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We report numerical results for the third virial coefficient of two center Lennard-Jones quadrupolar molecules.
Calculations are performed for 35 models with different elongations and quadrupoles over a temperature range
from half to twice the critical temperature. It is found that increasing the elongation at fixed quadrupole has the
effect of increasing B3 . On the other hand, at fixed elongation B3 first decreases with increasing quadrupole
at low temperatures, then increases with increasing quadrupole at higher temperatures. We estimate the
temperature at which the third virial coefficient vanishes. Although both this temperature and the critical
temperature increase with the quadrupole moment, their ratio remains almost constant. We predict the critical
properties using two different truncated virial series. The first one employs the exact second and third virial
coefficients. The second one approximates the fourth order contribution by using estimates obtained for hard
diatomics. It is found that both methods yield fairly good predictions, with a somewhat better performance
of the approximate fourth order expansion. The two methods are complementary, however, because they
consistently bracket the exact value as determined from computer simulations.

I. Introduction

The virial expansion provides one of the most useful and the-
oretically sound equations of state for low density gases.1,2

According to this equation, the pressure of a fluid may be
expressed as a power series in the density, and the coefficients
in the expansion are known as the virial coefficients. One of
the most interesting aspects of the virial expansion is that the
virial coefficients may be exactly related to the intermolecular
potential.3 Accordingly, experimental measurements of these
coefficients provide important insight into the nature of
intermolecular forces. Indeed, for a long time the measurement
of second virial coefficients provided one of the few sources
that allowed to test two body forces.1 Although in princi-
ple a study of third virial coefficients could provide a
means for the understanding of three body forces,4,5 such
studies have been considerably limited, for several reasons.
Firstly, the experimental measurement of third virial coeffi-
cients has proved to be extremely difficult, due to instrumental
and technical difficulties. Secondly, numerical calculations
involve multidimensional integration and very time consuming
computer calculations. Thirdly, two body forces need to be
known accurately for any information on the three body forces
to be extracted.
For these reasons, the study of third and higher order virial

coefficients has either been limited to very simple realistic
potentials, such as the Lennard-Jones6–8 or to idealized model
potentials, such as hard bodies. In the case of hard body poten-
tials, the situation is simpler, because there exist useful analytic
or approximate methods that allow to obtain theoretical esti-

mates.9,10 In other instances, analytic estimates are unavail-
able, but the hard nature of the potential makes numerical
calculations much easier, for two reasons: Firstly, the poten-
tials are short range, so that the integral bounds are small;
secondly, the Mayer function adopts only two possible values,
either �1 or 0, so that sampling the integrand yields results
with a relatively small variance. This property is very impor-
tant, because in practice most high order virial coefficients
are determined numerically by means of Monte Carlo meth-
ods,11 rather than standard quadrature methods. As a result,
it has been possible to calculate high order virial coefficients
for hard body potentials of very complicated models such as
polymers.12–15

Despite the difficulties related to the measurement and calcu-
lation of third virial coefficients, there has been recently a grow-
ing interest in this issue, as a result of several reasons. Firstly,
the improvement of the Burnett technique has allowed to mea-
sure third virial coefficients with a precision that was not pos-
sible until recently.16 Secondly, the increase in computer power
allows now to determine third virial coefficients numerically
in a reasonable amount of time, with error bars similar to or
smaller than those attained experimentally.17–20 It has also been
recently recognized that knowledge of the first few virial coeffi-
cients may allow for the development of equations useful in the
field of supercritical extraction.19,21,22 Finally, another obser-
vation that has partially motivated this work is the fact that
a truncated virial expansion may allow to give rather accurate
estimates for the critical properties of pure fluids. This observa-
tion was already employed a long time ago in order to estimate
the critical properties of the Lennard-Jones fluid,8 and other
more complicated fluids, such as the Gay-Berne,23 the dipolar
hard sphere,18 or water.20 More recently, Boublik and Janecek
have presented an interesting way of extending the series up to
fourth order, with promising results.24,25
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Recently, some of us have been involved in the systematic
calculation of second virial coefficients of diatomic molecules.
We have made calculations for different bond lengths and mul-
tipole moments, for both pure fluids and their mixtures.26,27

The second virial coefficients of multi center models describing
fullerenes have also been studied recently.28 In this work, we
extend our previous calculations. We will present results for
the third virial coefficient of quadrupolar diatomic molecules.
Each of the sites within the molecule will be modeled with a
Lennard-Jones potential, which may either represent a single
atom, such as in N2 , or a ‘‘united atom’’, such as in the case
of ethane, CH3–CH3 or ethylene, CH2=CH2 . Our results pro-
vide a large data base for third virial coefficients which allows
to study the dependence of these property on several molecular
parameters such as bond length and quadrupole moment or
state variables such as temperature. It will also allow to test
the performance of the virial series as a means to estimate
critical properties, since extensive computer simulations are
available29 which will allow to test our results.
The organization of the paper is as follows. Firstly we will

describe the molecular model employed and the numerical
methodology required to calculate the third virial coefficient.
In the next section, we will present our results and discuss
the main trends observed. Also in this section we estimate
the critical properties as obtained from the truncated virial
expansion. Finally, in section IV we will summarise our results
and present our conclusions.

II. Model and calculation details

Our model consists of two Lennard-Jones interaction sites a
distance L apart and a point quadrupole in the center of the
molecular axis. Accordingly, the full potential acting between
a pair of molecules is given as follows:

uð1; 2Þ ¼
X2
i¼1

X2
j¼1

uLJij ð1; 2Þ þ uQQð1; 2Þ ð2:1Þ

The uij are site–site Lennard-Jones potentials which only
depend on the distance, dij between the sites,

uLJij ¼ 4e
s
dij

� �12

� s
dij

� �6
( )

ð2:2Þ

The uQQ term is a quadrupole potential which depends on the
total quadrupole moment, Q, the distance between the center
of the molecules, r12 , and their relative orientation. In Gaus-
sian units, we have:30

uQQ ¼ 3Q2

4r512
1� 5 c21 þ c22 þ 3c21c

2
2

� �
þ 2 s1s2c12 � 4c1c2ð Þ2

� �
ð2:3Þ

where ci ¼ cos yi , si ¼ sin yi and c12 ¼ cos(f2�f1), while yi
and fi are the polar and azimuthal angles required to specify
the orientation of molecule i (the reader is addressed to Fig. 1
of ref. 26 for further details on the evaluation of the quadrupo-
lar potential). Since the quadrupole potential shows a diver-
gence for molecules whose center of mass coincides, the
Lennard-Jones interaction sites are embedded by hard spheres
of diameter 1/

p
2. This avoids overflow of the Mayer func-

tions for overlapping molecules.
The third virial coefficient of linear molecules interacting by

means of a pairwise additive potential is given by the following
equation:1,30

B3ðTÞ ¼ � 1

3V

ZZZ
f12 f13 f23h io1;o2;o3

dr1 dr2 dr3 ð2:4Þ

where h. . .io1 ,o2 ,o3 denotes an unweighted average over mole-
cular orientations:

. . .h iwi
¼ 1

4p

Z
. . . dyidfi ð2:5Þ

while fij is the Mayer function:

f ij ¼ expð�buði; jÞÞ � 1 ð2.6Þ

In the above equation, b ¼ (kBT )�1, with kB Boltzmann’s
constant and T the temperature.
For linear systems as the ones considered here, where each

orientation is specified by means of two degrees of freedom,
eqn. (2.4) shows that in principle the calculation of B3 involves
a 15 dimensional integral. Fortunately, the Hamiltonian is
invariant with respect to translation and rotation, so that only
nine coordinates are required to specify the complete set of
non-equivalent configurations. In order to specify each of these
configurations we proceed as follows. First, we place molecule
1 at the origin of the laboratory reference frame and set the x
and z axis such that the molecule lies in the xz plane. In this
way, only a polar angle, y1 , is required to determine the orien-
tation of molecule 1. Secondly, we place the center of molecule
2 along the z axis, so that overall we need three coordinates
to specify the relative position of this molecule: The distance
of the center from the origin, r12 , together with one polar
and one azimuthal angle, y2 and f2 , respectively. Finally,
the center of molecule 3 is located by means of a set of polar
coordinates, r13 , Y3 , F3 , while its orientation is specified by
means of another set of polar and azimuthal angles, y3 and
f3 . With this choice of coordinates, we can now integrate
the six trivial degrees of freedom to get the following simplified
expression:

B3 ¼ � 1

3

23p2

ð4pÞ3
ZZZ

f12 f13 f23 dq1 dq2 dq3 ð2:7Þ

where qi are vectors specifying the coordinates of each
molecule:

dq1 ¼ d cos y1 ð2.8Þ
dq2 ¼ r212 dr12d cos y2df2 ð2.9Þ

dq3 ¼ r213dr13d cosY3dF3 d cos y3 df3 ð2.10Þ

Although the dimensionality of the problem has been reduced
from 15 to 9, it is still too high for standard quadrature meth-
ods to be useful. In this work we evaluate B3 by means of the
well known Monte Carlo method.11 In this way, our final
working expression becomes:

B3 ¼ � 1

3
24p2r2c

1

Nt

XNt

0f12 f13 f23r
2
12r

2
13 ð2:11Þ

where rc is some suitably chosen distance beyond which the
Mayer function may be considered to be essentially zero, Nt

is the total number of function evaluations and the prime next
to the sum indicates that the molecular configurations are
sampled randomly such that r12 and r13 are chosen uniformly
in the interval [0,rc]; f2 , f3 and F3 are chosen uniformly in
the interval [0,2p]; and cos y1 , cos y2 , cos y3 , cosY3 are chosen
uniformly in the interval [�1,1].
The calculations were divided into a set of independent

blocks. In this way, B3 could be given as an average of the
independent runs, and the error estimated from the standard
deviation of the sample. As the problem is very time consum-
ing we used a parallelised code, dividing the load of integrand
evaluations between the available processors. Typically, we
employed 200 blocks and about 4� 106 integrand evaluations
per block and processor in a Pentium III dual machine running
at 700 MHz. This implied about 1600� 106 integrand evalua-
tions per virial coefficient, or equivalently, one hour of cpu
time per processor for each virial coefficient.
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The accuracy of the calculations depends on two para-
meters. On the one hand, Nt controls the statistical error, while
on the other hand, rc controls the systematic error related with
truncation of the potential. These two parameters show a cou-
pling, however, because the larger rc , the larger the statistical
error. We have investigated the dependence of B3 on the value
of rc for a fixed value of Nt . We found that for rc larger than
5s, the resulting statistical error bars increased such that they
did not allow us to observe any significant difference between
the data. We have therefore evaluated all our data for a trun-
cation value of rc ¼ 5s. We recall that the cutoff is implemen-
ted in a center of molecule–center of molecule basis, rather
than on a site–site basis. The error is temperature dependent.
The higher the temperature, the smaller the error. The reason
is that at high temperatures the Mayer function tends to a
Heaviside function, which takes only two possible values. On
the contrary, at low temperature the Mayer function shows a
sharp peak, which results in a large variance of the values
the integrand can take. At any rate, with our choice of Nt

and rc the statistical error bars are typically about 0.1% and
exceed 1% only where B3 vanishes.
We have checked our code by comparing the results with the

literature on the Lennard-Jones fluid,7,31 and the Stockmayer
fluid,4 as well as for hard10 and square-well32 dumbbells, and
Lennard-Jones diatomics.21 Excellent agreement with the cited
references was obtained in all cases. In order to allow for cross
checking, Table I shows results obtained from our code for a
model with L/s ¼ 0.6 and different quadrupoles. The error
bars are in all cases significantly smaller than 1%.

III. Results and discussion

Before starting a discussion of the results, we note that all
throughout this section the different properties will be given
in terms of Lennard-Jones units, which imply the following
transformations: T! kBT/e, for the temperature; p! ps3/e,
for the pressure, r!rs3 for the density; B3!B3/s

6 for the
third virial coefficient, L!L/s for the bond length and
Q2!Q2/(es5) for the squared quadrupole.
We have calculated third virial coefficients for seven different

elongations, L ¼ 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0 and five quad-
rupole moments, Q2 ¼ 0, 1, 2, 3, 4. The non-linear scale
employed to describe the quadrupole range may seem some-
what odd at first sight, but it is common practice in simula-
tions,29 the reason being that the quadrupolar energy is
linear in Q2 (cf. eqn. (2.3)). Also note that the results for
L ¼ 0 refer to a single site model, not to a two site model.
For each elongation and quadrupole we have determined virial
coefficients for 20 temperatures ranging between 1/2 and 2
times the critical temperature. For the critical temperatures
we employed estimates obtained by Stoll et al. using the NpT
plus test particle method.29 The choice of elongations and
quadrupoles actually follows that employed by Stoll et al. This
will allow us to compare the predictions of critical properties
from the virial series with their simulation results. Further-
more, the range L ¼ [0,1.0] and Q2 ¼ [0,4] is physically mean-

ingful. Recently, Vrabec et al. were able to fit very accurately
the vapor–liquid equilibria of more than 20 substances, includ-
ing all the halogens, nitrogen, carbon dioxide, ethane, ethene
and ethyne, with molecular parameters within the chosen
range.33 The choice of L allows to describe both monoatomic
fluids (L ¼ 0) and rather elongated linear molecules, such as
CO2 (L� 0.8). The range of quadrupoles also allows to con-
sider most simple quadrupolar molecules. For example, Vra-
bec et al. could fit the properties of molecules with a wide
range of absolute quadrupoles using reduced quadrupoles
within the range Q2 ¼ [0, 4],33 e.g., C2H6 with Q2 ¼ 0.07; I2
with Q2 ¼ 0.878, N2 with Q2 ¼ 1.07, Cl2 with Q2 ¼ 1.78;
and CO2 with Q2 ¼ 3.3. All the results obtained in this work
are available as electronic supplementary information (ESI).y
Let us first consider the influence of the molecular elongation

on the third virial coefficient. In Fig. 1 we plotB3 as a function of
temperature for models with Q2 ¼ 0 and different elongations.
In all cases, B3 is seen to be negative at low temperature, then
increases up to a maximum and then gradually decreases. This
trend is similar to that observed for the Lennard-Jones fluid31

and other simple fluids.1 Both the temperature at the maximum
and the temperature at which B3 vanishes decrease as L
increases. In all cases,B3 seems to increase withL at a given tem-
perature. A similar plot for the largest quadrupole studied,
Q2 ¼ 4, is shown in Fig. 2. The observed trends are seen to be
qualitatively similar to those observed for apolar molecules,
although themaximum is clearly shifted to higher temperatures.
Let us now consider the influence of the quadrupole moment

at fixed elongation. Fig. 3 shows a plot of B3 as a function of
temperature for different values of Q2. At fixed elongation and
temperature, B3 is seen to decrease with increasing quadrupole.

Fig. 1 Third virial coefficient as a function of temperature for zero
quadrupole and different elongations. The symbols are numerical
results, and the lines are a guide to the eye.

Fig. 2 Third virial coefficient as a function of temperature for Q2 ¼ 4
and different elongations. The symbols are numerical results, and the
lines are a guide to the eye.

Table 1 Results for the third virial coefficient of a model with bond

length L ¼ 0.6. DB3 stand for error bars obtained as 1
� ffiffiffiffiffiffi

Nt

p
times

the standard deviation of the mean

Q2 T B3 �DB3

0.0 2.59147 8.54 0.01

1.0 2.03307 7.83 0.02

2.0 1.89797 2.95 0.04

3.0 1.77780 �13.6 0.1

4.0 1.43040 �341 1.0
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Although the quadrupole interactions averaged over all orien-
tations vanish, this is not the case for the averaged Boltzmann
factor, which favors molecular orientations such that the inter-
actions are attractive. For this reason, adding a quadrupole
has the effect of increasing the cohesive interactions between
molecules, resulting in a decrease of B3 . At temperatures well
beyond the maximum, however, B3 becomes almost indepen-
dent of the quadrupole. Clearly, at this high temperatures
buQQ becomes negligible, so that no particular molecular elon-
gations are favored and the molecules no longer feel the effect
of Q2. Within these low and high temperature regimes, there
appears a region where B3 increases with increasing quadru-
pole moment, but the reason for this crossover is not clear.
In Fig. 4 we show a similar plot for L ¼ 0.8. The trend found
is similar to that observed for L ¼ 0.4, the main difference
being a shift of the maximum to lower temperatures. Also note
that the region were B3 increases with increasing quadrupole
moment becomes larger.
Since the qualitative shape of B3 as a function of tempera-

ture is similar for all models, one can characterize the curve
by means of a single temperature describing one salient feature
of the curve B3 ¼ B3(T ). Two such choices could be the tem-
perature where the maximum occurs or the temperature at
which B3 vanishes. For the second virial coefficient, it is stan-
dard to discuss the Boyle temperature, Tb , where B2 ¼ 0.
Accordingly, in this work we will discuss the temperature at
which B3 ¼ 0. In order to avoid confusion with the critical
temperature, Tcr , we denote this temperature Tca .
In Fig. 5 we plot Tcr and Tca for fixed elongation, L ¼ 0.4

and different quadrupoles (Tcr obtained from ref. 29). The
figure shows that Tcr is always larger than Tca , i.e., at least
for the models considered in this work B3 is always positive

at the critical point. It is also seen that both Tcr and Tca mono-
tonously increase with Q2. The ratio Tca/Tcr , however, is seen
to be an almost flat function of the quadrupole, with a value of
about 0.7. Fig. 6 shows similar results for L ¼ 0.8. As pre-
viously, Tcr is found to be always larger than Tca , while the
ratio Tca/Tcr is seen to be a smooth function, ranging from
about 0.70 to 0.75 for a wide range of quadrupole moments.
It is also interesting to compare Tcr and Tca with the Boyle

temperature, Tb , which we have calculated for quadrupolar
Lennard-Jones diatomics in previous work.26 In Fig. 7 we
show the ratio of Tb/Tca and Tb/Tcr as a function of quadru-
pole moment for fixed elongation, L ¼ 0.4, together with the
ratio Tca/Tcr for comparison. The figure shows that Tb is
always larger than Tca , implying that B3 always becomes posi-
tive before B2 . Similarly, Tb/Tcr is always larger than unity, so
that B2 is always negative at the critical temperature. The ratio
Tb/Tcr is less useful than the ratio Tca/Tcr as a predictive tool
for Tcr , however, since the latter is found to be more smooth.
In order to show that these trends are not particular to a given
elongation, we present similar results for L ¼ 0.8 (Fig. 8). The
figure shows indeed that the trends observed for L ¼ 0.4 are
also obeyed in this case.
Table 2 collects the value of Tca for the 35 models studied in

this work. The table shows that the change of Tca with mole-
cular parameters is smooth, except for L ¼ 0. The reason for
this difference is that the model with L ¼ 0 is actually the Len-
nard-Jones fluid, i.e., it has only one site, while all the other
models with L > 0 have two sites (note that the properties of
a two site model with L ¼ 0 may be trivially related to those
of a one site Lennard-Jones model).
A useful application of the virial coefficients is the prediction

of critical properties. Vliegenthart et al. have shown that the

Fig. 3 Third virial coefficient as a function of temperature for
L ¼ 0.4 and different quadrupole moments.

Fig. 4 Third virial coefficient as a function of temperature for
L ¼ 0.8 and different quadrupole moments.

Fig. 5 Plot of the critical temperature, Tcr , the temperature at which
B3 vanishes, Tca , and their ratio, as a function of quadrupole moment
for L ¼ 0.4.

Fig. 6 Plot of the critical temperature, Tcr , the temperature at which
B3 vanishes, Tca , and their ratio, as a function of quadrupole moment
for L ¼ 0.8.
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ratio of the second virial coefficient to the molecular volume
at the critical temperature is more or less a constant value of
about ��6.34 This is a simple method that allows to give a first
estimate of the critical temperature from knowledge of B2

alone. If higher order virial coefficients are available, however,
a much more sound approach consists in using the virial series
as an equation of state, assuming that the critical point is
inside the radius of convergence. Although the virial series is
a low density expansion, so that this approach is questionable,
it has been found that it is able to yield rather reasonable esti-
mates for the critical properties. This idea was already
explored by Barker et al.,8 who used a virial series up to fifth
order and predicted a critical temperature of Tcr ¼ 1.291 for
the Lennard-Jones fluid, in excellent agreement with computer
simulation results.35 This same idea has been used by other
authors for non-spherical models such as dipolar hard
spheres,18 the Gay–Berne model23 or different models of
water.20 However, the results are far less encouraging than
those obtained by Barker et al.8 The reason is that the latter
authors were able to estimate up to the fifth virial coefficient,
while for simple molecular systems, only virial coefficients up
to the third were available. Boublik and Janecek have recently
proposed a simple procedure to improve on the estimates
obtained from the virial series truncated at the level of
B3 .

24,25 The idea is to simply expand the series up to fourth
order by employing the fourth virial coefficient of a hard repul-
sive body of similar shape.10 We will now test the performance
of both approximations. On the one hand, we consider an

equation of state obtained from the virial series, expanded
up to third order, which we denote EOSB3:

pðr;TÞ
kBT

¼ rþ B2ðTÞr2 þ B3ðTÞr3 ð2:12Þ

On the other hand, we will consider an approximate virial ser-
ies expanded up to fourth order, which we denote EOSB4hb

pðr;TÞ
kBT

¼ rþ B2ðTÞr2 þ B3ðTÞr3 þ Bhb
4 r4 ð2:13Þ

where Bhb
4 denotes the fourth virial coefficient of a nonpolar

hard dumbbell, with bond length equal to L and diameter
equal to s. Within this approximation, we are assuming that
the fourth virial coefficient of the quadrupolar diatomics is
everywhere positive and depends neither on temperature nor
on the quadrupole moment. For the lower order virial coeffi-
cients, however, we employ the numerical results obtained
previously in ref. 26 for B2 and in this work for B3 .
Once we have an approximation for the equation of state,

the critical properties may be determined from the following
thermodynamic conditions:

@p

@V

� �
Tcr

¼ 0

@2p

@V2

� �
Tcr

¼ 0

8>>><
>>>:

ð2:14Þ

In order to solve the above equations, we have fitted our
results for B3 according to the following equation, based on
the exact form for the third virial coefficients of the square well
fluid:6

B3ðTÞ ¼ a0 þ a1xþ a2x
2 þ a3x

3 þ a4x
4 þ a5x

5 þ a6x
6 ð2.15Þ

where x ¼ exp(e/kBT ). The above equation provides an excel-
lent fit for B3 within the temperature range considered. As to
B2 , we have employed a fit performed in previous work and
available as ESI.26 Finally, the fourth virial coefficients of hard
diatomics required in EOSB4hb were taken from ref. 10. In
units of the molecular volume, the required coefficients take
the value B4/v

3 ¼ 18.36, 19.43, 20.35, 23.10, 27.61 and 34.52
for L ¼ 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0, respectively, where
v ¼ ps3(2+ 3L�L3)/12.10

In Fig. 9 we plot critical temperatures of quadrupolar dia-
tomics of different elongations as a function of quadrupole
moment. The predictions of EOSB3 and EOSB4hb are com-
pared with simulation results.29 The figure shows that both
predictions give reasonable results and correctly predict the
qualitative trend of increasing critical temperature with
increasing quadrupole. Predictions for the B4hb approxima-
tion are clearly superior, however. Both estimates are comple-
mentary, however, because they bracket the actual simulation
results in all cases.

Fig. 7 Plot of different temperature ratios as a function of quadru-
pole moment for L ¼ 0.4. Tca ;temperature at which B3 vanishes;
Tcr , critical temperature; Tb , Boyle temperature.

Fig. 8 Plot of different temperature ratios as a function of quadru-
pole moment for L ¼ 0.8. Tca ;temperature at which B3 vanishes;
Tcr , critical temperature; Tb , Boyle temperature.

Table 2 Results for Tca , the temperature at which B3 becomes zero,

for all the models studied in this work

Q2

L 0 1 2 3 4

0.0 0.90 1.14 1.62 2.21 2.96

0.2 2.98 3.05 3.23 3.46 3.72

0.4 2.20 2.25 2.37 2.52 2.69

0.5 1.93 1.98 2.07 2.20 2.35

0.6 1.72 1.77 1.85 1.96 2.09

0.8 1.44 1.49 1.56 1.66 1.77

1.0 1.27 1.33 1.41 1.51 1.65

Phys. Chem. Chem. Phys., 2003, 5, 2851–2857 2855



The results for the critical pressure are shown in Fig. 10.
Once more, the qualitative trends are correctly predicted by
both approximations, but B4hb is seen to yield more accurate
estimates. Again, the theoretical estimates bracket the simula-
tion results in all cases, both for the three elongations shown in
the figure and for all other elongations studied (not shown for
the sake of clarity).
Despite the good agreement found for Tcr and pcr , the agree-

ment for the critical density is far less satisfying. Fig. 11 shows
the critical densities for different elongations as a function of
quadrupole. In this case, we only present results for two elon-
gations, because otherwise the figure looks overcrowded. The
models chosen show the general trend observed in all cases,
however. It is found that the predictions for rcr show a much
larger error than for Tcr and pcr . Although EOSB3 and
EOSB4hb bracket the simulation results, as for the other criti-
cal properties, in this case the EOSB3 approximation is seen to
be much better than EOSB4hb.
Given the relatively good agreement found for Tcr and pcr ,

the failure of EOSB3 and EOSB4hb to give qualitatively simi-
lar predictions for rcr may be understood as follows. By con-
sidering the virial series and solving for eqn. (2.14), it may

be shown that the compressibility factor at the critical point
is approximately given by the following equation:36–39

Zcr ¼
1

3
þHðk � 3Þ

Xk
i¼4

Bi

�
jB2ji�1 ð2:16Þ

where k stands for the order of the truncation, while H(l) is a
Heaviside step function which vanishes for l� 0 and is unity
for l > 0. From the above equation, it is seen that when the
virial series is truncated at third order, Zcr ¼ 1/3, independent
of the actual value of the critical density and temperature, or of
the temperature dependence of B2 and B3 . This is qualitatively
a reasonable approximation, since Zcr is known to be quite
insensitive to changes in the molecular properties. Quantita-
tively it is not a good guess, however, since experimentally
one actually finds that Zcr rarely exceeds 0.28. If we now con-
sider that Tcr and pcr are predicted accurately, then it must fol-
low that one cannot give a good approximation for rcr , since
Zcr is far too large. As seen in Fig. 11, the problem is not
improved by adding the fourth order term to the series,
because B4 is positive, and the overall effect is to increase the
predicted value for Zcr , which was already too large. Indeed,
for all the models studied we find that within this approxima-
tion Zcr is always found inside the interval [0.345,0.355].

III. Conclusions

In this work we have performed numerical calculations for the
third virial coefficient of quadrupolar Lennard-Jones dia-
tomics. Our calculations include results for seven different
elongations, L ¼ 0.0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0, and five dif-
ferent quadrupoles for each elongation, Q2 ¼ 0, 1, 2, 3 and 4.
The study includes data over a temperature range between one
half and twice the critical temperature of the models. The
results for the virial coefficients of this work may be obtained
as ESI.y
It is found that increasing the elongation at fixed quadrupole

has the effect of increasing B3 . On the other hand, at fixed
elongation B3 first decreases with increasing quadrupole at
low temperatures, then increases with increasing quadrupole
at higher temperatures. In all cases, B3 was found to change
sign once within the temperature range considered. The tem-
perature at which B3 vanishes, Tca , is found to increase with
the quadrupole moment at fixed elongation. It was also
observed that Tca is smaller than Tcr , so that B3 is positive
at the critical point. Although both Tcr and Tca increase with
quadrupole moment, the ratio of these two temperatures is
found to be rather insensitive to changes in Q2.

Fig. 10 As in Fig. 9 but for the critical pressure. Only results for
L ¼ 0.2, 0.4 and 0.8 are included.

Fig. 11 As in Fig. 9 but for the critical density. Only results for
L ¼ 0.2 and 0.8 are included.

Fig. 9 Critical temperatures for different elongations as a function of
the quadrupole moment. Symbols, simulation results from ref. 29 cir-
cles, L ¼ 0.2; squares, L ¼ 0.4; diamonds, L ¼ 0.6; triangles, L ¼ 0.8;
The lines bracketing the simulation results are theoretical estimates
from EOSB3 (dashed line) and EOSB4hb (full line).

2856 Phys. Chem. Chem. Phys., 2003, 5, 2851–2857



We have also investigated the ability of the virial series to
predict the critical properties of molecular fluids. Two different
approximations have been considered. The first one (EOSB3)
uses the exact second and third virial coefficients. The second
one (EOSB4hb) approximates the fourth virial coefficient to
that of a reference hard dumbbell, as suggested by Boublik
and Janecek.24,25 It is found that EOSB3 consistently over pre-
dicts Tcr , pcr and rcr . On the contrary, EOSB4hb consistently
underestimates these properties. As a result, the two approxi-
mations are able to bracket the actual results from simulation
in all cases. Furthermore, EOSB4hb gives results for Tcr and
pcr with an error of 5% or less. For rcr , however, the agree-
ment is far less satisfactory, with an error as large as 15%.
Actually, in this case the EOSB3 approximation is found to
give better predictions than EOSB4hb. The critical compressi-
bility factor is over predicted by both approximations, though
EOSB3 performs somewhat better. The accuracy of the predic-
tions increases with elongation, because the longer the mole-
cule, the lower the critical density, so that the virial series
progressively becomes a better approximation.
An interesting point worth considering in future research is

the extension of the methodology employed to estimate critical
properties to the case of binary mixtures. The problem in this
situation is perhaps more relevant, because there is a conti-
nuum of critical points, and measuring a limited number of
crossed virial coefficients for the mixture would allow to esti-
mate the whole critical line, at least for type I and type II phase
diagrams.
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