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Characterization of the order-disorder transition of a charged hard-sphere model
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Monte Carlo simulations at constant pressure are used to characterize the structure of the restricted primitive
model in the tetragonal-ordered solid phase. A method to estimate the location of the order-disorder transition
and the densities of the coexistence phases is discussed. The results support the weakly first-order character of
the transition.
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A fruitful approach to the understanding of the structurecalculations were based on Monte Carlo simulations in the
of matter is the investigation of simple models that incorpo-NVT ensemble assuming=2a (see Fig. 1 Very recently,
rate the essential features of real systems. The so-called rere have recalculated the RPM phase diagfa#4j using the
stricted primitive modelRPM) has recently received great NpT ensemblg15] which allows the explicit incorporation
attention in relation to the behavior of ionic systefis-10].  Of the tetragonal symmetry in the simulation box. The coex-
It consists of a mixture of hard spheres, half being positivelyistence lines were determined by integration of the Clapey-
charged and the other half being negatively charged. Théon equation following a similar procedure to that first pro-
absolute value of the charges, as well as the particle dianfosed by Kofkg16]. The technique requires knowledge of
eters, are the same for both species. Despite its apparedf initial coexistence point. This was calculated by means of
simplicity, the structural properties of the RPM model showthe Einstein crystal methodologit7]. Unfortunately, this
a complex behavior which is reflected in its phase diagramprocedure cannot be used for the tetragonal-disordered fcc
The existence of a vapor-liquid phase transition in this mode$olid coexistence for two reasons. First, the disordered fcc
was demonstrated in the 1970's by means of Monte Carlo
computer simulationgl1]. However, the systematic study of
the solid phases has only recently been undertaken. Barrat
[12] used density functional theory in the description of the
freezing of the RPM model. Simulation results for the fluid-
solid equilibrium of the model were presented by Setitl.
[6] and by Vegaet al. [13]. Both studies indicated that the
stable structure at low temperatures is the same as that of
solid cesium chloride, while at high temperatures the RPM
solid exhibits a face centered cubifcc) structure with a
random allocation of cations and anions. Later on, Bresme
et al.[7] found that the substitutionally disordered fcc struc-
ture may undergo an order-disorder transition. The unit cell
of this new phase may be obtained from the replication of
two fcc unit cells along the direction and contains eight
particles. According to the fcc packing, every particle is sur-
rounded by 12 nearest neighbors but, unlike the usual case in
simple ionic solids, not all the surrounding ions are of the
same type. In this case, eight particles carry opposite charge
to that of the central ion and four carry the same chéasge
Fig. 1]. Despite the positional fcc symmetry, the symmetry of
the unit cell is tetragonal when substitutional order is consid-
ered. Moreover, every ion is surrounded by four particles
with opposite charge in th&Y plane whereas only two near-
est neighbors in the plan&Z andY Z carry different charge
(see Fig. 1L This means that the interactions along Zhaxis
are less attractive, therefore it is expected that the corre- FIG. 1. Unit cell of the RPM ordered solid stable at high pres-
sponding cell parameter will be larger than the other cell suyres and low temperatures. The cell is tetragd@ah2. The
parameters andb, which should be identical. equivalent unit cell lengths age=b and the other unit cell length is

In a previous Letter we reported a preliminary phase diac. The cell corresponds to a fcc structure if the substitutional order
gram of the RPM[7] including the tetragonal solid. The is not taken into accouriin such a case=2a).
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solid has no definite unit cell because the crystal consists of TABLE I. Thermodynamic and structural results along e
many different disordered cells with considerably different=0.1 isotherm as obtained from anisotropipT simulations for
electrostatic energies. Hence, the application of the Einsteithe solid structure of Fig. 1.

crystal technique is not possible for this phase. Besides, the
order-disorder transition is likely a weakly first-order one P p* U/(NK) c/(2a)
[_7,8,13] and, therefo_r_e, both ph_ases ha}ve very similar densi- 5 1.2573 —0.7901 1.007
ties. In these conditions, the integration of the Clapeyron

. . ; 2.7 1.2453 —0.7874 1.008
equation introduces unacceptably large errors. In this work
we tackle this problem using an alternative methodology that 25 1.2287 —0.7847 1.013
We are also interested in the characterization of the struc- 2.0 1.1967 —0.7791 1.022
tural changes along the transition. From a structural point of 1.8 1.1777 —0.7741 1.019
view, our interest is to investigate to what extent the symme- 1.6 1.1605 —0.7709 1.024

try of the system is reflected in the cell parameters. The
disordered fcc solid has a cubic lattice so the unit cell length

is determined once the density is known. This is no longethange independently in tiép T simulations. Table | shows
true for the tetragonal solid since it has two independent celihat ¢>2a for all the thermodynamic states considered in
lengths. The difference between theparameter and the  this work. This is because ions with opposite charge tend to
=b cell lengths is an indication of the departure from thepe closer to a given ion than those with the same charge. The
cubic symmetry induced by the ionic interactions. An inspecyatio ¢/(2a) increases as pressure—or density—decreases
tion of the tetragonal unit ce(cf. Fig. 1) shows that the ratio pyt it is always relatively close to unity. It is to be pointed

c/(2a) should be equal to 1 if the mean value of the com-qut that for lower pressurep& 1.66) the stable phase has a
ponents of the interaction potential were the same along thgscl-type structur¢14].

three coordinate axes. Hence, the deviation from unity of the  As commented above, it is not possible to estimate the

ratio c/(2a) is a significant structural parameter. Regardingorder-disorder coexistence line using the Einstein methodol-
the thermodynamic properties, the transition is characterizeggy to calculate the solid free energies. In the previous work
by a relatively large change in the internal energy and a very7] we estimated the coexistence temperature from the jump
small density change. As mentioned above, one of the goal the internal energy when going from the ordered to the
of this work is the accurate determination of the coexistencejisordered structure. A related approach has also been used
densities. in this work. It consists in the monitoring of a substitutional
The restricted primitive model is an equimolar-equisizedorder parameter. For the calculation of the order parameter,
mixture of anions and cations which interact via the potentiabvery lattice site is assigned a valiel if the ion in that site
has the same charge than the ion in the starting configuration,
u(r)=ups* g% (er), ) and—1 otherwise. The final sum over the sites is normalized
so that the order parameter is 1 when all of the particles
. L . oscillate around their initial lattice positions. For randomly
whereuys is the hard-sphere potentigjis the ionic charge, disordered lattices, the order parameter fluctuates around O.

€ is the dielectric constant of the medium, amds the hard-  \qtice that it is possible to eventually obtain an ordered
sphere diameter. In Eq1) the plus and minus signs apply 10 |aice with all of the ion charges carrying opposite sign to

interactions between ions of the same or opposite chargg,,se in the starting configuration in which case the order

respectively. The reduced number density of the system 5, meter is- 1. Although the definition of the order param-

. . * 3_ 3 . .
defined in terms ofr asp* =po”=(N/V)o” with N being  g4ar js not completely independent of the initial configuration
the total number of ions filling a volumé andp the number i a5 hroven to be a useful way to detect the transition to
density. Similarly, the reduced temperature is defined’as  ;qther phase.

= 1/g* =kTeolq?, with kbeing the Boltzmann constantand e size effects are observed when one approaches the
T the4te£nperature. Finally, the reduced pressurepls  cqexistence line. In such conditions, and for a small number
=pea’/q”. ) ) of particles in the simulation bo#50), the internal energy

In Table INpT simulation results for the tetragonal struc- fjctyations and the order parameter indicated that the sys-
ture atT*=0.10 are presented. For the computation of thgem eventually changed to a different state. However, the
Coulombic interactions, the Ewald summation methodinyerse process also took place so it was impossible to de-
[18,19 is employed with a parameter=0.863f. Interac-  termine the stable phase. The problem may be avoided by
tions in real space are truncated at@.7The reciprocal increasing the number of particles and, therefore, reducing
space sum is restricted to the vectbrsvith modulus|h|?>  the fluctuations. In particular, for a sample size of 864 ions
<27. The simulations were performed with runs 0£ 20°  the systems never showed oscillations between both phases
cycles for a sample size of 256 ions. Each cycle consists of ésee Fig. 2 As the disordering process is highly cooperative,
trial move per particle plus an attempt to change the volumenore simulation cycles are needed to detect the transition
of the system. In these simulations the tetragonal symmetrfrom the ordered to the disordered state, but once the phase
of the cell box is enforced, i.e., the axes are orthogonal andhange takes place it never reverses. The only drawback is
a=Db. Then, the cell parameters and c are allowed to the possibility of metastable conditions as the system may
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T*=0.255 TABLE Il. Properties along the coexistence ling,,., and
1 T pﬁpper are the lower and upper values of the pressure coexistence
08 | p*=3.50 (run 1) i interval (see the text for detailsp} 4 and pfisorq are the densities
06 | of the ordered and disordered solid, respectively.
% 04 r pr=3.40 1 ™ pr:)wer p:pper c/(2a) p;rd Pgisord
% 02 p*=3.50 (run 2) ]
s 0.25 3.0 3.125 1.017 1.083 1.074
5 0 ] 0.255 34 35 1.017 1.105 1.094
g o2} E 0.26 3.9 4.03 1.012 1.125 1.119
0.4 i 0.265 4.4 4.5 1.010 1.149 1.147
o6l | 0.27 5.67 5.94 1.013 1.192 1.194
‘ ‘ ‘ ‘ ‘ 0.275 6.3 6.5 1.008 1.2097 1.2085
8 50000 100000 150000 200000 250000 300000 ~ 0-28 7.56 7.84 1.006 1.240 1.235
trial moves per particle 0.285 9.5 10.0 1.002 1.2654 1.2645
0.29 15.14 15.95 1.001 1.3154 1.3153

FIG. 2. The substitutional order parameter for three simulation
runs atT* =0.255. Pressures are labeled within the plot. The results

of run atp* =3.40, which have been shifted for clarity, indicate that . ) o .
the solid undergoes an order-disorder phase transition. Run 1 &C€ pressure interval for each isotherm is given in Table Il
p* =3.50 was started from a tetragona| solid while run 2 was |n|_(f0r these Ca|CU|atI0nS, the l‘ea| Space CUtOff I‘adIUS was set to

tialized with the final (disorderedl configuration of run atp* 30). We have covered the temperatures betw&&r0.25
=3.40. Atp* =3.50 the tetragonal solid remains in its initial state at which the tetragonal solid melf¢4] and T* =0.29 close
irrespective of the starting configuration. to the transition temperature at close packing. Despite the
narrow range of temperatures involved, the coexistence pres-
remain in the initial ordered/disordered state for a long timesures show a wide range of values. This is because at the
This pOSSlblllty is far less ||ke|y if the number of CyCleS close packing densityp*:\/z’ the coexistence pressure
increases significantly so that the system can properly €xyoes to infinity. Our results reflect this trend. It should be
plore the phase space. We have used up tacgBles—about noted that the coexistence pressures change slowly for lower
8 10° trial moves—to ensure as much as possible that thgsmperatures and increase sharply for the higher isotherms.
final state corresponds to a genuine stable phase. A new type \yi would like to stress that our interest is not just a

OL trial mfotve, Wh'gh con5|§,tf n _the sw_apglngtgf the _|on||c precise determination of the coexistence pressures but the
charge of two randorn particies, 1S required In these Simuiag,» o cterization of the transition. In particular, we are inter-

tions. As commented above, once the 864 particles systems : S .

X gsted in estimating the density change between the ordered
eventually becomes disordered they never return to the or=". . . .
dered phase solid and the coexisting disordered phase. Previous work

For the determination of the coexistence point at a giver‘?u_ggests that the coexistence is weakly first ofdes]. In
temperature we move along the corresponding isother

is work, we have estimated the coexistence densities

starting at a low enough pressure such that the starting cof2rough the following procedure. We have already seen in
figuration, an ordered system, is unstable. Then, several ruffdg- 2 that when a simulation begins with a disordered solid
at increasing pressures are carried out with a relatively smalf i not possible to obtain an ordered solid even if it is in a
number of trial movegabout 4 10* cycles. In these runs thermodynamic state where the ordered phase is stabté

the starting configuration is the ordered solid. The higheswe are in the vicinity of the coexistence cujv&hus, two
pressure at which the solid disorders and the lowest pressugtfferent runs with different initial configurations—ordered
at which the system remains ordered provides an initiaand disordered, respectively—at the same thermodynamic
rough interval for the coexistence pressure. More simulationstate remain ordered and the disordred, respectively. To esti-
within the pressure intervalwith a large number of trial mate the densities of both phases, it suffices to calculate the
moves allow the procedure to be refined until the interval is densities for both the ordered and the disordered solid at the
reduced to the desired accuracy. Note that the lower value cfame temperature and pressifia the latter we have arbi-
the pressure interval is a bound for the coexistence pressutearily selectedpy;,,.). An accurate estimation of the coex-
but the opposite does not hold true for the higher pressure. Istence densities is thus possible provided that the coexist-
could be possible that extremely long simulations wouldence pressure intervals are limited to a narrow range.
show that the system also disorders under these conditionSoexistence densities are shown in Table Il. As expected,
An idea of the accuracy of the procedure is given by theboth phases have very similar densities; the differences be-
number of cycles required to disorder the solid as one apaveen them are of the order of 1% at the lower temperatures
proaches the transition. For instanceTat=0.29 the ordered and become negligible as we approach the close packing
systems atp* =8.7,10.15,11.6,13.05,14.5,15.14 disordereddensity. This result is consistent with the temperature depen-
at cycle 12000, 25000, 250000, 350000, 20000 andlence of the coexistence pressures. According to the Clapey-
500 000, respectivelfat p* = 15.95 the solid remained along ron equation, thep-T slope is inversely proportional to the
ordered along a 1 000000 cycles simulajiofhe coexist- volume change. Thus, in agreement with our previous
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two properties gives additional support to the validity of the
procedure used in this work.
The evolution of the cell lengths along tWwop T simula-
tion runs(corresponding to the ordered and disordered sys-
tems coexisting al* =0.28) is depicted in Fig. 3. For the
ordered solid, the cell lengths are clearly distinct2-being
always larger tham, ~8.90 versus 8.85—despite the small
1 difference between thefithe mean value of the ratit/(2a)
is only 1.006]. The fluctuations associated to the cell lengths
are small—about 0.1% of their values. Therefore, the differ-
LAY R Y LT ‘ ence between the cell parameter mean values is significant.
! sgw Ly f i | In the disordered solid, the fluctuations are much larger but,
‘ ‘ ‘ ‘ ‘ as expected, the mean values of the three cell lengths are
0 200000 400000  B0OODOO  800OOQ 1000000 identical given the statistical noise. Table Il shows the ratio
trial moves per particle c/(2a) for the tetragonal solid at the coexistence points. At
FIG. 3. Evolution of the cell lengthéin reduced unitsalong  densities below that of close packing, the tetragonal symme-
NpT simulation runs at the coexistence poilit =0.28, p*  try of the system is reflected in the axes lengths, i.e.,
=7.84. Upper and lower plots are for the ordered and the disorc/(Za)#l. Departures from unity are, nevertheless, quite
dered solid, respectively. The simulation box consists in agmg| (the maximum difference is about 2%) and become
6X6X3 replica‘tion of the qnit cell depicted in Fi.g. 1. The tetr.ag- negligible as we approach the close packing density.
onal symmetry is enforced in both Rahman-Parrinello simulations. This work was supported by Project Nos. BFM2001-
1017-C03-02 and BFM2001-1420-C02-01 of the Diréncio
findings, the slope should dramatically increase when apGeneral de EnSemza Superior of Spain. One of the authors
proaching the close packing transition temperature. As th€éC.M.) would like to acknowledge the Consejeria de Educa-
coexistence pressure and densities have been obtained in@é6n de la Comunidad de Madrid and the European Social
pendently in our simulations, the consistency between theséund for financial support.
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