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ABSTRACT: In this work, we study by means of simulations of hard spheres
the equilibrium between a spherical solid cluster and the fluid. In the NVT
ensemble, we observe stable/metastable clusters of the solid phase in
equilibrium with the fluid, representing configurations that are global/local
minima of the Helmholtz free energy. Then, we run NpT simulations of the
equilibrated system at the average pressure of the NVT run and observe that
the clusters are critical because they grow/shrink with a probability of 1/2.
Therefore, a crystal cluster equilibrated in the NVT ensemble corresponds to
a Gibbs free energy maximum where the nucleus is in unstable equilibrium
with the surrounding fluid, in accordance with what has been recently shown
for vapor bubbles in equilibrium with the liquid. Then, within the seeding
framework, we use classical nucleation theory to obtain both the interfacial free energy γ and the nucleation rate. The latter is in very
good agreement with independent estimates using techniques that do not rely on classical nucleation theory when the mislabeling
criterion is used to identify the particles of the solid cluster. We, therefore, argue that the radius obtained from the mislabeling
criterion provides a good approximation for the radius of tension Rs. We obtain an estimate of the Tolman length by extrapolating
the difference between Re (the Gibbs dividing surface) and Rs to infinite radius. We show that such a definition of the Tolman length
coincides with that obtained by fitting γ versus 1/Rs to a straight line as recently applied to hard spheres.

■ INTRODUCTION

The thermodynamics of systems having two phases with a
curved interface is a fascinating topic that has been largely
discussed by the scientific communities in the last decades.1−18

A system with a fixed number of particles (N), volume (V),
and temperature (T) can exhibit a stable/metastable spherical
interface between the solid and liquid phases corresponding to
a global/local minimum of the Helmholtz free energy
(F).2,5,15,19−30 Thermodynamic properties of metastable states
can be studied as long as there is a free energy barrier
separating them from the equilibrium one, and the relaxation
time of the system is shorter than the time required to
overcome the free energy barrier.31−33 According to the
thermodynamic description of Rowlinson and Widom34 for
planar interfaces at equilibrium, the value of the interfacial free
energy γ is unique while for curved interfaces depends on the
choice of the dividing surface between the two phases.7,34

There are two reasonable choices: the Gibbs dividing surface
with radius Re and surface free energy γe (where the excess
number of particles is zero), and the surface of tension with
radius Rs and surface free energy γs satisfying the Laplace
equation, which for spherical interfaces reads Δp = 2γs/Rs,
where Δp is the pressure difference across the interface.35

Whenever thermodynamics enters in action, one can also
use statistical mechanics to get a microscopic insight. In fact,
Kirkwood and Buff have shown that for a planar interface

between fluid phases, it is possible to evaluate γ (which is
unique) from a mechanical route by computing the pressure
tensor.36 This approach has been adopted in several simulation
works, following the pioneering study of Chapela et al.37

However, there are cases where there is no rigorous
mechanical route to γ, including the planar fluid−solid,38,39
curved fluid−fluid, and curved solid−fluid7,10,34,40 interfaces.
The only way to calculate γ in these cases requires the
evaluation of the total Helmholtz free energy of the system F.
Not surprisingly, the lack of a mechanical route to γ, results in
quite infrequent experimental approaches to measure γ for
planar fluid−solid interfaces (ice−water interface being an
excellent example of the situation41,42), if not entirely absent or
dubiously rigorous as in the case of curved interfaces.
After this frustrating situation, several routes to γ for curved

interfaces have been proposed. The first route consists of
assuming that the value of γ for the curved interface is that of
the planar interface. This is denoted as the capillarity
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approximation. The approach is simple, but there is no
fundamental reason to believe that the value of γ does not
depend on the curvature of the interface.13,43 Indeed, a series
of studies on nucleation phenomena have provided indirect
evidences that the capillarity approximation fails, as γ changes
with the curvature of the spherical phase.31,44−49

The second route is theoretical and was initiated by Tolman.
In 1949, Tolman wrote an influential paper entitled “The effect
of droplet size on surface tension”.50 He assumed that the
difference δ between the curvature radii Re and Rs of the two
dividing surfaces is constant (i.e., it does not change with the
radius of the spherical cluster) and that can be estimated by its
value for infinitely large clusters (which defines the Tolman
length δTolman). By performing certain approximations, he
showed that the value of γ (along an isotherm) should change
with the inverse of Rs with an expression where the Tolman
length plays a key role. The paper provides molecular
evidences that γ changes with the radius of curvature of the
cluster, shifting the discussion to the value of δTolman
characterizing the difference between Re and Rs for infinitely
large clusters. Determining Re is quite simple and only requires
the knowledge of the bulk densities of the two phases, the total
volume and the total number of particles N. However, the
absence of a rigorous mechanical method to obtain Rs (in spite
of a series of attempts7,10,34,40) implies that it can only be
determined rigorously through the cumbersome task of
determining the Helmholtz free energy of the system F.
Because rigorous calculations of F for systems with curved
interfaces are commonly missing, Rs is not determined
rigorously. This has generated an intense debate on the
magnitude and sign of the Tolman length for a number of
systems for more than 70 years.1−18,51

The third route to obtain γ for curved interfaces was
initiated by Turnbull and co-workers.52,53 It uses nucleation
studies to estimate values of γ for curved interfaces being this
an indirect route. The idea of Turnbull was to fit the
experimental values of the homogeneous nucleation rate J (i.e.
number of critical clusters per unit of time and volume) using
classical nucleation theory (CNT) which can be regarded as a
combination of the formalism of Volmer−Weber54−Becker−
Döring55 and the Gibbsian formalism applied to the
thermodynamics of curved interfaces.56 This interesting
approach takes advantage of experimental results for J to
obtain, after a theoretical treatment, values of γ for curved
interfaces.57 This route has undergone a new revival from
simulation studies in the last decade as now it is possible to
estimate J for a potential model using computer simulations.
Techniques like umbrella sampling44,45 (US), forward flux
sampling,46 or transition path sampling58 can be used to
determine J. These techniques are rigorous but rather
expensive from a computational point of view. For this reason,
in the last 10 years, a new technique has been proposed aimed
to determine J denoted as seeding,59−65 where a solid cluster
(equilibrated at a certain value of T and p) is inserted into an
equilibrated liquid (at the same conditions T, p) to determine
whether is critical or not. According to its time evolution in the
NpT ensemble: it is critical if the probability to freeze and to
melt are both equal to 1/2. The methodology does not allow
to estimate J by itself. However, following the CNT with a
“judicious” choice of the order parameter66 used to determine
the size of the critical cluster, one can reasonably estimate free
energy barriers and nucleation rates getting values comparable
with the ones obtained with rigorous techniques.62,67,68 The

seeding method also provides (through the CNT formalism)
values of γ for the curved interface. The seeding scheme
resembles Turnbull’s approach in the sense that it connects
nucleation studies and CNT (Turnbull’s approach going from
J to γ using experimental results of J and seeding going from γ
to J using simulation results). Interestingly, we have shown
recently that the values of γ from our seeding studies of
nucleation can be described by a “Tolman-like” expression for
a number of systems including HS.49 An interesting question
(that we intend to address in this work) is whether this
Tolman-like expression is also able to describe results for
curved interfaces at stable/metastable equilibrium.
Let us now discuss the fourth route to γ for a curved

interface. It simply requires studying a system that is at
equilibrium and that presents a curved interface. This route has
been developed for simulations studies by Binder and co-
workers,2,5,19−27 showing that in a system at constant N, V, and
T, it is possible to have fluid−solid configurations with curved
interfaces in equilibrium, corresponding to a minimum of F.
Depending on the (N, V, T) conditions, the minimum of F
corresponds to (i) a sphere of the solid phase within the fluid;
(ii) an infinite cylinder of the solid phase (percolating through
the periodical boundary conditions) in contact with the fluid;
(iii) a slab of the solid phase in contact with the fluid; and (iv)
all the previous cases switching the roles of the fluid and solid
phases. At some point, the minimum of F may correspond to a
homogeneous fluid or homogeneous solid phase.
By focusing on the vapor−liquid interfaces, Binder and co-

workers2,5,21,23,27 evaluated F and determined (for each
considered system) the value of R for which γ was minimum
(thus obtaining γs and Rs). They observed that the capillarity
approximation does not work (i.e., γs changed with Rs) and
also that the difference between Re and Rs was not constant
either. So far, these studies focused on the liquid−vapor
interface are the only rigorous route so far to γ for a curved
interface and can be considered as a tour de force. After all,
determining F in computer simulations is possible but terribly
expensive. For the fluid−solid interface, there have been
simulation studies showing that a spherical cluster may be
stable (or metastable)14,15,22,24,25 although a rigorous determi-
nation of F, to the best of our knowledge, is still missing.
Let us now present the main goals of this work. In this work,

we address the issue of the variation of γ with R for a curved
solid-liquid interface. Aiming to provide a rationale for some
fundamental aspects of this intriguing problem, we will focus
on a simple and pedagogical system: hard spheres (HS). We
will show that for HS, it is possible to obtain stable spherical
clusters of the solid phase when the system is simulated in the
canonical ensemble (NVT). Our findings are consistent with a
recent study of Richard and Speck.14 We then show that the
clusters equilibrated in the NVT ensemble are critical when the
system is run in the NpT ensemble, where p is the mean
pressure of the NVT simulation. Knowing that the clusters are
critical, we estimate the value of γs for the clusters using the
CNT approximations previously used in seeding studies.49,62

We get consistent values with our previous seeding work in the
NpT ensemble.62 Because, as previously shown,62 the
nucleation rate estimated using CNT for the simulated clusters
is consistent with that obtained from independent techniques
that do not rely on CNT, we identify the cluster radius
obtained in the simulations with Rs. This identification enables
two different routes to estimate the Tolman length. One is to
extrapolate the difference between Re and Rs (marking the
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distance between the equimolar dividing surface and the
surface of tension) to infinitely large clusters. The other one is
to linearly fit γs versus 1/Rs. We show in this paper that both
definitions are consistent with each other as anticipated by
Tolman.

■ METHODS
In this work, we shall not study a true HS system but rather a
pseudo hard sphere (PHS) system.69 The main reason is that
the PHS potential is continuous. An advantage of having a
continuous potential is that one can use highly efficient codes
as GROMACS70 (highly optimized for parallel calculations). A
good choice is represented by the truncated and shifted Mie
potential with power m = 50 for repulsion and n = 49 for
attraction, called also PHS potential:69
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where σ represents the HS diameter and ϵ is the depth of the
potential. uPHS reproduces almost exactly the properties of HS,
like the equation of state, the diffusion coefficient, the glass
transition, the phase diagram, and, last but not least, the
coexistence crystal−fluid interfacial free energy (which plays a
major role in this work).49,69,71−73 The potential given by eq 1
is provided in a tabular form to GROMACS. We adopt the
following parameters: σ = 0.3405 nm, ϵ/k = 119.87 K (k is the
Boltzmann constant), and the particle mass m = 6.69 × 10−26

kg. These parameters are taken from the standard Lennard-
Jones potential used to describe Ar. Simulations are performed
at T = 179.8 K because the properties reproduced by uPHS
potential agree with the ones of HS at the reduced temperature
T* = T/(ϵ/k) = 1.5. Integration time steps is fixed to 1.0 fs,
and T is kept constant by using the Nose−Hoover thermostat.
In the following, we convert the real units of GROMACS to

reduced units: σ is the unit length; m kT/( )τ σ= is the unit
time (corresponding to 1.761 ps); and kT is the unit energy.
According to this, the volume is expressed as V* = V/σ3, the
density as ρ* = (N/V)σ3, the pressure as p* = p/(kT/σ3), and
the interfacial free energy as γ* = γ/(kT/σ2). Hereafter, all the
quantities written with a start as superscript will refer to
quantities expressed in reduced HS units. In what follows, we
shall denote the PHS model, simply as HS.
Each particle of the system is labeled as fluid or solid

according to the Lechner−Dellago order parameter q6 .
74 The

threshold value of q6,t used to label each particle as liquid-like

and solid-like was determined using the mislabeling
criterion.61−63,68 The mislabeling criterion states that the
threshold value of the order parameter used to label particles as
liquid or solid is obtained by simulating the bulk fluid and bulk
solid phases and equating the small percentage of particles that
are mislabeled as solid in the bulk fluid, to those that are
mislabeled as liquid in the bulk solid. Particles at a distance of
1.33σ of a central one are considered neighbors. In Figure 1,
the mislabeling curves of HS in the fluid and solid phases are
presented for the reduced pressure p* = p/(kT/σ3) = 12.887.
From the curves, we adopt q 0.3726,t = as the threshold value,

checking that q6,t variations upon pressurization are negligible,

within the pressure range explored in this work. Once each
particle of the system is labeled as liquid or solid, we shall
evaluate the size of the largest solid cluster, with Nsol being the
number of solid particles it contains (two neighbor solid
particles are considered to belong to the same solid cluster).
For the adopted model, we have determined the value of the

coexistence pressure72 which is p* = 11.648 (for true HS the
value is of about 11.57, see ref 75). Most of the simulations of
this work lasted around 20 ns. This timescale is (roughly)
more than a thousand times the time required to diffuse a
particle diameter (which for a pressure of p* = 12.5 is of about
13.5 ps or ∼8τ in reduced units of time).

■ RESULTS
Phase Equilibrium above Coexistence: Solid Clusters

Stabilized in Liquids. We perform simulations at constant
number of particles N, volume V, and temperature T. We seed
a preformed spherical solid cluster of a certain size in the bulk
liquid and let the system evolve toward the equilibrium. As
shown in Figure 2, different runs with the same values for N

(total number of particles in the system) and V (volume of the
simulation box), but with initial clusters differing in size,
converge toward the same equilibrium state, where the solid
cluster, in average, has the same size in all cases. When the
initial cluster is rather small compared to the equilibrium one,
it takes some time to reach the final size (green curve in Figure
2). On the other hand, equilibration is much faster when the
initial size is close to the equilibrium one. It should be pointed
out that the size of the initial cluster cannot be chosen

Figure 1. Percentage of mislabeled particles in the bulk liquid and
bulk solid for PHS at p* = 12.887. The crossing point determines the
threshold which in this work will be of q 0.3726,t = . Particles with

q 0.3726 > will be labeled as solid, whereas those with q 0.3726 <
will be labeled as liquid.

Figure 2. Number of particles of the largest solid cluster in the system
as function of time (t* = t/τ), for N = 105875 and V* = 108265.2.
Systems only differ on the initial size of the crystal seed.
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arbitrarily. Indeed, if the initial cluster is too small, it may melt;
if it is too large, then it may percolate through the simulation
box forming a cylinder (we shall come to this point later). It
should be considered also that some defects (of kinetic origin
due to the fast growth) may arise when the cluster grows from
a very small initial size. For this reason, it is advisable to use
initial (and perfect) solid clusters close in size to the final
equilibrium state. Once the equilibrium state is reached, there
are thermal oscillations in the size of the solid cluster (Figure
2) due to capillary waves fluctuating in the solid−fluid
interface. Also, it should be noticed that it is convenient to
consider the shape of the seed for technical reasons albeit
irrelevant in terms of stability. That is, if instead of a spherical
cluster we inserted a cubic cluster, this would turn into a
sphere-like cluster as soon as possible because the cubic is not
even a local minimum.
We have repeated this procedure 10 times, varying N and V

(T is constant and, for HSs, it just scales the velocities of the
particles but does not affect configurational properties),
obtaining in all cases equilibrium solid clusters of spherical
average shape. The results are presented in Table 1, where the

average size of these solid equilibrium clusters (labeled as
⟨Nsol⟩) ranges from about 2000 up to 130,000 particles. Notice
that the size of the equilibrium cluster is uniquely determined
by the values of N and V and corresponds to a minimum in the
Helmholtz free energy F. Both the values of ⟨Nsol⟩ and ⟨Nsol⟩/
N obtained for a certain value of N and V are dictated by
thermodynamics (i.e. the minimum in F) and cannot be
changed at will. As can be seen in Table 1, we found the ratio
⟨Nsol⟩/N to be ∈[0.1:0.27]. Although not stated explicitly in
the books describing the thermodynamic treatment of curved
interfaces at equilibrium, one has the impression that it is
assumed that the volume of the fluid phase is many times
larger than the volume of the solid phase. At least for HS,
under periodical boundary conditions, this is certainly not the
case.
In Table 1, we present also the values of the pressure

obtained in the simulation runs during the period in which the
solid cluster is stable. They fall in the range p* ∈
[12.011:13.209]. Because the coexistence pressure is p* =
11.648, our findings suggest that this equilibrium method
applies only close to the coexistence.

By comparing the cases II and III in Table 1, both sharing
the same volume V* = 20195.5, we see that by reducing N, the
equilibrium solid cluster becomes smaller. The size of the
equilibrium cluster is very sensitive to N. In fact, for clusters II
and III, removing just 50 particles makes a change of about
1000 particles in ⟨Nsol⟩. Again, focusing on systems with the
same volume as cases VI, VIII, and IX, the reduction of 1200
particles induces a change in ⟨Nsol⟩ of about 20,000. As can be
seen, decreasing the global density causes an increase of the
volume of the phase with lower density (the fluid phase in this
case) reducing the size of the solid cluster as given by ⟨Nsol⟩.
Concerning the size of the equilibrium cluster we found that,
while it is always possible to stabilize a cluster with a size as big
as desired, the smallest equilibrium cluster we could obtain was
composed by ∼2000 particles. Below this threshold, the solid
clusters melted leading to the conclusion that for HS, within
this method, it is not possible to equilibrate solid clusters with
much less than ∼2000 particles.
In Figure 3, we present the time evolution of Nsol for the ten

systems considered in Table 1. Each panel contains trajectories
with the same constant value of V although different constant
value of N. As can be seen in Figure 3a, during a short time, the
initial seed grows until it reaches a stable quasi-spherical size,
maintained for a significant period of time (τ ∈ [500:2500]),
corresponding to about ∼250 diffusion times. At larger times, τ
> 2500, the system undergoes a transition to a new
conformation represented by a cylindrical solid.
In Figure 4, we report two snapshots of the solid cluster

before and after the transition. The fact that the spherical solid
clusters is stable for certain time and that the change to the
cylindrical shape occurs rapidly indicates that there is a free
energy barrier separating the spherical cluster from the
cylindrical one. In this case, the spherical cluster represents a
local minimum of F (a metastable configuration), while the
cylinder represents a deeper (possibly global) minimum of F
(we never observed the transition from a cylinder to a sphere).
The same transition was observed for cases III and IX, shown
in Figure 3b,e, respectively.

Connecting Equilibrium and Nucleation. We shall now
perform an interesting exercise. We shall perform NpT
simulations at the average pressure found in the NVT run
(denoted as ⟨p*⟩ in Table 1). For the starting configuration,
we shall randomly select one from the NVT run in which the
cluster was stable. Then, we shall study in detail the time
evolution of the solid cluster by launching up to 30
independent NpT simulations (by changing the initial
velocities). These results for systems III and VII of Table 1
are presented in Figure 5, panels (a) and (b), respectively. The
trajectories show that around half of the times, the clusters
melt and the other half, they grow until crystallizing the entire
system. Hence, the clusters are critical at pressure ⟨p*⟩. The
fact that the nucleus equilibrated in the NVT ensemble is a
critical cluster in the NpT ensemble has been recently shown
for bubble cavitation in the Lennard-Jones system.30 In Figure
6, we show the number of particles in the solid clusters versus
⟨p*⟩ at equilibrium as obtained in this work in the NVT
ensemble (red dots) alongside our previous results for the size
of the critical clusters obtained in the NpT ensemble (black
dots).49,62 As can be seen, there is excellent agreement between
both set of results further reinforcing the connection between
equilibrium and nucleation.
When the cluster is critical, it must be in the top of a Gibbs

free energy (G) curve. In other words, G reaches a maximum

Table 1. Thermodynamic Variables of the Closed Finite
Systems Simulated at Constant Temperature and Volumea

label V* N ⟨Nsol⟩ ⟨Nsol⟩/N ⟨p*⟩

I 10686.4 10540 1925 0.183 13.209
II 20195.5 19779 2736 0.138 13.027
III 20195.5 19829 3718 0.188 12.887
IV 49599.9 48207 5604 0.116 12.739
V 49599.9 48357 8602 0.178 12.579
VI 108265.2 104675 10498 0.100 12.517
VII 66900.1 65383 15554 0.238 12.399
VIII 108265.2 105475 23558 0.223 12.306
IX 108265.2 105875 28879 0.273 12.258
X 887000.0 853712 129926 0.152 12.011

aThe pressure ⟨p*⟩ is the average value obtained when the system
reaches the equilibrium state. Only spherical clusters were considered.
The average number of particles in the solid cluster is denoted as
⟨Nsol⟩.
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when plotted as a function of the number of particles in the
solid cluster while keeping N, p, and T constant. However, the
same system was in equilibrium when it was studied at
constant N, V, and T. Therefore, F reaches a minimum when
plotted as a function of the number of particles in the solid
cluster while keeping N, V, and T constant. This indicates that

changing the number of particles in the solid cluster would
increase the value of the Helmholtz free energy. This is
sketched in Figure 7.
The consequences of the results of Figures 5 and 7 are

important. On the one hand, if a thermodynamic approach is
able to describe correctly the minimum in F, it should also be
able to describe the maximum in G. On the other hand, we
have shown that clusters in stable/metastable equilibrium
obtained in the NVT ensemble correspond with critical clusters
in unstable equilibrium obtained in the NpT ensemble. As two
faces of the same coin, this equivalence implies that one can
infer the same information (e.g. the cluster radius, γ, or the
nucleation rate) from either ensemble, as shown in the
remainder of the paper. For this reason, we will apply the
seeding method, previously used in the NpT ensemble (NpT-
seeding),49,62,67 to the clusters equilibrated here in the NVT
ensemble (NVT-seeding). As discussed later on, the seeding
method uses information of the simulated clusters alongside
CNT to provide estimates of γ and the nucleation rate.

Estimating γ for the Clusters. All the clusters obtained in
the previous sections are in stable/metastable equilibrium in
the NVT ensemble. According to the thermodynamic
description presented in the book of Rowlinson and
Widom,34 when the system reaches the equilibrium one
obtains

F N p V p V V A( )sol sol liq sol solμ γ= − − − + (2)

where psol and pliq are the pressures of a bulk solid and liquid,
respectively, with chemical potential μ. Notice that the
chemical potential and the temperature are homogeneous
properties (the particles can diffuse), whereas the density and
pressure are inhomogeneous.76

The way to proceed to evaluate γ is as follows.

• The value of F is computed

Figure 3. Number of particles of the largest solid cluster as a function of time in reduced units. The clusters of each panel share the same volume.
Hence, the difference in cluster sizes comes from the total number of particles, in other words, the net density. Details of the runs (volume, total
number of particles, number of particles in the solid cluster, and pressure of the system while the spherical cluster is stable) are given in Table 1. In
panel (a), the dashed line in the left indicates the starting point of the equilibrated coexistence of the spherical cluster within the fluid while the
dashed line in the right indicates the transition to the cylindrical state. a)Results for system I ; b)Results for sytems II and III ; c) Results for
systems IV and V; d) Results for system VII; e) Results for systems VI,VIII and IX; f) Results for system X. The labeling of the systems is described
in Table 1. Systems with the same volume are presented in the same graph.

Figure 4. Snapshots of (a) metastable sphere and (b) stable cylinder
within a fluid. Only crystalline particles are shown. In (b), the vertical
arrowed line indicates that, in general, the size of box does not
necessarily meet k times (k being an integer) the length, a, of the unit
cell of the FCC HS crystal at the pressure ⟨p*⟩. Thus, the solid may
have some stress.
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• A dividing surface of radius R is chosen so that Vsol = 4/
3πR3 and Asol = 4πR2

• The value of γ is obtained for the chosen dividing surface
using eq 2

Therefore, the value of γ is not unique as it depends on the
value of the chosen dividing surface. Two important surfaces
are Re (for which the number of excess particles is zero)
yielding γe; and Rs, giving rise to γs, which is the value for
which γ is minimum and for which the Laplace equation is
satisfied.

As the reader may have noticed, the only way to determine γ
is to determine the free energy of the system. This has been
done only in a couple of cases for the liquid−vapor interface by
Binder and co-workers and can be regarded as a tour de
force.2,5,21,23,27

In the past, we have used an approximate approach denoted
as seeding61 to circumvent the computation of free
energies.49,62 With NpT simulations of critical clusters
alongside a “judicious” order parameter to label the particles
as liquid and solid alongside CNT, we obtained reasonable
estimates of γ and the nucleation rate.49,62 By judicious we
mean that the chosen order parameter is able to predict the
free energy barrier and the nucleation rate obtained from
rigorous techniques (for instance US44,45 or metadynamics77).
For HS, the combination of the order parameter of Lechner−
Dellago q6

74 and the mislabeling criterion61 meets this
requirement.62 According to CNT, the free energy barrier
ΔG and the surface free energy γ for the pressure ⟨p*⟩ can be
estimated by means of the following expressions

G N
2solΔ = ⟨ ⟩ Δμ

(3)

i

k
jjjjjj

y

{
zzzzzz

N3

32
sol sol

2 3 1/3

γ
ρ

π
=

⟨ ⟩ |Δμ|

(4)

where ρsol is the density of the solid phase (at ⟨p*⟩ because in
CNT, the solid is assumed to be incompressible) and Δμ ≡ μliq
− μsol is the difference between the chemical potentials of the
bulk liquid μliq and that of the bulk solid μsol when both are at
the same pressure (this difference in chemical potential is not
zero, as the equilibrium in the NVT ensemble arises from the
higher pressure of the solid phase due to the presence of the
curved interface). The variables ρliq and ρsol are obtained from
the equations of state that are computed from simulations of
the bulk phases along the isotherm of interest while Δμ
i s c ompu t e d v i a t h e rmod yn am i c i n t e g r a t i o n

p p p1/ ( ) 1/ ( ) d
p

p
sol liq

coex
∫ ρ ρΔμ = − [ ′ − ′ ] ′ starting from the

coexistence point where the chemical potential of both phases
are equal.78 The values of γ thus obtained in this work from
solid clusters equilibrated in the NVT ensemble (NVT-
seeding) are compared to those obtained in refs 49 and
62(NpT-seeding) in Figure 8. As expected from Figure 6, that
shows the equivalence of clusters in both ensembles, γ is the
same in both cases.

Figure 5. Number of particles in the largest cluster within the system in an NpT simulation at p* equal to the average pressure during the life time
of the stable sphere in the NVT run. The total number of runs is 30 in both cases. It can be seen how in ∼50% of the trajectories, the cluster either
grows or disappears. The clusters correspond to cases III (left panel) and VII (right panel) of Table 1.

Figure 6. Critical cluster sizes against pressure. Notice that the stable
clusters from NVT simulations were tested to be critical via NpT
simulations; data labeled as NpT in this figure correspond to previous
work of seeding.49,62

Figure 7. Sketch of the free energy profile for the case of a stable solid
cluster composed by Nsol particles in the NVT ensemble (left). The
system is in a free energy minimum of the Helmholtz free energy F
and does not change with time (except for thermal fluctuations). By
switching to the NpT ensemble, the system ends up in a maximum in
the Gibbs free energy G (right) and evolves either toward to the solid
phase or toward the fluid phase with the same probability. In both
cases, the value of γ is the same. Equilibrium (left) and nucleation
(right) can be regarded as the two faces of the same coin.
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The clusters obtained in this work in the NVT ensemble are
at stable/metastable equilibrium. Therefore, the value of γs for
a certain value of Rs, it is the value of the interfacial free energy
obtained for this radius at the equilibrium pressure ⟨p*⟩.
Although one usually speaks on the variation of γs with Rs, one
should rather speak on the variation of γs with the pair Rs and
⟨p*⟩ because it is not possible to change Rs and ⟨p*⟩
independently for a system that is at equilibrium.
Variation of γ with Curvature and the Tolman

Length. It should be emphasized that the values of R and γ
that are used in CNT are those of the surface of tension, that
is, Rs and γs.

5,22,79 In fact, it is simple to show that if one
assumes that the chemical potential of the bulk liquid
(μliq(pliq)) is identical to that of the stable/critical solid cluster
(μsol(psol)) (which makes sense after the results presented in
the previous sections) and uses the Laplace equation (which is
restricted to the surface of tension) to estimate the difference
of pressures, one obtains the main equations of CNT (after
assuming that the density of the solid does not change much
with pressure). This indicates that Rs and γs are indeed the
ones obtained when applying CNT.5,22,79 Thus, values labeled
as Rc and γCNT in our previous work should be identified with
Rs and γs.
It is obvious from the results of Figure 8 that the value of γs

is not constant (showing the failure of the capillarity
approximation). Recently, we used the following expression
to describe the variation of γs with the cluster radius49

i
k
jjjjj

y
{
zzzzzR

1 2Ts 0,
T

s
γ γ

δ
= −

(5)

where δT is a fitting parameter and γ0,T is the interfacial free
energy at coexistence for a flat interface. We showed that this
expression correctly describes the γ variation for critical HS
clusters. The blue line in Figure 8 is the fit obtained in ref 49. It
describes well the data coming from either ensemble, which
further demonstrates the equivalence between clusters
equilibrated in the NVT ensemble and critical clusters obtained
in the NpT ensemble. The parameters are γ0,T = 0.576kT/σ2,
the interfacial free energy at coexistence (p* = 11.648)
averaged over several planes,80,81 and δT = −0.41σ. It is worth
noting that, for HS in contact with a smooth spherical hard
wall, a similar value of δT was reported from a theoretical study
using density functional theory18 (although the value of γ0,T
was found to be different indicating that there are differences

in the value of γ0,T between a hard structureless spherical wall
and a solid cluster of ordered HSs).
What is the physical meaning of the fitting parameter δT?

Because this parameter is a distance we can compare it with the
Tolman length, δTolman:

1,50

lim
R

Tolman
1/ 0s

δ δ≡
→ (6)

where δ is the difference between the equimolar and the
surface of tension radii

R Re sδ = − (7)

The radius Re of the (spherical) Gibbs dividing surface is
obtained simply from the equation

N R V R(4/3) (4/3)sol e
3

liq e
3ρ π ρ π= [ ] + [ − ] (8)

The previous expression only requires the knowledge of the
bulk densities of the solid and fluid phases (ρsol and ρliq, which
in this work were estimated as the bulk densities of the solid
and liquid at ⟨p*⟩ respectively). On the other hand, Rs can be
calculated from

R N3 /(4 )s sol sol
1/3πρ= [ ⟨ ⟩ ] (9)

The values of δ are reported in Table 2. We found that δ is
negative and its value changes with the radius of the solid

cluster (i.e., with the equilibrium pressure). An analogous
change of δ has been observed by Binder and co-workers in
studies on the vapor−liquid interface.2,5,21,23,27 In Figure 9, we
have fitted the values of δ as a function of 1/Rs obtaining the
value δTolman = −0.41σ when 1/Rs goes to zero (i.e., for planar
interface). The obtained value coincides with δT obtained from
eq 5. Therefore, δT is an estimate of the Tolman length.

Application of Equilibrium Clusters to Study Nucle-
ation. We have developed in the last years an approximate
route denoted as seeding to determine nucleation rates, J. By
performing NpT runs, the size of the solid critical cluster Nsol
(at a certain T and p) is determined, and J is estimated from
the expressions of CNT

J
kTN

f N kT
6

exp ( )/(2 )liq
sol

solρ
π

= |Δμ| [ −Δμ ]+

(10)

Figure 8. Interfacial free energy against the inverse of the radius of the
cluster from both equilibrium results of this work (labeled as NVT)
and from nucleation studies of our previous work49,62 (labeled as
NpT). Linear expression proposed in previous work49 is indicated by a
solid blue line.

Table 2. Radius Associated to the Dividing Surfaces from
Our Results from Equilibrium Clustersa

label Rs* Re* δ* ≡ (Re* − Rs*)

I 7.535 7.419 −0.1154
II 8.481 8.407 −0.0742
III 9.402 9.362 −0.0404
IV 10.791 10.543 −0.2478
V 12.461 12.265 −0.1965
VI 13.322 13.111 −0.2108
VII 15.200 14.996 −0.2035
VIII 17.467 17.213 −0.2538
IX 18.700 18.448 −0.2521
X 30.927 30.571 −0.3563

aRs is computed with eq 9 and corresponds to the radius of the sphere
containing a number of particles corresponding to the equilibrium
one, as reported in Table 1. Re corresponds to the sphere’s radius of
the equimolar dividing surface (Gibbs dividing surface). δ is, by
definition, the difference between the previous radii.
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where f+ is the attachment rate which will be approximated as

f D N24 ( ) /liq sol
(2/3) 2λ=+

(11)

where λ is the attachment length which for HS can be
approximated62 as λ ≃ (σ/4) and Dliq the diffusion coefficient
of the fluid at pressure p. In previous work, we have shown that
this set of equations (with the input from simulations)
provides an excellent description of the values of J (including
those for HS). We could denote this approach as NpT-seeding
as a number of runs are performed at N, p, and T constant.
However, the results of Figure 5 indicate that there is a new

way of doing seeding. Instead of inserting a solid cluster in an
equilibrated fluid and performing a number of NpT runs to
determine at which pressure the cluster is critical, one can
equilibrate the solid cluster in the NVT ensemble. In this way,
the size of the solid cluster at the pressure ⟨p*⟩ is obtained
from a single equilibrium run. After this is done, one can use
the machinery of seeding (or more precisely eq 10) to estimate
J. We shall denote this approach as NVT-seeding. We shall
now estimate nucleation rates, simply using the results for the
equilibrium solid clusters presented in Table 1 (plus
performing additional simulations to estimate Δμ and Dliq).
All the results required to determine J from the equilibrium
solid clusters of this work are presented in Table 3.
Values of the nucleation rate J computed in this work are

presented in the last column of Table 3, whereas in Figure 10,
we compare them with our previous work49,62 as well as other
numerical44,46 and experimental82−85 independent estimations.
Given that J goes to zero when the pressure tends to its
coexistence value, in Figure 10, we show only the highest
nucleation rates. The results obtained for J from the
equilibrium clusters of this work, agree quite well with
previous results obtained from simulation techni-

ques.44,46,47,62,86 However, the results of this work clearly
contradict those found in experiments, providing further
evidence that the experimental values presented as homoge-
neous nucleation rates are probably affected by heterogeneous
nucleation events, as recently suggested in ref 87. Previously
mentioned nucleation studies of HS sampled the region of high
pressures, typically above p* > 15 (i.e. ϕ = (π/6)ρliq* > 0.52).
The results of this work expand the study to lower pressures
(i.e., between p* = 12 and p* = 13.2 (i.e. 0.5 < ϕ < 0.515),
closer to the coexistence pressure.
The NVT-seeding approach does not only work for

nucleation of solid HS. We have also shown recently that
this approach is also working for an entirely different problem
(the cavitation of a bubble in a Lennard-Jones fluid at negative
pressures).30 This NVT-seeding approach allows to study
easily nucleation along isotherms (NpT-seeding can be
implemented easily both along isobars and along isotherms).
However, it has two drawbacks. The first one is that it cannot
be applied to small solid clusters as it is impossible to have
them in a stable configuration in the NVT ensemble. The
second is that there may be finite size effects, as the ratio
⟨Nsol⟩/N cannot be changed at will. For instance, for a solid
cluster of HS at equilibrium in the NVT ensemble with ⟨Nsol⟩
= 3200 particles, we found ⟨Nsol⟩/N = 0.16. In the NpT-
seeding approach, this ratio can be made arbitrarily low (we
typically set it to ⟨Nsol⟩/N < 0.05 in our previous work). We
found that the pressure at which the cluster was critical in the
NVT system was p* ≈ 12.95, whereas it was found to be p* ≈
13.05 in the NpT ensemble when ⟨Nsol⟩/N was small. The
finite size effects on HS is not dramatic (less than one per cent

Figure 9. δ* as function of 1/Rs* for the different stable clusters of the
NVT runs. Green dashed curve is a linear fit of the data.

Table 3. Results from NVT-Seeding Calculations as Obtained from the Simulations of This Work

label ρliq* ρsol* |Δμ|/kT γ* ΔG/kT Dliq/(σ
2/τ) f+/(6Dliq/σ

2) log10[J/(6Dliq/σ
5)]

I 0.970 1.074 0.1566 0.634 150.7 0.0183 9904 −63
II 0.967 1.071 0.1383 0.628 189.1 0.0190 12520 −79
III 0.964 1.068 0.1242 0.623 230.9 0.0195 15360 −97
IV 0.962 1.065 0.1092 0.628 306.0 0.0201 20192 −130
V 0.959 1.061 0.0931 0.617 400.5 0.0207 26869 −171
VI 0.958 1.060 0.0869 0.614 456.3 0.0209 30684 −195
VII 0.956 1.057 0.0750 0.603 583.3 0.0213 39879 −250
VIII 0.954 1.055 0.0658 0.606 775.0 0.0217 52594 −333
IX 0.953 1.054 0.0609 0.600 879.3 0.0219 60242 −378
X 0.949 1.049 0.0362 0.587 2350.6 0.0228 164176 −1017

Figure 10. Nucleation rate against volume fraction (defined as ϕ ≡
ρliq*π/6) from different sources. Experimental and numerical results
are shown in green and red, respectively. The black line is a fit using
CNT equations accounting for the interfacial free energy variation
with the radius of the cluster as proposed in ref 49. As stated in the
caption of Figure 8, points labeled as NpT in the legend come from
previous work.49,62
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for the pressure at which the cluster is critical) but one should
be aware of their presence.

■ CONCLUSIONS
In this work, we extend the simulations pioneered by Binder
and co-workers2,5,19−27 and recently used by Richard and
Speck also for HS to study a curved interface.14 In particular,
we have considered the possibility of having a stable spherical
solid cluster in equilibrium with a fluid for the HS system. We
were able to obtain equilibrium for up to ten different clusters
with sizes ranging from 1900 to 130,000 particles.
After the equilibrium configuration was found, we launched

NpT runs and found that the clusters were critical at the
average pressure found in the NVT run. Accordingly, all
properties that can be inferred from critical clusters in unstable
equilibrium with the fluid in the NpT ensemble coincide with
those obtained from clusters in stable/metastable equilibrium
in the NVT ensemble. We show this equivalence for the cluster
radius as well as for γ and the nucleation rate obtained from a
seeding analysis (CNT fed by microscopic parameters of the
clusters measured in the simulations). Therefore, whereas the
system is in a minimum of F in the NVT ensemble, the fact
that the solid cluster is critical indicates that the system is in a
maximum of G in the NpT ensemble. This is in agreement with
a recent NVT-seeding study of bubble cavitation.30

In addition, we study the variation of γ with Rs, the relevant
dividing surface in CNT. Recently, we showed by means of
simulations of critical clusters in the NpT ensemble that such
variation is well described by a linear fit of γ versus 1/Rs and
obtained a characteristic length δT as a fitting parameter.49 In
this paper, we show that the fit obtained in ref 49 works well
for clusters equilibrated in the NVT ensemble as well.
Moreover, we obtain the Tolman length as the difference
between Re, the Gibbs dividing surface, and Rs in the limit of
very large clusters. We obtain Re − Rs for the clusters
equilibrated in the NVT ensemble and extrapolate the
difference to infinite radius. With this procedure, we estimate
the Tolman length, δTolman. We find that δTolman coincides with
the δT parameter obtained from the fit of γs versus (1/Rs)
mentioned above.
We hope this work will encourage further research on the

fascinating (but arguably difficult) issue of the change of the
interfacial free energy between two phases separated by a
curved interface.
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