental
input. Complicated atomistic models also lead to rather slow
simulation programs (partial charges require to deal with
rather long range coulombic interactions, etc.). While such
models may still be manageable for the simulation of pure
fluids, their drawbacks become clearly apparent when the
approach is extended to binary or ternary fluids. In mixtures,
a large control parameter space needs to be explored and
several phase separations may compete with each other, lead-
ing to very involved phase diagrams.

J. Chem. Phys. 128, 104501 (2008)

We emphasize that our successful description of carbon
dioxide is by no means accidental. As a counterpart, we also
consider nitrogen, a fluid with a considerably smaller quad-
rupole moment. In this case, a simple Lennard—Jones model
with no quadrupolar forces should provide an equally good
description, and, in fact, it does. The deviations are compa-
rable to the deviations found between the coexistence curve
of “Lennard—Jonesium” and those of various noble gases
(that do not superimpose precisely in a rescaled representa-
tion shown in Fig. 11 either). This indicates that a simple pair
potential with two parameters for the scales of energy and
range does not suffice even for these prototypes of simple
spherical atoms.

As a further example, we also present a comparison be-
tween our model and experimental data for benzene (CgHy).
Again, the agreement is very good. This result is of great
interest, since the shape of the benzene molecule differs con-
siderably from CO,, consisting of a disk rather than an elon-
gated ellipsoid.

A very interesting question is the extent to which this
concept can actually be carried over from simple fluids to
binary mixtures and polymer-solvent systems. Are interac-
tions between different types of molecules captured by
simple Lorentz—Berthelot mixing rules, when one describes
the pure constituents with the quality of the present work?
We shall address this very interesting and potentially practi-
cally useful question in a forthcoming paper. We also hope
that the present work will stimulate some analytical research,
starting from general statistical mechanics of fluids, to pro-
vide a better theoretical understanding for the high accuracy
of our approach. We also point out that the knowledge of the
appropriate parameters €, o, and g, allows a rather accurate
description of the equation of state by liquid-state perturba-
tion theories at state points sufficiently away from the critical
region (Sec. V).
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APPENDIX A: MEAN SPHERICAL APPROXIMATION
(MSA) PREDICTIONS

In this appendix we want to give some technical details
concerning the analytical predictions presented in this paper.
For more details we refer to the original literature. In particu-
lar, the equation of state (EOS) used in this work is a
straightforward generalization of the EOS given in Appendix
B of Ref. 70 for the case in which four Yukawa tails are used
instead of two. We follow the strategies of Refs. 72 and 73 in
which the Ornstein—Zernike (OZ) equation is solved in a first
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TABLE I. Experimental data and simulation parameters for several quadrupolar substances as obtained in the

present work.

Substance O (DA) Ty (K)  ppoyp (mol/) Nexp q. elky (K) o (A)
Co, 43 304.1282 10.6249 0.009430 0.387 252.829 3.785
CS, 3.6 552 5.78 0.0001848  0.0080  550.95 4528
N, 1.47 126.2 11.18 0.0008864  0.038 124.208 3.642

0 126.2 11.18 0 0 126.426 3.633
C,H, 5.5 308.3 8.913 0.013775 0.553 235.942 4.052
CeHe 1.2 562 3.9 0.0059311  0.247 500.468 5.242

order MSA closure. The general idea’! is to divide the po-
tential into a repulsive part (that becomes the reference po-
tential) plus a perturbative attractive part,

Urep(r) ’
NU (1), if og <r<rg,

if r< (o) (A])

Uy(r) =
where U(0)=0, Uy,(r) >0, Uy(r) <0, and \ is the pertur-
bative parameter. The reference system (A=0) is modeled by
hard spheres with a proper radius dHS,74 computed using
Urep.74 In order to get corrections to the reference free energy
A, a systematic expansion in \ is developed (the general
expression for A—A_ is standard and can be found, for ex-
ample, in Ref. 70 [Eq. (B5)]. The explicit solution up to
second order in A\ has been obtained in Refs. 72 and 73. The
key point developed in Ref. 73 is to fit U, with a couple of
Yukawa tails. In the case of the LJ potential, this yields
e—zl(r—zro)

+C

e_Zz(r—lTo)

= W (cizp00:7).
(A2)

In this work, the LJ part of the potential is fitted using the
same Yukawa tail as reported in Ref. 70 [Eq. (B6)]. Equation
(A2) allows us to invert some Laplace transforms that are
present in the Tang—Lu solution’* and to obtain an analytical
expression for the free energy which is explicitly given in
Eq. (B7)—(B10) of Ref. 70 for the apolar-fluid case g=0.

For the general case g # 0, Eq. (A1) will induce the same
decomposition on both the LJ part and quadrupolar part of
the potential

LJ
Ualt(rep) = Uatt(rep) -

35q U (A3)

att(rep) *

In Eq. (A3), we have used two more Yukawa tails to fit the
. . ;
quadrupolar interaction UagQ,
e—Z:;(r—Ob)

—C3 +C4
r

e—z4(r—a-0)
UIQQ ~

att

= yQQ(Ci,Z,', O'O;r) .
(A4)

Because g(=¢.T./T) is factored out in Eq. (A3), ¢34 and z34
do not depend on temperature 7. This is an important sim-
plification because using Egs. (A2) and (A4) we can get an

immediate fit for U,, (A3) for every ¢ and T,
Uy = yLJ(Ci,Z,‘,C'm”) - %QJ)QQ(C,‘,Z,‘,U'Q;V)- (AS)

By using the previous fit (A5) and extending Eq. (B7)—(B10)
in Ref. 70 to the case in which more than two Yukawa ex-

pressions are used to fit the potential, we have obtained the
desired EOS used in the present work.

APPENDIX B: DETERMINATION OF SIMULATION
PARAMETERS

Simulation parameters €, o, and ¢, are needed to convert
simulation units into experimental units. Knowledge of ¢, or
rather g=q.-T./T is also required as input before a simula-
tion can be started. In Table I, we have collected the simula-
tion parameters for the quadrupolar substances mentioned in
the paper. However, we would also like to convey some
hands on knowledge on how to calculate these parameters
and extend the model to substances not listed in Table I.
Furthermore, we provide fitting curves (Table II) which al-
low us to determine the phase diagram of an arbitrary sub-
stance without additional MC simulations.

For ¢.=0, € and o can be determined directly from the
critical temperature 7. and the critical density p. using Eq.
(8). For ¢.# 0, the location of the critical point itself depends
on q,. Therefore, & and o also depend on ¢, [Eq. (8)], and a
simple iteration procedure can be formulated. Starting with
q.=0, T. and p. are computed using the master curves from
Egs. (9a) and (9b). From these results, ¢ and o are deter-

TABLE 1I. Fitting curves to determine coexistence properties for an
arbitrary quadrupolar substance at selected temperatures Ti*(qc)/ T:(qc)
(i=1,...,4): 7?:0.974 4997? 7;:0.932 1257?, 7'::0.864 3377?, and TI
=0.813 4947*: (see text).

Observable Fitting formula
pTg ~0.162
ol 0.099 506—-0.009 482 7¢q..

2.8
p;kg 0.055372-0.017 106q..
p:g 0.036 003-0.018¢..
pTI 0.492 15+0.124 26¢,+0.021 1464>
p;I 0.570 55+0.153 13g,+0.025 081¢>
p;kl 0.645 97+0.1531¢,.+0.098 544>
p:I 0.683 55+0.220 94¢,+0.042 765>

y’l" 0.020 384+0.016 672¢,+0.027 914>
y: 0.068 376+0.072 064¢,+0.082 8644
y;‘ 0.161 87+0.194 93¢,.+0.187 044>

y: 0.239 45+0.299 31¢,+0.303 5247
pT 0.075 861+0.041 526¢,+0.024 0724>
pZ 0.056 804+0.026 873¢,+0.011 4084>
p;k 0.035 115+0.009 993 9¢.+0.000 676 374>
pZ 0.023 617+0.001 042 5¢,~0.000 993 94>
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mined with Eq. (8) and a new value for g. with Eq. (6). The
iteration is repeated until g., €, and o converge. Usually,
around five to ten iterations are sufficient to obtain simula-
tion parameters with good accuracy without any additional

Initialize variables:

J. Chem. Phys. 128, 104501 (2008)

simulations. In the following, we present a pseudocode for
our CO, calculations which can be extended to any quadru-
polar substance by substituting experimental values for Q
=43 DA, T,=304.1282 K, and p,=10.6249 mol/I:

Q=4.3; /* DA */

Q=0Q%3.33564*1074; /* convert Q to SI units */

Ty erp=304.1282; /%K */

tho, ¢y, =10.6249; /* mol/l ¥/

Ty ;(q=0)=0.99821 /* critical temperature of simulation for q=0
*/

rhoy ;(q=0)=0.32276 /* critical density of simulation for q=0 */

q=0;

Iteration:

for (1=0;i<20;i++) {
T=T.,(q=0)*(1+0.46111*q+0.17571%q?);
density=rho; ;(q=0)*(1+0.19298*q);
epsilon=T_ ., “1.38065*107%/T;
sigma= (rhoc’exp* 1000%6.02214*10%/ density)~'/3;
Q,=Q/(sqrt(epsilon*sigma’));
q=Q}/(T*1.237990147%1072)
print T, epsilon, sigma, q;

Alternatively, g. can also be determined from the fitting
curve in Fig. 9. N\, is a dimensionless parameter, which
already contains all the experimental information required to
define the model. If all constants are included, A, reduces
to

5 0
Nexp=96.754 X 107 —=—(p, exp) """ (B1)

c,exp

In this equation, one simply needs to plug in experimental
values for quadrupolar moment Q in D A, critical tempera-
ture 7. ., in K, and critical molar density p, ey, in mol/cm’.
q. can be read off from Fig. 9 or determined via the follow-
ing fit to the curve:

e = Nexp(43.1018 = 266.25 1\ o + 5047.01\2 ),

exp

Nexp < 0.02. (B2)

T., p., &, and o follow from Egs. (9a), (9b), and (8).

Finally, we demonstrate how our accumulated simula-
tion data can be used to provide a rough estimate of the
phase diagram for an arbitrary quadrupolar substance with-
out any additional MC simulations. We simulated several
values for g, in the range of 0.1 <g,.=<0.47. Four tempera-
tures were considered such that T;k(qc)/ Tj(qc) (i=1,...,4)is
independent of g, T/=0.974499T", T,=0.932125T.,
T,=0.864 3377, and T, =0.813 494T . As indicated before,
critical quantities scale almost linearly with ¢, [Fig. 1, Egs.
(9a) and (9b)]. During our investigations, we observed that
this approximation also holds away from criticality. The cor-
responding fitting curves are listed in Table II.

/* Eq. (9a) */

/* Eq. (9b) */

/* Eq. (8) ¥/

/% Eq. (8) */

/* Eq. (6) */

I* Tgm=kpTey,/ € (47€)*- SI units */

First, one needs to determine €, o, and g, for the sub-
stance in question as demonstrated in the previous section.
Vapor and liquid coexistence densities, interface tension, and
pressure at the selected temperature can be computed by in-
serting ¢, into the respective fitting curves. The following
equations can be used to convert the results from simulation
units to experimental units:

€ (QL) * * Mmol

T-’ =p, T 3
ky 0 PR TPN (g,

Texp =
(B3)
ela) L slg)

Yexp= Y . Pexp=P :
T o(g)? T alg)
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