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AFP MODEL AND SIMULATION DETAILS

In this section we present the square protein on a square lattice model for a protein anchoring an ice slab, following
the model proposed by Raymond and DeVries [1]. The AFPs are characterized by a series of structures, according
to the regnum (animalia, plantae, fungi, bacteria) they have been observed [2], whose ice-controlling activity varies
substantially. Some works [3–6] suggested that the AFPs enhance the formation of a “quasi-ice layer” on the water
hydrating the protein ice-biding surface, although recent data show that the ice ordering of water near the protein
surface is quite low [7] and that the protein’s effect on the hydration water consists in slowing down the hydrogen
bond (HB) dynamics [8–10]. Moreover, recent evidences support the idea that the AFP binds irreversibly the ice
surface [11].

To simplify the analysis of the relevant factors affecting the ice growth we model the AFP as a wall of Argon-like
particles, tangent each other and arranged as a fcc lattice. The AFP sizes are l × l × hAFP, with l = 2.5 nm and
hAFP = 1.2 nm. The protein surface anchoring the ice is covered with an ice layer, considered part of the protein
structure, to ensure the ice-protein match. Fig. 1a shows an example of the initial setup with an ice block sandwiched
between two AFPs: the larger atoms constitute the body of the AFP, while the blue atoms are the anchoring region
of the AFP stably bound to the ice. To guarantee the irreversible ice-AFP binding [12, 13] the protein structure is
kept frozen along the simulation.

The AFP is anchored on the basal plane of the ice crystal. According to Espinosa et al. [14] the surface free energy
for the basal, primary prismatic, and secondary prismatic planes of the TIP4P/Ice water model are, respectively, 27.2,
31.6 and 30.7 mJ/m2. Those values refer to a flat solid-liquid interface, which represents the equilibrium interface
only at the coexistence line. Nonetheless, if the interface is curved, the surface free energy is γsl = 30.00[1− 0.24(n−
1)/(Rc/nm)] mJ/m2 [15, 16], with n = 3 for a spherical interface and n = 2 for a cylindrical interface. As the value
of the critical radius Rc at each T is unique, it is also possible to express γsl as a function of temperature which,
for the TIP4P/Ice model, adopts the form γsl/(mJ/m2) = 30 − 0.2748(Tm − T ) (valid for both the spherical and
the cylindrical interfaces). Thus, assuming the AFP-ice bound to be irreversible, the value γsl for the equilibrium
solid-liquid interface for any ∆T > 0 depends only on the curvature radius Rc of the plane to which the AFP is
bound.

Any atom of the AFP’s body interacts with water via Lennard-Jones potential U(r) ≡ 4ε[(σ/r)12 − (σ/r)6], with
depth of ε = 0.5 kJ/mol and σ = 0.31668 nm. This makes the protein surface exposed to the water slightly
hydrophobic, according to what observed for the surface composition of that ice-binding proteins [17, 18].

The proteins and the ice slab are immersed in a bulk of supercooled liquid water. Periodic boundary conditions
(pbc) apply to the three directions. We fix the initial condition of the simulation box with Lx ∼ Ly according to the
ice structure.

Simulations are performed with GROMACS [19, 20] at pressure p = 1 bar in the anisotropic NpT ensemble with
a time step of 2 fs, letting the XY Z dimensions to fluctuate separately to accommodate the crystal structure, and
changing the temperature below the freezing point of the water model Tf = 270 K[21]. We adopt the Noose-Hoover
thermostat, with a relaxation time of 1 ps, and the Parrinello-Rahman barostat wit a relaxation time of 2 ps. d is not
fixed, but fluctuates according to the variation of Lx and Ly sizes. Along the simulation we monitor that Lx ∼ Ly

fluctuate slightly. PME of order 4, with fourier spacing of 0.1, is used to solve the electrostatic interaction. The
cutoff is 0.9 nm both for the Lennard-Jones and for the real space part of the Coulombic interactions. Long range
corrections to the Lennard-Jones ineractions were included.

Along the simulations the number of ice molecules is calculated according to the q6 order parameter [22], adopting
a cutoff distance of 3.5 Å, and considering solid the molecules whose q6 > 0.37.

In the Fig. 1b-d we report three snapshots of the ice spanning into the supercooled liquid water and embracing the
AFP. As observed also in Ref. [23], below the stability limit of the solid-liquid interface the ice spans and the AFP is
rounded by ice that tends to bridge from different sizes of the AFP.

It is clear that, once the solid-liquid interface is no longer stable because the system is cooled down, at the equilibrium
all water molecules crystallize, with a certain degree of order/disorder close to the AFP. Nevertheless, the average time
required to crystallize the entire system could depend on the AFP-water interaction. Indeed, in our simulations we
observed changes in the ordering of the water molecules rounding the AFP and the time required to bridge two sides
of the AFP according to the adopted AFP-water potential. For example, a strong increase of the isotropic interaction
caused a local melt of the ice in contact with the AFP interface forcing the solid to bridge at further distance from
the AFP. Also, imposing a directional and disordered AFP-water potential resulted in a local distortion of the ice
ordering at the AFP interface, slowing down the nucleation rate. A systematic study of these effects was beyond the
scope of the present manuscript and will be characterized in future works.

In Fig. 2 we report the data referring to all the AFP-AFP distances d simulated.
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(a) (b)

(c) (d)

FIG. 1. AFPs separated by a distance dmax ∼ 5.4 nm and with N = 17584 water molecules. (a) Initial configuration of two
AFP anchored on both sides of the ice slab. (b-d) Ice growing and wrapping the AFPs at T = 263 K, at times ∼ 180 ns (a),
∼ 220 ns (b) and ∼ 320 ns (c). These configurations are taken along the trajectory shown with cyan color in Fig. 2 of the main
manuscript. For all panels Z direction runs from left to right.
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FIG. 2. (a) Time evolution of the fraction of ice molecules, for different temperatures T . The total number of water molecules
is N = 12929, with d ∼ 4.35 nm. (b) N = 23701 water molecules with AFPs separated by d ∼ 6.5 nm. (c) N = 22729 water
molecules with AFPs separated by d ∼ 7.1 nm. (d) N = 37680 water molecules with d ∼ 7.8 nm. (e) N = 45425 water
molecules with d ∼ 10.6 nm. (f) N = 120768 water molecules with d ∼ 16.3 nm.
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FIG. 3. Supercooling ∆Tmax as function of the protein-protein distance d. Black points are the outcomes of our simulations.
Blue dashed line is the fit ∆Tmax = 4476.52/d4. The remaining lines are the predictions according to the original Reymond and
DeVries theory for spherical and cylindrical interfaces, assuming γ as a constant (solid lines), or an improved version of the theory
of Raymond and deVries (dotted lines) where γsl depends on the temperature according to γsl/(mJ/m2) = 30−0.2748(Tm−T ),
ρice depends on T and the ∆µ is evaluated exactly for the model and not under the approximation ∆µ = ∆Hm∆T/Tm. This
improved version is obtained by solving (for T ) Eq.(12) for each value of d (using cos(θ) = 1) and using the exact values for
the water model of ρice(T ), ∆µ(T ) and γsl(T ) [15, 16].

CLASSICAL NUCLEATION THEORY AND AFP EFFECT

A simple thermodynamic approach to derive the equilibrium curvature of a solid-liquid interface relies on the fact
that, at the equilibrium, the chemical potential of the solid and liquid phases, indicated respectively with µsol and
µliq, must be equal

µsol(psol) = µliq(pliq) . (1)

Across the curved interface there is a different pressures between the liquid and the solid phases, respectively psol and
pliq, such that

µliq(pliq) = µsol(pliq) +

∫ psol

pliq

vsoldp , (2)

being vsol the volume of the solid phase. The solid phase can be reasonably assumed to be incompressible, therefore
Eq. (2) can be read as

∆µ ≡ µliq(pliq)− µsol(pliq) = vsol(psol − pliq) = vsol∆p . (3)

Applying Laplace’s equation ∆p = 2γsl/Rc for a spherical interface and ∆p = γsl/Rc for a cylindrical interface, where
γsl is the solid-liquid surface free energy. By replacing ∆p in the previous expression and substituting vsol = ρ−1

ice ,
where ρice is the number density, we get

∆µ =
2γsl
Rcρice

. (4)

The Eq. (4) can be easily solved for a spherical or cylindric interface, resulting in

Rc =
2γsl
ρ∆µ

for spherical interface

Rc =
γsl
ρ∆µ

for cylindric interface , (5)
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which, under the approximation ∆µ ∼ ∆Hm∆T/Tm, read as the expression proposed by Raymond and DeVries [1],
and reported also in Eq. (12). Eq.s (5) express the curvature radius of a spherical and cylindrical interface, as long
as the mechanical stability holds.

The result of Ref. [1] can be get also following the work of Naullage, Qiu and Molinero [23]. According to the
authors, the free energy associated to the formation of a solid-liquid interface is

∆G = −∆µVdρice + γsl(Ad −Aflat) + τ`, (6)

where ρice is the number density of the ice; τ is the line tension; ` the length of the AFP-solid-liquid contact line. In
our simulations, the solid-liquid interface resemble a sphere surface along the larger distance d, shown in Fig. 1 of the
main manuscript. This interface merges with its pbc replica via quasi-cylindrical interface, with section d′.

For a spherical interface, Vd is the volume of the spherical cap of proteins separated by a distance d

Vd = πh2

(
Rc −

h

3

)
=

πd3

8 cos3 θ
(1− sin θ)2

[
1− 1

3
(1− sin θ)

]
=

πd3

24 cos3 θ
(sin3 θ − 3 sin θ + 2) . (7)

Ad is the surface of the cap

Ad = 2πRch =
πd2

2 cos2 θ
(1− sin θ) , (8)

Aflat is the flat surface replaced by the cap

Aflat =
πd2

4
. (9)

By replacing the expression for Vd, Ad and Aflat into Eq. 6 we get

∆Gsphere = −∆µρice
πd3

24 cos3 θ
(sin3 θ − 3 sin θ + 2) +

γslπd
2

2

[
1− sin θ

cos2 θ
− 1

2

]
+ τ`. (10)

Alike, following Ref. [23], we get the expression ∆Gcylinder in the case of cylindrical interface. In such a case, the

AFP proteins are separated by a distance d′ ≡ d/
√

2, and by replacing in Eq. (6) V = d′2l(π− 2θ− sin 2θ)/(8 cos2 θ),
Ad = d′l(π − 2θ)/(2 cos θ) and Aflat = d′L,

∆Gcylinder = −∆µρiced
′2l
π − 2θ − sin 2θ

8 cos2 θ
+ γsld

′l

(
π − 2θ

2 cos θ
− 1

)
+ 2τ l . (11)

Note that for the cylindrical interface the new AFP-solid-liquid contact line is twice the X (or Y ) size of the AFP
protein l.

The minimum of the free energy satisfies ∂∆G/∂θ = 0, which results in the condition

cos θ

d
=

∆µρice

4γsl
=

1

2Rc
for the spherical interface;

cos θ

d
=

∆µρice

2γsl
=

1

2Rc
for the cylindric interface, (12)

where Rc = d/(2 cos θ) is the curvature radius of the interface (Fig. 1 of the main manuscript). By approximating
∆µ ∼ ∆Hm∆T/Tm Eq.s (12) recover the expression of the Gibbs-Thomson effect, proposed by Raymond and DeVries
[1] and reported in Eq. (1) of the manuscript. Nevertheless, as shown in Fig. 4, such an approximation for ∆µ does
not work properly for the TIP4P/Ice water model for ∆T larger than few degrees.

We can neglect the terms depending on τ in both the expression for ∆G of Eq.s (10) and (11), as also reported in
Ref. [23]. In Fig. 5 we plot both ∆Gsphere and ∆Gcylinder for two cases where the ice clearly grows in our simulations,
i.e. for T = 263 K and d ∼ 5.4 nm, and for T = 253 K and d ∼ 4.1 nm (both shown in Fig. 2 of the manuscript).
As shown, both Eq.s (10) and (11) predict a stable solid-liquid interface with a contact angle θ > 0 and, in three
cases, huge free energy barriers which are not compatible with our simulation findings. The free energy barrier for
the cylindrical interface with d ∼ 4.1 nm and T = 253K is ∼ 7kBT (red curve in right panel of Fig. 5): not huge.
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FIG. 4. ∆µ ≡ µliq − µsol for the TIP4P/Ice water model (black curve) and its approximation according to the relation
∆µ = ∆Hm∆T/Tm (red dashed line), where the melting enthalpy of the TIP4P/ice model is ∆Hm = 1.29 kcal/mol.
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FIG. 5. ∆Gsphere (left panel) and ∆Gcylinder (right) panel) curves predicted respectively by Eq.s (10) and (11) for AFPs
separated by: d ∼ 5.4 at T = 263 K (black curve); d ∼ 4.1 at T = 253 K (red curve). Insets zoom on the region of local
minimum.
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Both the expression for ∆Gsphere and ∆Gcylinder, although predict an minimum corresponding to an angle θ > 0
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and decreasing with T for any stable solid-liquid interface, imply that the ice spans only when θ = 0 (or θ . 5◦ to
which correspond a free energy barrier of ∼ 1kBT ). In the Fig. 6 we report as example the behavior of ∆Gsphere for
a specific value d ∼ 5.4 nm, and different supercooling ∆T .

In conclusion, the straight forward application of Eq.s (10) and (11), although nicely predicts the value contact
angle θ for the stable interfaces as proven in Ref. [23] for a cylindrical interface and in Fig. 5 of the manuscript for a
spherical interface, cannot predict, at least for a supercooling ∆T < 13 K, the supercooled limit of stability of such
interfaces.

POSSIBLE EXPLANATION FOR THE SPANNING POINT OF ICE

We assume that the AFPs prevent the ice growth as long as the ice’s height (with respect to the plane where the
AFP is anchored on top of the ice) protruding into the supercooled liquid does not exceed the height of the AFP.
According to our simulations, for any supercooled T at which the crystal-liquid interface is stable, we observe the
formation of a cylindrical interface along the X and Y directions, and spherical interface along the diagonal rising on
top of the cylindrical one (Fig. 3 of the main text and Fig. 7 of the S.M.). If we denote with hcil and hsp the heights
of the cylindric-like and sphere-like interfaces respectively, the control parameter for the ice growth should be

hcil + hsp = Rcil(1− sin θcil) +Rsp(1− sin θsp) (13)

being Rcil and Rsp the curvature radius for the cylindric-like and sphere-like interfaces according to the CNT (see Eq.
12), respectively, and θcil and θsp the contact angles. Replacing Eq. (12) into the previous expression and considering

that Rcil = d/(2
√

2 cos θcil) and Rsp = d/(2 cos θsp) we get

hcil + hsp = Rcil

(
1−

√
1− d2

8R2
cil

)
+Rsp

(
1−

√
1− d2

4R2
sp

)
=

=
γsl

∆µρice

3−

√
1−

(
d∆µρice

2
√

2γsl

)2

− 2

√
1−

(
d∆µρice

4γsl

)2
 (14)

where ∆µ, ρice and γsl depend on T . The variation of ∆µ with T is shown in Fig. 4 of this supplementary material.
The variation of γsl with T is also provided above in this Supplementary material. Finally, the number density of
ice ρice can be obtained easily from the mass density of ice for the TIP4P/Ice model which is well described by the
expression ρice/(g/cm3) = 0.906− 0.00015(T − Tm).

We observed in our simulations that the ice growth was inevitable anytime the height of the ice meniscus, given by
hcil + hsp, was larger than the height of the AFP hAFP = 1.2 nm. By imposing hcil + hsp = hAFP we get a relation
between d and the supercooled T via ∆µ, ρice and γsl, that establish the lowest T where the height of the ice interface
matches the AFP height. The curve is shown with a black line Fig. 6b of the main manuscript.

As described in the main text, this estimation can be further improved by including the ice fluctuation via the
Zeldovich factor (red line in Fig. 6b of the main manuscript).

SOLID-LIQUID INTERFACE, CURVATURE RADIUS Rc AND CONTACT ANGLE θ

Along the simulations we labeled the water molecules as liquid or solid according to the q6 order parameter. For
the run where the crystal-liquid interface was stable, after dividing the X − Y planes in regular bins, we computed
the average Z coordinates per bin of the highest and lowest crystal molecules along the Z direction (which is the
direction where the ice spans). By construction, this defines the average position of the crystal-liquid interfaces (one
for each AFP). In Fig. 7 we show the upper average interfaces for AFP separated by d ∼ 4.1 nm.

The crystal-liquid interface resembles a merge between a sphere and a cylinder, as previously mentioned. To
compute the curvature radius of the sphere, after computing the average ice interface (Fig. 7), we cut it with the
planes X = 3〈Lx〉/4 and Y = 3〈Ly〉/4, schematically indicated by the red arrows of Fig. 8a. The curve given by
this intersection is sketched with black dots in Fig. 8b, where we can distinguish the projections of the cylindrical
(on the left – quasi-constant dots) and spherical (on the right) interfaces. This rough estimation of the projection
of the spheric interface allow to compute the distance D and the height h, as shown in 8b. Note that we have two
crystal-liquid interfaces, and each is cut along this planes; therefore we estimate D and h from any projection. Finally,
given the a simple relation (Rc−h)2 +(D/2)2 = R2

c that connects the curvature radius Rc with h and D, we compute
Rc = (D2 + 4h2)/(8h) for any projection, and than average it over the four projections.
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FIG. 7. Ice surface in a system with N = 13130 water molecules, separated by a distance ∼ 4.1 nm, for (a) T = 256K, (b)
T = 258K, (c) T = 260K, (d) T = 262K, (e) T = 264K, (f) T = 266K.

The curvature radius is finally compared with the radius of the ice critical nucleus. In particular, from the works of
Espinosa et al. [24] and Niu et al. [25] we estimated the T dependence of Rc(T ) on the size of critical nucleus Nc as
Rc(T ) = [3Nc(T )vice/(4π)]1/3, being Nc(T ) the T -dependent size of the critical ice nucleus, and vice ∼ 0.033 nm3 the
ice volume per molecule for the TIP4P/Ice model (vice decreases with T of ∼ 0.7% within the range of temperatures
[230 : 270] K and can be assumed constant for our calculation). The values are reported in Fig. 6a of the main text.

From Rc we estimate θ for the spheric interface via the relation cos θ = Rc/(d/2) (see Fig. 1c of the main text).

FIG. 8. Scheme showing the procedure to compute the curvature radius. We project the ice surface ridge onto the XZ and
Y Z planes. The ice ridge is indicated by red arrow in the left panel, parallel to the X and Y axes and passing through the
highest point of the ice dome. From any projection, sketched in the right panel, we compute the height of the dome h and its
base D (left panel). D is the effective base of the meniscus calculated along the X (or Y ) direction.
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