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A B S T R A C T

Molecular dynamics simulations have been performed to determine the three-phase coexistence temperature for a methane hydrate system in equilibrium with a 
NaCl solution and a methane gas phase. The direct coexistence technique is used following two approaches, one where the triple coexistence temperature for a 
given NaCl concentration is narrow down and another where the concentration at a given temperature is equilibrated. In both approaches the results are consistent 
within the error bars. All simulations were carried out at 400 bar and the range of concentrations explored extends up to a molality of 4 m. TIP4P/2005 for water 
molecules and a simple Lennard-Jones interaction site for methane were used to simulate the system. Positive deviations from the Lorentz-Berthelot energetic rule 
have been applied between methane and water (i.e., increasing the attractive interaction between water and methane). Na+ and Cl− ions were described by using 
the Madrid-2019 scaled charge model. The role played by finite size effects in the calculation of the coexistence line was analyzed by studying a system with larger 
number of molecules at a given NaCl concentration. Overall, our simulations show that upon NaCl addition to the liquid water phase, a shift in the three-phase 
equilibrium line to lower temperatures is produced as occurs in the ice-NaCl(aq) system. The depression of the three-phase coexistence line obtained at different 
concentrations is in a very good agreement with the experimental results.
1. Introduction

Gas clathrate hydrates are non-stiochemical compounds that can 
accommodate small molecules in their framework of solid water 
molecules, generally in gas phase (e.g. N2, CH4 or CO2) [1–6]. Gas 
clathrate hydrates have multiple applications ranging from energy stor-
age [7–13], CO2 sequestration [14–18] or environmental implications 
to the presence of these compounds in icy satellites [19–25].

In recent decades, the implications on the energy storage of these 
systems have received special interest and the number of published 
works has grown exponentially. Methane hydrates are of particular 
interest due to the existence of large reserves on the ocean floor 
[1,9,26–29]. In fact, the first extractions of methane gas from offshore 
methane hydrate deposits have begun to take place in Japan [30–33].

Methane hydrates are stable at low temperatures and moderate pres-
sures. Precisely, these thermodynamic conditions make the possibility 
of environmental catastrophes already a fact, as happened in Brazil in 
2020 [34]. The release of methane from the interior of the hydrates 
causes strong explosions. In this way, it is crucial to control the condi-
tions of formation and dissociation of these systems.

* Corresponding author.

Extensive research has been carried out to study the properties and 
behavior of these compounds. Not only experimental studies, but also 
molecular simulations have proven to be a very valuable tool to eluci-
date the questions that remain open in the formation and dissociation 
mechanisms of gas clathrate hydrates [19,35–61] or the mechanism of 
nucleation [40,62–67]. The use of good force fields to reproduce the 
properties of water and gas is crucial. A first step to test these models is 
to determine the three-phase coexistence line (hydrate-liquid-gas). The 
knowledge of the thermodynamic stability conditions of the system is 
very important to be certain that the simulated phase corresponds to 
the stable phase. The values of the equilibrium temperature and pres-
sure in simulation do not always correspond to experimental values, 
and for this reason it is essential when one wants to simulate this type 
of system to know the range of stability of the model employed. Like-
wise, the equilibrium temperature of the three phases in hydrates is 
crucial for nucleation studies, as it is necessary to know the degree of 
subcooling when the critical size cluster begins to nucleate. Addition-
ally, having all the variables of the three-phase equilibrium line under 
control is essential when implementing environmental safety measures.

In 2010, we presented one of our first works in the field of gas hy-
drates studying the three-phase equilibrium line of methane hydrate 
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by computer simulations [37,68]. The liquid phase consisted solely of 
pure water without electrolytes dissolved in it. However, in order to 
replicate the conditions of the seabed or to reproduce the conditions 
of the icy planetary satellites, it is necessary to take into account the 
presence of electrolytes, specifically sodium chloride (NaCl) due to its 
abundance. Methane hydrates in salty aqueous solutions are of great in-
terest [44,69–96] and recently they have been studied using machine 
learning techniques [97]. Thus, in this paper we focus on the study 
of the equilibrium line of three phases of methane hydrate where the 
liquid phase is a solution of sodium chloride. For a phase of pure ice 
in contact with a sodium chloride solution, the equilibrium tempera-
ture decreases as the concentration of salt in solution increases [98,99]. 
Freezing point depression is produced by the addition of salt. An anal-
ogous behavior is expected in the case of methane hydrates since the 
framework of water molecules of the hydrate is considered to be a sim-
ilar type of ice phase.

More than 10 years have been necessary to present this new study of 
the equilibrium line of three phases in methane hydrates. Although the 
only new element is the addition of salt to the system, from the point 
of view of computational simulation it involves many more details. For 
example, the simulation time from one system to another is increased 
by an order of magnitude by the mere presence of the ions that slow 
down the diffusion coefficient of water and the dynamics of the process 
significantly.

Ionic solutions can play a key role in simulations [100–102]. Thus 
choosing a potential model that correctly reproduces the properties of 
ions in aqueous solution is not an easy task. Recently, a new family 
of ion models has appeared based on the use of scaled charges for the 
ions [103–110]. In these models the charge of the cations (for instance 
Na+) is not an integer number in electron units but a fraction of it (typi-
cally ±0.85e or ±0.75e) and the same is true for the anions (for instance 
Cl−). These models reveal promising results in determining the equilib-
rium properties of ions in water. For our present work we shall use the 
Madrid-2019 force field [103,104] to describe an aqueous solution of 
NaCl in water. This force field uses the concept of scaled charges (with 
a choice of ±0.85e for the charge of the Na+ or Cl− ions). In this work 
we shall study the three phase equilibria between the methane hydrate 
(solid), an aqueous solution containing NaCl (liquid) and the methane 
gas phase using computer simulations. To the best of our knowledge, 
no one has yet attempted to calculate the complete three-phase coex-
istence line for the methane hydrate in equilibrium with the aqueous 
NaCl solution and the gas phase. In 2019, Fernandez-Fernandez et al. 
[111] determined a point on the line at seawater conditions and differ-
ent pressures using a classical unit charge model for ions. Their results 
with a model of unit charges will help us to compare with those ob-
tained in this work using partial charges.

The work is organized as follows: In section 2 the simulation de-
tails as well as the methodology used are shown. Section 3 presents the 
results of the three-phase equilibrium line for the methane hydrate sys-
tem at different salt concentrations and finally the main conclusions are 
presented.

2. Methodology

Methane hydrate adopts the sI cubic structure. The unit cell is 
formed by 46 water molecules and 8 methane molecules. In this work 
we have used a methane hydrate configuration of 3×3×3 unit cells with 
a total of 1242 water molecules and 216 methane molecules to build 
the solid slab of the initial configuration. The occupation of all cages 
is 100%. The crystallographic positions of methane hydrate were taken 
from the work of Yousuf et al. [112]. Methane hydrates present proton 
disorder [113–115]. The algorithm proposed by Buch et al. [116] was 
used in order to generate the initial solid configurations satisfying the 
Bernal-Fowler rules [117] and with zero or almost zero dipole moment 
2

for the sI hydrate.
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We perform direct coexistence simulations at a given pressure and 
temperature to determine the three-phase coexistence temperature (𝑇3) 
of a system formed by methane hydrate, NaCl aqueous solution and 
methane gas. The direct coexistence method has been implemented due 
to its robustness and reliability. Previously, this technique have been 
successfully used to study various ice-systems and hydrate-systems de-
termining coexistence temperatures [21,22,36,37,98,99,111,118–125]. 
Basically, this technique consists of putting in contact the three phases 
(solid, liquid and gas). If the temperature of the simulation is above 
𝑇3 the solid hydrate phase melts and the molality of the aqueous solu-
tion decreases (the number of liquid water molecules increases and the 
number of ions remains unchanged). Otherwise, if the temperature of 
the simulation is below 𝑇3 the hydrate phase grows and the molality of 
the aqueous solution increases (the number of liquid water molecules 
is lower and the number of ions is the same). Thus, for a given initial 
salt concentration, 𝑇3 is narrow down between the lowest temperature 
at which the hydrate melts and the highest at which the hydrate phase 
grows. There is another possible approximation to determine the value 
of 𝑇3, the temperature of the system is fixed and the variation of the 
molality in the aqueous phase is studied until reaching the equilibrium 
of the system at that temperature [126]. In the present paper we use 
the two approaches to estimate the complete line of three-phases: nar-
row down direct coexistence and equilibrium direct coexistence. We use 
both approaches to achieve robustness and reliability to our results. Re-
cently, this double approach was successfully performed to determine 
the phase diagram of the NaCl-water system by Bianco et al. [120].

Fig. 1 shows an example of initial configuration used in this work 
to determine the three-phase coexistence temperature. All the config-
urations have been generated following the methodology proposed by 
Fernandez et al. [127] and Conde and Vega [37] to determine equi-
librium temperatures by direct coexistence. Each initial configuration 
contains a slab of NaCl aqueous solution surrounded at one side by a 
slab of solid methane hydrate and at the other side by a slab of methane 
molecules in gas phase. The initial concentrations of NaCl in water cho-
sen for the present work are: 0.5, 2, 3 and 4 m where m stands for 
the molality (i.e., mol of salt per kg of water). Periodic boundary con-
ditions (PBC) are employed in the three directions of space to ensure 
that the three phases are in contact with each other. As can be seen in 
Fig. 1, the hydrate phase appears at both ends of the image but is con-
tinuous through the PBC. The hydrate phase is in equilibrium with the 
gas phase at one of its interfaces and with the liquid phase at its other 
interface, resulting in a three-phase equilibrium.

The initial number of molecules in each phase is detailed in Table 1. 
For all concentrations studied, the initial number of water and methane 
molecules in the hydrate phase remains constant, as do the number of 
methane molecules in the gas phase and the number of water molecules 
in the liquid phase. The difference in the number of molecules comes 
from the number of Cl− and Na+ ions needed to modify the concentra-
tion of the aqueous solution (that is, for molalities of 0.5, 2, 3, and 4 m). 
In order to study the dependence of the size of the box and the number 
of molecules of the system with the estimation of the three-phase co-
existence temperature, we have replicated by a factor of two in one of 
the directions of space the liquid phase and the gas phase maintaining 
the concentration of the NaCl aqueous solution at 2 m. This new con-
figuration is labeled in the Table 1 with an asterisk. The initial size of 
the simulation box for each of the initial configurations is 36×36×88 
Å3. For the largest system the box size is 36×36×145 Å3. The interfaces 
between the three phases are perpendicular to the z axis.

All simulations are performed with GROMACS package of molecu-
lar dynamics [128,129] in the 𝑁𝑃𝑇 ensemble and at a fixed pressure 
of 400 bar. We have employed the leap-frog integrator algorithm [130]
with a time step of 2 fs. The temperature is fixed using the Nosé-Hoover 
thermostat [131,132] with a coupling constant of 2 ps. Anisotropic pres-
sure using the Parrinello-Rahman barostat [133] with time constant of 
2 ps is applied to the three different sides of the simulation box to allow 

independent fluctuations and changes in the shape of the solid region, 
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Fig. 1. Initial configuration of the three-phase system formed by a slab of methane hydrate in equilibrium with a NaCl solution and a methane gas phase. The 
aqueous solution of this configuration has a molality of 2 m. Water molecules are represented as sticks in red and white colors, Cl− and Na+ ions are represented 
as blue and yellow spheres respectively, and methane molecules are represented as cyan spheres. For a clearer visualization of the reading the size of the ions and 
methane molecules is enlarged with respect to the water molecules.
Table 1

Initial number of molecules of the components of the different phases (hydrate, 
liquid and vapor) in the range of concentrations used in this work. The asterisk 
(∗) corresponds to an initial concentration of 2 m for a larger system studied in 
this work.

Initial molality 
mol/kg

Hydrate phase Liquid phase Vapor phase 
Methane

Water Methane Water NaCl

0 1242 211 1110 0 350
0.5 1242 211 1110 10 350
2.0 1242 211 1110 40 350
∗2.0 1242 211 2220 80 700
3.0 1242 211 1110 60 350
4.0 1242 211 1110 80 350

avoiding possible stress in the solid. The cutoff radio employed for van 
der Waals and electrostatics interactions is 9 Å. Long range energy and 
pressure corrections to the LJ part of the potential were also applied. 
The smooth PME method [134] to account for the long-range electro-
static forces is used. The geometry of the water molecules is maintained 
applying the LINCS algorithm [135,136].

In this work, our system is composed of three components: water, 
methane and NaCl. Water molecules forming the framework of the solid 
hydrate and constituting the liquid water phase, gas-phase methane in 
an independent phase, within the hydrate cages and solved into the 
aqueous phase, and NaCl dissolved in the liquid water phase. The choice 
of a good model for each of the components is crucial to correctly 
reproduce the experimental results. The description of the pairwise in-
teraction between atoms is given by an electrostatic (Coulombic) contri-
bution and a van der Waals contribution represented by a LJ potential.

Water molecules in all the simulations carried out in this work have 
been described using TIP4P/2005 model [137]. Methane molecules can 
be described as a single LJ site despite their tetrahedral structure, thus 
providing similar results to the experimental ones and reducing the 
computational expense. For these reasons we have selected the param-
eters proposed by Guillot and Guissuni [138] and Paschek [139] to 
describe methane molecules. However, following the work of Docherty 
et al. [140] we have modified the LJ interactions between methane and 
3

water using a deviation from the Lorentz-Berthelot geometric combin-
ing rules with a factor 𝜒=1.07 to reproduce the experimental solubility 
of methane in water.

The last component of our system is NaCl. In 2019, a force field 
for different salts based on the TIP4P/2005 water was proposed by Ze-
ron et al. [103] (denoted as Madrid-2019) and a recent extension for a 
large variety of salts has been proposed by Blazquez et al. [104]. These 
models use the idea of scaling charges of ions to account for the po-
larization of electrolytes in water. The charge assigned to Na+ and Cl−

is reduced to ±0.85e. We have chosen this model due to its good per-
formance in salt solutions properties such as the salting out effect of 
methane [118], the freezing depression of ice [99], the correct descrip-
tion of the temperature of maximum density [141] or the improvement 
of the description of transport properties respect to unit charge models 
[104]. Furthermore, Joung-Cheatham (JC) model [142,143] with unit 
charges in combination with TIP4P/2005 water model has also been 
tested in this work to compare it with the scaled charge model.

The parameters used in this work for water, methane and NaCl (us-
ing Lorentz-Berthelot combining rules between the ions and CH4) are 
collected in Table 2. Notice that for the Madrid-2019 force field no LB 
rule is applied for water-ion nor for ion-ion interaction.

3. Results

3.1. Methane hydrate in pure water

In 2010 Conde and Vega [37] determined the three-phase coexis-
tence temperature (𝑇3) at different pressures for a system composed by 
methane hydrate in equilibrium with a liquid pure water phase and a 
methane gas phase for different water models (i.e., TIP4P/2005 [137], 
TIP4P/Ice [144] and TIP4P [145]). At 400 bar, Conde and Vega ob-
tained a value of 𝑇3=302(3) K (for a small system) and 𝑇3=297(8)K 
(for a large system) using the TIP4P/Ice model in agreement with the 
experimental value of 297 K [1]. Subsequently, different groups stud-
ied this same 𝑇3 for methane hydrates using different methodologies or 
initial conditions. Jensen et al. [146] (in the same year of publication 
that Conde and Vega) performed Monte Carlo simulations to determine 
𝑇3 of methane hydrate by thermodynamic integration obtaining a result 
approximated to 𝑇3=314 K which clearly overestimated the experimen-

tal data and those results obtained by Conde and Vega. Michalis et al. 
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Table 2

Force field parameters for water, methane and ions simulated in this work. TIP4P/2005 water 
parameters are taken from Abascal and Vega [137]. LJ interaction parameters for methane are 
taken from Docherty et al. [140] and Na+ and Cl− ions from Zeron et al. [103] (Madrid-2019 
model) and Benavides et al. [142,143] (JC-TIP4P/2005 model). The subscript 𝑖𝑂𝑤 refers to the 
cross-interaction of each center with the oxygen of the water molecule. Notice that for the 
Madrid-2019 force field no LB rule is applied for water-ion nor for ion-ion interaction.

Model Charge 
(e)

𝜎𝑖𝑖
(Å)

𝜖𝑖𝑖
(kJ/mol)

𝜎𝑖𝑂𝑤

(Å)

𝜖𝑖𝑂𝑤

(kJ/mol)

TIP4P/2005
O 0 3.1589 0.7749
H +0.5564
M −1.1128
Methane
CH4 0 3.7300 1.2263 3.4445 1.0430
Madrid-2019
Na+ +0.85 2.21737 1.472356 2.60838 0.793388
Cl− −0.85 4.69906 0.076923 4.23867 0.061983
Na+- Cl− 3.00512 1.438894
JC-TIP4P/2005
Na+ +1.00 2.160 1.47544 2.659 1.06926
Cl− −1.00 4.830 0.05349 3.994 0.203603
Na+-Cl− 3.495 0.280935
[121] also differs from the values of Conde and Vega using the direct 
coexistence technique reporting a value of 293.4 K. Regarding more 
recent studies, Fernandez-Fernandez et al. [111] performed direct co-
existence simulations of methane hydrate in pure water with different 
system sizes obtaining different values of 𝑇3 in function of the num-
ber of methane molecules in the gas phase. Their data were closer to 
those of Michalis et al. and underestimated the experimental value. 
Finally, Grabowska et al. [147] have also recalculated the 𝑇3 of the 
methane hydrate at 400 bar. Nevertheless they have employed two dif-
ferent methods: The first one is the direct coexistence method, obtaining 
a 𝑇3=294(2) K, the second method is based on solubility calculations 
and provides an estimation of 𝑇3=295(2) K.

A compilation of these values at 400 bar is shown in Table 3. As can 
be seen, for the TIP4P/Ice model of water the most current estimates 
point out to a value of 294(2) K. Notice that the value of T3 depends 
on the particular choice of the cutoff, and could also have finite size 
effects and that would explain the differences between the results of 
different groups (it would be useful in the future to study that in more 
detail). In this work we shall adopt the TIP4P/2005 for water (rather 
than the more popular in hydrate studies TIP4P/Ice). The reason for 
that is that not reliable force field has been proposed for NaCl in water 
when described with TIP4P/Ice. The Madrid-2019 force field of NaCl 
was designed for TIP4P/2005 and for this reason we shall use this model 
in this work. It should be reminded that models with a good melting 
point of ice Iℎ predict accurately the value of 𝑇3 for hydrates [68]. 
The melting point of ice Iℎ for TIP4P/Ice and TIP4P/2005 are 270 K 
and 250 K respectively [119,148]. Thus when using TIP4P/2005 we 
can not expect to reproduce the experimental values of 𝑇3. However, in 
this work we focus on the shift in the value of 𝑇3 due to the addition 
of salt rather than in the absolute values of 𝑇3. In this work we have 
recalculated the value of 𝑇3 at 400 bar when no salt is present using 
TIP4P/2005.

To determine 𝑇3 of methane hydrate in pure water we follow the 
procedure described by Conde and Vega [37] in 2010. It basically 
consists of putting three coexisting phases in contact and simulating 
different temperatures for a given pressure. Fig. 2 shows the evolution 
of potential energy as a function of time. We have used the same initial 
configuration for all temperatures. It can be seen that the initial ener-
gies in the Fig. 2 are not exactly the same in all cases due to quickly 
relaxation of the system (about 0.1 ns). Notice that all the potential en-
ergies presented in this work are in kcal/mol and per molecule (which 
means that we have divided the energy by the total number of particles 
4

of the system (i.e., water, methane and number of ions)).
Table 3

Three-phase coexistence temperature (𝑇3) of methane hydrate obtained for dif-
ferent authors at 400 bar for the TIP4P/Ice and TIP4P/2005 water models. No 
ions are included in the liquid water phase. The last column corresponds to the 
year of publication of each reference.

Model 𝑇3 (K) Reference Year

Experimental 297 Sloan [1] 1990
TIP4P/Ice 302(3) Conde et al. [37] 2010
TIP4P/Ice 297(8) Conde et al. [37] 2010
TIP4P/Ice 314(7) Jensen et al. [146] 2010
TIP4P/Ice 293.4(0.9) Michalis et al. [121] 2015
TIP4P/Ice 290.5(5) Fernandez-Fernandez et al. [111] 2019
TIP4P/Ice 293.5(5) Fernandez-Fernandez et al. [111] 2019
TIP4P/Ice 294(2) Grabowska et al. [147] 2022
TIP4P/Ice 295(2) Grabowska et al. [147] 2022
TIP4P/2005 281(2) Conde et al. [37] 2010
TIP4P/2005 279(1) This work 2022

Fig. 2. Evolution of the potential energy of the system in pure water de-
scribed in this work as a function of time for 𝑁𝑝𝑇 simulations at 400 bar using 
TIP4P/2005 water potential model.

As it mentioned above, in the 𝑁𝑝𝑇 simulations each side of the box 
can fluctuate independently. These non-dependent fluctuations allow 
the water molecules to accommodate themselves in the solid structure 
of the hydrate when the system freezes or in the liquid phase when the 
system melts. At temperatures above 𝑇3 (i.e., 280, 281 and 282 K) it 
can be seen how the potential energy increases with time, indicating 

the melting of the methane hydrate. Otherwise, if the potential energy 
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Fig. 3. a) Evolution of the potential energy as a function of time obtained at several temperatures for the solid methane hydrate-NaCl(aq)-methane gas system with 
a salt concentration of 0.5 m (narrow down method). The potential energies presented are in kcal/mol and per molecule (which means that we have divided the 
energy by the total number of particles of the system (i.e., water, methane and number of ions)). b) Evolution of the molality for the NaCl aqueous phase as a 
function of time calculated at 277 K starting from an initial configuration with a molality of 0.5 m (equilibrium method). All simulations were performed using the 

Madrid-2019 model and at 400 bar.

decreases with time, the growth of methane hydrate occurs as shown in 
the Fig. 2 at temperatures 277 and 278 K.

According to these potential energy variations, the lowest tempera-
ture at which the hydrate melts is at 280 K and the highest temperature 
at which the hydrate freezes is at 278 K. With these results about the 
potential energy we report a value of 𝑇3 for the TIP4P/2005 model at 
400 bar of 279(1) K. This value is slightly different, although within 
the error bar, from that obtained more than a decade ago by Conde and 
Vega [37] for the TIP4P/2005 model under the same conditions, which 
was 281(2) K (see Table 3). This new 𝑇3 value obtained will be the ref-
erence three-phase coexistence temperature used throughout this work 
when no ions are included in the aqueous phase.

3.2. Methane hydrate in 0.5 m aqueous NaCl solution

Once we have determined the 𝑇3 of methane hydrate in pure water 
we now study the 𝑇3 at conditions close to seawater from an initial 
molality for the NaCl aqueous phase of 0.5 m in the three-phase initial 
configuration. The selected pressure is 400 bar and we use the Madrid-
2019 model to simulate the system of water-NaCl. Note that we chose 
this pressure to increase the solubility of methane in water, making it 
possible to observe hydrate growth within a reasonable timeframe that 
can be studied through simulations lasting microseconds. Furthermore, 
this pressure allows us to emulate the conditions found in deep oceans.

The results obtained at 0.5 m for the evolution of potential energy 
with time are shown in the Fig. 3a). Following the same methodology 
as the one followed for methane hydrate in pure water where 𝑇3 is nar-
rowed down, we obtain a value of 𝑇3=278.5(1.5) K, only half a degree 
below the three-phase coexistence temperature in the pure water sys-
tem. The presence of a small amount of ions in liquid water is practically 
imperceptible in the freezing depression and is within the error bar. In 
Fig. 3a) we observe that 𝑇3 is narrowed down between the temperatures 
of 280 K and 277 K.

Until now, we have been determining 𝑇3 fixing the initial concen-
tration of salt and performing simulations at different temperatures. 
However, it is possible to use an alternative methodology. It can be fixed 
a temperature and performs long simulations until the system reaches 
equilibrium and estimate the concentration at which the equilibrium is 
reached. We call this method the equilibrium method to differentiate it 
from the narrow down method. Previously, this method has been used 
satisfactorily for NaCl(aq)/ice systems [99,120].

It can be seen in the Fig. 3a) at 277 K how the potential energy of 
the system decreases until reaching a plateau around 1 μs. The decrease 
in potential energy initially reveals the growth of the methane hydrate 
5

phase and how equilibrium of the system is subsequently reached. We 
Fig. 4. Density profile along the direction perpendicular to the interface for the 
solid methane hydrate-NaCl(aq)-methane gas system at 277 K and calculated 
after 1 μs when the system reached the equilibrium. The interval between the 
two green dashed lines is used to estimate the molality of the NaCl aqueous 
phase.

selected this run at 277 K to study the evolution of the molality of the 
aqueous phase as a function of time.

Indeed, the Fig. 3b) shows how, starting from an initial configura-
tion of 0.5 m, the hydrate phase grows reducing the number of water 
molecules in the aqueous phase and causing an increase in the molality 
of the aqueous phase. The molality increases (due to the growth of the 
hydrate) until the system reaches equilibrium (about 1 μs). We calcu-
late the molality of the aqueous phase in the equilibrium system as the 
average value of the molalities from 1 μs to end of run. Thus, the mo-
lality of the system at 277 K and 400 bar is 0.77(02) m. The error bar 
for the molality calculation was estimated as the standard deviation of 
the data.

It is important to note that the final molality of the aqueous phase 
may be different from the initial one as the system approaches equilib-
rium. The hydrate can grow and increase the apparent concentration 
(increasing the molality of the aqueous phase) or it can melt and de-
crease the apparent concentration (decreasing the molality of the aque-
ous phase).

In Fig. 4 we present the density profile for the studied system and 
how the technique to estimate the molality of the aqueous phase works. 
The three different components of the system (water, methane and 
NaCl) are shown. The density of each component changes depending 
on the phase. In the first region of the density profile (up to 2 nm) we 

observe the solid phase of the hydrate in which water and methane are 



Journal of Molecular Liquids 383 (2023) 122031S. Blazquez, C. Vega and M.M. Conde

Fig. 5. a) Evolution of the potential energy as a function of time obtained at several temperatures for the solid methane hydrate-NaCl(aq)-methane gas system with 
a salt concentration of 2 m. (narrow down method). b) Evolution of the molality for the NaCl aqueous phase as a function of time calculated at 273 K starting from 
an initial configuration with a molality of 2 m (equilibrium method). All simulations were performed using the Madrid-2019 model and at 400 bar. At 273 K two 
sizes of systems were used.
present (it can be seen also in Fig. 1). Notice that there is no NaCl in 
the solid phase, in the case of ices a small amount of the ions can dope 
the solid phase [21,22] but in this case we do not observe this dop-
ing process in the hydrate phase. This behavior may be attributed to 
the fact that the doping process is expected to occur at moderate or 
deep supercooling conditions (i.e., temperatures lower than those we 
are simulating). Under high supercooling conditions, the growth rate of 
the hydrate increases, making the doping process presumably easier to 
observe due to the more frequent presence of defects. In the central re-
gion of the profile we can see the liquid phase of the system which allow 
us to calculate the concentration of NaCl in the solution. We consider an 
homogeneous region of the solution (between the vertical green dashed 
lines) and from the partial densities of water and NaCl we calculate the 
concentration of NaCl (in mol of NaCl per kg of water). Finally, in the 
density profile we can also observe the gas phase in which the density 
of methane is higher and the densities of the other components (i.e., 
water and NaCl) are almost zero. This procedure is similar for all the 
configurations studied in this work. Notice that the density profile has 
been calculated after 1 μs when the system reaches the equilibrium as 
we show in Fig. 3a) and 3b)

3.3. Methane hydrate in 2 m aqueous NaCl solution

The next salt concentration of the aqueous phase that we study is 
2 m. In Fig. 5a), the potential energy at different temperatures as a 
function of simulation time for a system formed by a solid phase of 
methane hydrate in equilibrium with a 2 m NaCl aqueous phase and a 
methane gas phase is shown. All simulations start from the same initial 
configuration. For this system, 𝑇3 is located between the temperatures 
of 275 K (lower temperature at which the hydrate phase melts) and 
273 K (higher temperature at which the hydrate phase grows). Thus, 
the value of 𝑇3 is 274(1) K for a system with a molality of 2 m for the 
aqueous phase. This value of 𝑇3 is 5 K lower than the system without 
ions. This amount of ions in the aqueous phase represents a noticeable 
depression in the 𝑇3.

We observe in Fig. 5a) that the simulation at 273 K reaches a region 
of stability at long times. For this temperature, the length of the simu-
lation is around 6 μs and several abrupt drops in potential energy can 
be clearly seen, revealing different times in which the hydrate grows. 
About 700 ns the potential energy decreases and reaches a first plateau. 
Then, about 2.7 μs another drop in the energy can be observed indi-
cating a new growth of the hydrate and it remains at a stable plateau 
until the end of the simulation run. We have reanalyzed this run at tem-
perature 273 K to study the evolution of molality with the equilibrium 
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method.
Fig. 5b) shows the evolution of the molality as a function of time at 
273 K starting from an initial configuration where the molality of the 
NaCl aqueous phase is 2 m. As we had predicted with the potential en-
ergy, two remarkable jumps are observed in the system until it reaches 
equilibrium. In Fig. 5b) we can associate the two increases in molality 
with the two decreases in the potential energy. Averaging the values 
obtained above 3 μs (from which the system remains in equilibrium for 
more than 3 μs) we calculate the molality at 273 K and 400 bar giving 
a value of 2.31(05) m. The decrease in energy implies that the hydrate 
has grown. This in turn causes the amount of water in the liquid phase 
to decrease and therefore the concentration of NaCl increases (there is 
the same amount of NaCl but dissolved in less water).

A question arises at this point, what would happen if at the same 
temperature the size of the system is different? Would the same value 
of the molality be obtained when equilibrium is reached? Previously, 
we observed a system size dependence in the estimation of the melt-
ing point for ice-water systems [148]. Thus, in this case, we want to 
clarify whether these effects are present in our system sizes in the 
methane hydrates study. In order to answer these questions, we sim-
ulate a larger system at the same conditions (i.e., 273 K, 400 bar and 
an initial configuration with a 2 m NaCl aqueous phase). The larger sys-
tem has the same number of molecules in the hydrate phase but the 
double of molecules in the liquid and the double of molecules in the va-
por phase (see Table 1). We observe in Fig. 5b) that both system sizes 
reach equilibrium at similar values of molality. For the larger system we 
consider equilibrium is reached after 1 μs, and we obtained 2.17(04) m 
as the equilibrium concentration. For the smaller system we calculate 
the molality from 3 μs obtaining a value of 2.31(05) m.

The difference between both results is only 6% percent, which in-
vites us to conclude that there are no considerable size differences, at 
least for these two selected sizes, not being necessary to use a system 
with a greater number of molecules in the aqueous phase, and its con-
sequent computational cost, to calculate the molality of the system in 
equilibrium.

3.4. Methane hydrate in 3 m aqueous NaCl solution

The results obtained for the equilibrium of three phases when the 
molality of the aqueous phase is 3 m are given in Fig. 6a) and Fig. 6b). 
Following the same procedure as in the previous cases we simulate the 
system at the same pressure and at different temperatures from the same 
initial configuration. The value of 𝑇3 estimated by the narrow down 
method is 270(3) K. For the equilibrium method, we select 270 K as 
the temperature at which the molality analysis is calculated since this 
temperature is maintained with a practically constant potential energy 

throughout the simulation trajectory (see Fig. 6a)).
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Fig. 6. a) Evolution of the potential energy as a function of time obtained at several temperatures for the solid methane hydrate-NaCl(aq)-methane gas system with 
a salt concentration of 3 m (narrow down method). b) Evolution of the molality for the NaCl aqueous phase as a function of time calculated at 270 K starting from 
an initial configuration with a molality of 3 m (equilibrium method). All simulations were performed using the Madrid-2019 model and at 400 bar. We show also 
the molality results for the unit charges JC-TIP4P/2005 model.
In line with the results obtained for the potential energy, the evolu-
tion of molality as a function of time remains practically constant from 
the beginning of the simulation (see Fig. 6b)). The chosen temperature 
of 270 K is a temperature very close to the 𝑇3 in these conditions of 
molality for the aqueous phase of system.

So far, all the simulations in the presence of salt have been car-
ried out with the Madrid-2019 scaled charge model. For this 3 m salt 
concentration (where the amount of ions present in water represents 
a relatively high concentration ) we compare the molality results ob-
tained by the equilibrium method with the Madrid-2019 scaled charge 
model and with a unit charge model. The unit charge model chosen is 
the JC-TIP4P/2005 [143] since it is a model that reasonably reproduces 
the freezing depression line in the ice/NaCl(aq) system.

For both models we start from the same initial configuration and an-
alyze the trajectory obtained at the same temperature (i.e., 270 K) cal-
culating the molality as a function of time. Fig. 6b) shows the evolution 
of molality for the Madrid-2019 (scaled charges) and JC-TIP4P/2005 
(unit charges). The results obtained are very similar and there are no 
major differences. However, it is possible that for higher salt concentra-
tions or less complex systems (such as ices) differences between models 
can be observed [149]. In this case the molalities obtained for both 
models have been calculated starting from 1 μs. The molality obtained 
with the Madrid-2019 model is 2.99(07) m and with JC-TIP4P/2005 
model is 3.00(05) m.

3.5. Methane hydrate in 4 m aqueous NaCl solution

Finally, we study the three-phase coexistence with the highest mo-
lality, specifically from an initial configuration with a molality of the 
aqueous phase of 4 m. We perform simulations at the same pressure 
than in the previous cases and several temperatures. The results of the 
evolution of the potential energy as a function of time are shown in 
Fig. 7a). Clearly at 260 and 265 K it is seen that there is a drop in 
energy indicating the slow growth of the methane hydrate phase. More-
over, at 270 K the energy rises caused by the partial melting of the 
hydrate phase. At 267 K the potential energy slightly decreases in the 
first microsecond of the simulation, remaining constant until 4 μs. Note 
that in this case, to obtain simulations of more than 4 μs, the calculation 
time was extremely high due to the slow kinetics of the system when 
the salt concentration is so high. In view of the results in Fig. 7a), the 
value of 𝑇3 for the 4 m system is 267(3) K.

In addition, we represent the evolution of molality as a function of 
time in Fig. 7b). For this system and after examining different temper-
atures, we choose 267 K since it seems to be the closest temperature 
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to the 𝑇3 as we show in Fig. 7a). Starting from an initial configuration 
with a molality of 4 m, the system at 267 K clearly decreases its molal-
ity up to 1 microsecond when it slightly increases its molality again and 
remains constant until the end of the simulation. Averaging the molal-
ity from 1 μs, we obtain a value of m=3.81(04) mol/kg for this system 
with the Madrid-2019 model at 267 K and 400 bar.

For this temperature, the molality of the system under equilibrium 
conditions (3.81 m) is smaller than the molality of the initial configura-
tion (4 m). This means that part of the initial block of methane hydrate 
melts, thus increasing the number of water molecules in the aqueous 
phase and therefore decreasing the molality of the aqueous solution.

Nevertheless, the chosen temperature of 267 K is close to the equi-
librium of three phases and the molality is very close to the value of the 
initial configuration. Likewise, both methods, the narrow down method 
and the equilibrium method are valid and reliable to determine the 𝑇3
of all the concentrations studied in this work.

3.6. T3 equilibrium line for the methane hydrate-NaCl(aq)- methane gas 
system

A summary of all the values of 𝑇3 obtained at 400 bar for both 
the narrow down method and the equilibrium method are shown in 
Tables 4 and 5 respectively. The range of salt concentrations studied in 
the aqueous phase goes from 0.5 to 4 m.

We also present Δ𝑇3 as the depression of the three-phase coexistence 
temperature of the system when there are dissolved ions in the aqueous 
phase (Δ𝑇3 is the difference between 𝑇3 in salt solution and 𝑇3 in pure 
water). We use this magnitude (Δ𝑇3) to compare with experimental 
data because of the water model used (TIP4P/2005) does not provide a 
value of the melting temperature of ice (𝑇𝑚) close to the experimental 
value as we have mentioned previously. In fact, its value is shifted by 
about 20 K below the experimental value. Certainly other models such 
as TIP4P/Ice predict the experimental value of 𝑇𝑚 (and therefore 𝑇3) 
since it has been fitted to describe this specific property. However, to 
the best of our knowledge, there are no salt force fields adapted to this 
model.

In Table 4 the concentration of the aqueous phase is fixed and differ-
ent temperatures are studied estimating the value of 𝑇3 by the narrow 
down method. In the equilibrium method (see Table 5), by contrast, for 
an initial configuration with an initial molality of the aqueous phase, 
the temperature is fixed and the molality of the system (𝑚𝑒𝑞) is deter-
mined when it reaches equilibrium.

And lastly, we conclude with the representation of the three-phase 
equilibrium line as a function of the salt concentration for the system 
formed by a methane hydrate phase, an NaCl aqueous phase and a 
methane gas phase. The equilibrium line is collected in Fig. 8. We rep-

resent Δ𝑇3 versus molality of the aqueous phase. As it can be seen in 
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Fig. 7. a) Evolution of the potential energy as a function of time obtained at several temperatures for the solid methane hydrate-NaCl(aq)-methane gas system with 
a salt concentration of 4 m (narrow down method). b) Evolution of the molality for the NaCl aqueous phase as a function of time calculated at 267 K starting from 
an initial configuration with a molality of 4 m (equilibrium method). All simulations were performed using the Madrid-2019 model and at 400 bar.
Table 4

Three-phase coexistence temperature (𝑇3) and coexistence point depression 
(Δ𝑇3) for the methane hydrate/NaCl(aq)/methane system studied for different 
salt concentrations obtained by the narrow down method using the Madrid-
2019 model and 400 bar. The concentration of NaCl in the aqueous phase is 
shown in molality (𝑚). ΔT3 is the depression of the three-phase coexistence 
temperature of the system when there are dissolved ions in the aqueous phase. 
The value of 𝑇3 for the methane hydrate system in pure water is calculated for 
the TIP4P/2005 model. The unit of the molality is given in mol/kg and the unit 
of the temperature is given in Kelvin (K). The results obtained in this work are 
compared with those obtained from a fit of the experimental values of Refs. 
[96,150].

Model 𝑚 Simulation Experimental

𝑇3 Δ𝑇3 𝑇3 Δ𝑇3

TIP4P/2005 0 279 0 300.77 0
Madrid-2019 0.5 278.5(1.5) −0.5 299.70 −1.07
Madrid-2019 2.0 274(1) −5 295.58 −5.19
Madrid-2019 3.0 270(3) −9 292.17 −8.60
Madrid-2019 4.0 267(3) −12 288.34 −12.43

Fig. 8 when the salt concentration increases, Δ𝑇3 decreases. This be-
havior also occurs in ice (phenomenon known as freezing depression). 
In a hydrate-type system, as in ice, the presence of ions in the aqueous 
phase causes a depression of the three-phase coexistence line.

For the entire range of salt concentration studied, the Madrid-2019 
model correctly predicts the equilibrium line in agreement with the 
experimental fit based on the experimental data of Roo et al. [150] and 
Jager and Sloan [96]. Likewise, there is consistency in the simulation 
results obtained by the two methods used in this work (narrow down 
and equilibrium), providing robustness and reliability to our results. It 
is true and it can be seen in Fig. 8 that at high salt concentrations the 
error bar estimated by the narrow down method for the value of Δ𝑇3 is 
large due to the increasingly slow kinetics of the system. However, these 
values at high molalities (3 and 4 m) are in agreement with the results 
obtained by the equilibrium method and fall within the experimental 
equilibrium line. Thus, although the error is higher by using the narrow 
down method (especially at high molalities), we are certain that the 
values are trusted.

At molalities close to marine salinity, we have included in the equi-
librium line the data reported by Fernandez-Fernandez et al. [127] They 
use the Smith and Dang unit charge model [151] for ions in combina-
tion with the TIP4P/Ice water model [144] giving very good result at 
this salinity concentration. However, in previous work on freezing de-
pression of ice [98,120], it was observed both for unit charge models 
and for scaled charge models that at low molalities it is very difficult to 
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find differences between force fields because the drop in temperature 
Table 5

Equilibrium molality (𝑚𝑒𝑞 ), three-phase coexistence temperature (𝑇3) and co-
existence point depression (Δ𝑇3) for the methane hydrate/NaCl(aq)/methane 
system obtained by the equilibrium method using the Madrid-2019 model and 
400 bar. The initial molalities of each system are 0, 0.5, 2, 3 and 4 mol/kg. ΔT3
is the depression of the three-phase coexistence temperature of the system when 
there are dissolved ions in the aqueous phase. The value of 𝑇3 for the methane 
hydrate system in pure water is calculated for the TIP4P/2005 model. The aster-
isk (∗) represents the result obtained for a larger system and an initial molality 
of 2 m. For the system with an initial molality of 3 m, the results obtained for 
the Madrid-2019 and Joung-Cheatham models are compared. The unit of the 
molality is given in mol/kg and the unit of the temperature is given in Kelvin 
(K). The results obtained in this work are compared with those obtained from a 
fit of the experimental values of Refs. [96,150].

Model 𝑚𝑒𝑞 Simulation Experimental

𝑇3 Δ𝑇3 𝑇3 Δ𝑇3

TIP4P/2005 0 279 0 300.77 0
Madrid-2019 0.77(05) 277 −2 299.27 −1.5
Madrid-2019 2.31(05) 273 −6 294.97 −5.8
Madrid-2019∗ 2.17(04) 273 −6 295. 47 −5.3
Madrid-2019 2.99(07) 270 −9 292.47 −8.3
JC-TIP4P/2005 3.00(05) 270 −9 292.47 −8.3
Madrid-2019 3.81(04) 267 −12 289.07 −11.7

at those molalities is very small (below of 2 K) being very close to the 
error bar of the simulation technique itself. Furthermore, it would be in-
teresting to study force fields for sodium chloride in combination with 
the TIP4P/Ice model along the equilibrium line since this water model 
reproduces well the three-phase coexistence temperature for methane 
hydrate. To date there is no suitable combination for this water model.

Additionally, as it can be seen in Fig. 8 and in Table 5, two sizes of 
systems studied starting from an initial molality of 2 m provide simi-
lar results. Although it is true that more work in this sense should be 
carried out in order to extract a clear and definitive message about the 
role of finite size effects in the direct coexistence simulations for the 
determination of coexistence temperatures.

And finally, the result obtained with the JC-TIP4P/2005 unit charge 
model is compared with the Madrid-2019 scaled charge model by the 
equilibrium method. Both values for the temperature of 270 K are 
practically identical and slightly fall below the experimental line (see 
Table 5 and Fig. 8). Nonetheless, at 4 m the scaled charge model cor-
rectly predicts the point of coexistence on the experimental line. More 
work would be needed at high molalities for unit charge models to know 
if this slight underestimation persists or if it is maintained as it occurs 
for less complex systems such as ice coexisting with a NaCl solution 

[98,120].



S. Blazquez, C. Vega and M.M. Conde

Fig. 8. Three-phase coexistence line and coexistence point depression for the 
system formed by a slab of methane hydrate, a NaCl aqueous solution and a 
methane gas phase as a function of molality of the aqueous phase at 400 bar. 
Δ𝑇3 is given relative to 𝑇3 of methane hydrate in pure water calculated in this 
work (279 K) for the TIP4P/2005 model. Blue circles: results for the Madrid-
2019 model. Pink triangle down: results for the Madrid-2019 model using a 
larger system. Red triangle up: results for the JC-TIP4P/2005 model. Green 
triangle right: simulation result taken from Fernandez-Fernandez et al. [111]. 
Simulation results with vertical lines of uncertainty were obtained with the 
narrow down method. Simulation results with horizontal lines of error were 
obtained with the equilibrium method. Solid black line: Fitted experimental 
data obtained from Roo et al. [150] (black squares) and Jager and Sloan [96]
(black crosses).

4. Conclusions

In this work we have estimated the three-phase coexistence temper-
ature for a methane hydrate system in equilibrium with a NaCl solution 
and a methane gas phase by using molecular dynamics simulations. 
This is the first time that the three-phase equilibrium line is calculated 
by computer simulations and the results are in good agreement with the 
experimental measurements.

In order to estimate the three-phase temperatures (𝑇3) we have em-
ployed two different methods (i.e., the equilibrium method and the 
narrow down method). In the first one, we study the evolution of the 
concentration of the aqueous phase with time until the system reaches 
equilibrium by fixing the temperature and pressure. Therefore, we only 
need a long simulation (on the scale of microseconds) at the fixed 
thermodynamic conditions. The second method is based on simulat-
ing different temperatures for a fixed pressure where the evolution of 
potential energy as a function of time is monitored, delimiting the equi-
librium temperature as that located between the lowest temperature 
that increases energy and the highest temperature that decreases the 
potential energy of the system. By studying the evolution of potential 
energy as a function of time it is possible to narrow down the three-
phase equilibrium temperature.

Both methods obtain similar results and allow the prediction of the 
entire range of concentrations of the aqueous phase. The equilibrium 
method is faster and with lower uncertainty (although the simulation 
is longer, there is only one simulation to perform and reach equilib-
rium of the system). In the narrow down method, the error bars at 
higher concentrations are larger than in the equilibrium method be-
cause at high concentrations it becomes increasingly more expensive to 
approach equilibrium temperature due to the slow dynamics of the sys-
tem. However, when the equilibrium region of the system is not known, 
the narrow down method is very useful to estimate a first starting point 
on the equilibrium line that serves as a guide.

We have also studied two different force fields for salts (i.e., the 
Madrid-2019 with scaled charges and the JC-TIP4P/2005 with unit 
charges) and we have not found differences between these models, ob-
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taining practically the same value. It is possible that for higher salt 
Journal of Molecular Liquids 383 (2023) 122031

concentrations differences between models can be observed but the 
simulations at higher molalities are computationally expensive and the 
main purpose of this work is not to examine differences between force 
fields but determine the three-phase line of methane hydrate in the 
presence of salt.

Moreover, we have studied the role of finite size effects in the 
estimation of 𝑇3 simulating two systems with different numbers of 
molecules under the same conditions of pressure, temperature and mo-
lality. We have observed that there is a slight decrease in the equilib-
rium molality (at the same temperature) when we use the larger system. 
However, further efforts are needed to analyze the finite size effects on 
𝑇3 in hydrate systems.

In view of the results and with the current computational power we 
conclude that it is possible to study by simulation the 𝑇3 of methane 
hydrate in aqueous systems with salt as shown in this work. Likewise, 
the Madrid-2019 model gives a very good description of the shift in 
the equilibrium line. Similarly, the unit charge force field also provides 
a good estimate of 𝑇3 (at least up to molalities above 3 m where the 
difference between unit charge and scaled charge force fields is notice-
able).
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