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ABSTRACT
The phase diagram of molecular or colloidal systems depends strongly on the range and angular dependence of the interactions between
the constituent particles. For instance, it is well known that the critical density of particles with “patchy” interactions shifts to lower val-
ues as the number of patches is decreased [see Bianchi et al. Phys. Rev. Lett. 97, 168301 (2006)]. Here, we present simulations that show
that the phase behavior of patchy particles is even more interesting than had been appreciated. In particular, we find that, upon cooling
below the critical point, the width of the liquid-vapor coexistence region of a system of particles with tetrahedrally arranged patches first
increases, then decreases, and finally increases again. In other words, this system exhibits a doubly re-entrant liquid-vapor transition. As a
consequence, the system exhibits a very large deviation from the law of rectilinear diameter, which assumes that the critical density can be
obtained by linear extrapolation of the averages of the densities of the coexisting liquid and vapor phases. We argue that the unusual behav-
ior of this system has the same origin as the density maximum in liquid water and is not captured by the Wertheim theory. The Wertheim
theory also cannot account for our observation that the phase diagram of particles with three patches depends strongly on the geometri-
cal distribution of the patches and on the degree to which their position on the particle surface is rigidly constrained. However, the phase
diagram is less sensitive to small angular spreads in the patch locations. We argue that the phase behavior reported in this paper should be
observable in experiments on patchy colloids and may be relevant for the liquid-liquid equilibrium in solutions of properly functionalized
dendrimers.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5098551

I. INTRODUCTION

Colloids can be used as building blocks for self-assembling
materials.1–4 The nature of the phases that can be formed depends
on the interactions between the colloids, which in some cases can
lead to anomalous phase diagrams.5–7 Hence, the range of colloidal
materials that can be made depends on our ability to manufac-
ture colloids with tailor-made interactions. We can tune colloidal
interactions by changing the range of the colloidal interactions,
the shape of the colloids, and the angular distribution of attractive

interactions. Also, exploring the behavior of mixtures of different
types of colloidal patchy particles is gaining relevance.8–11 Here, we
focus on the latter aspect: “patchiness,” i.e., the degree to which
colloidal interactions can reproduce a predetermined “valency” by
changing the number, strength, and location of attractive patches on
their surface.1,12

In recent years, there has been considerable progress toward
the synthesis of patchy colloids (see, e.g., Ref. 13), but the geom-
etry of synthetic patchy colloidal particles cannot yet be con-
trolled to a degree that allows unambiguous comparison with
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simulations.14–23 It is fair to ask if there are convincing reasons
to improve the geometry control of synthetic colloids. Below, we
argue that the answer to this question is “yes:” the properties of
patchy colloids are highly nontrivial and, moreover, depend on
the distribution of the attractive patches on their surface.24 In par-
ticular, we will show that ideal tetrahedral patchy colloids show
unexpected re-entrant condensation and that the phase behavior
of colloids with three patches depends sensitively on the distribu-
tion of the patches, showing that control over geometry is impor-
tant. However, a small spread in the location of the patches around
their average position has limited effect on the predicted phase
behavior.

II. PATCHY PARTICLE MODEL
FOR MD SIMULATIONS

In this work, we use molecular dynamics (MD) simulations to
study the phase behavior of patchy colloids. For MD simulations, it is
convenient (although not essential25,26) to use a continuous potential
to describe the interaction between patches.

The model that we have used (henceforth referred to as MD-
Patchy) can be easily implemented in well parallelized open-source
MD packages. MD-Patchy is sufficiently efficient to allow us to run
large numbers of long simulations on large systems, within a rea-
sonable amount of time. Using MD is important, as we shall be
studying direct coexistence (DC): NVT Monte Carlo (MC) simu-
lations are notoriously slow in equilibrating such systems, but the
grand-canonical MC simulations of Ref. 27 should not suffer from
this problem.

We have used the MD-Patchy model to evaluate Liquid-Vapor
(L-V) diagrams of colloidal patchy particles with different numbers
of patches or valencies (M), patch geometries, and specificity. We
start by validating the model against the results previously reported
by Bianchi et al.27 and discussing how the results of our model con-
trast with the predictions of Wertheim’s perturbation theory.28–32

To that end, we calculated the L-V equilibrium for colloidal parti-
cles with four patches (M = 4). We use the shorthand notation p-p
(i.e., M = 4 p-p) to describe a model for which all four patches are
equivalent (any patch can attract any other patch). In contrast, p-
ap means that there are two patches of type A and two patches of
type B such that attraction is only possible between A and B. The
M = 4 p-ap case will be considered in Sec. IV D. In addition, we have
considered particles with three patches of the p-p type, M = 3○–120○
(where 120○ indicates that the angles between the vectors from the
center of the patchy particle to each patchy site are 120○). We then
demonstrate that the location of the L-V binodal depends not only
on the number of patches but also on their angular distribution and
their specificity.

In what follows, we model patchy particles as (almost) hard-
spheres (HS) with diameter σ, decorated with M attractive sites
(“patches”) on their surface (see Fig. 1). Each patch represents
a particle-particle binding site. For the model of the almost
hard spheres, we use a potential (vCOHS ) of the form proposed in
Ref. 33,

vCOHS =

⎧⎪⎪
⎨
⎪⎪⎩

λr( λrλa )
λaεR[( σr )

λr − ( σr )
λa] + εR, if r < (

λr
λa
)σ

0, if r ≥ (
λr
λa
)σ,

(1)

FIG. 1. Different patchy particles modeled in this work. Hard-sphere cores are
depicted by gray spheres while attractive sites are represented by red and blue
hemispheres. Vectors from the center of the hard sphere to the attractive sites
on the surface are drawn to show the distribution of the sites. From the left
to the right, colloidal particles with four attractive sites in a tetrahedral arrange-
ment (M = 4 p-ap, where only sites of different colors are allowed to inter-
act, and M = 4 p-p, where all attractive sites can interact) and three attractive
sites of the p-p type in an equatorial plane arrangement with angles between
the vectors of 120○ (M = 3○–120○) and with angles between vectors of 90○,
M = 3○–90○.

where λa = 49 and λr = 50 are the exponents of the attractive and
repulsive terms chosen for computational convenience. The interac-
tion strength εR accounts for the energy of the pseudohard-sphere
interaction (PHS) and σ is our unit of length. r denotes the center-
to-center distance between hard-sphere particles. For the associative
sites or patches, we use a continuous attractive square-well (CSW)
interaction proposed in Ref. 34,

vCSW(r) = −
1
2
εCSW[1 − tanh(

r − rw
α

)], (2)

where r is the distance between the centers of two attractive patches,
rw is the radius of the attractive well, while α controls the steepness
of the well. εCSW is the unit of energy in our simulations. In Fig. 2, we
show a comparison of the CSW potential and the more conventional
discontinuous square-well potential.

Given that all potentials used are continuous and differentiable,
they can be employed in conventional Molecular Dynamics sim-
ulations. Each colloidal patchy particle is characterized by M + 1
interaction sites: one central site accounts for the hard-spherelike
interaction and M sites located on a spherical surface with radius
σ/2 representing the attractive sites. In our colloidal patchy particles,

FIG. 2. Comparison of the continuous representation of the square-well potential
(CSW) described in Eq. (2) and the corresponding square-well interaction (SW). In
both cases, rw was set equal to 0.12 σ.
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both the hard-sphere plus attractive sites are defined as a multicenter
rigid body.

The choice of the mass is irrelevant for equilibrium simulations.
We chose the masses of the interaction sites to be equal to 5% of the
mass of the central particle (with the latter equal to 3.32 × 10−26 kg).
This ratio fixes the moment of inertia of the patchy particles, but
again this choice has no effect on the equilibrium properties. In what
follows, we chose α = 0.005 σ and rw = 0.12 σ. For this small value
of rw , the valency of each individual patch is one (i.e., each attractive
site can interact with at most one other patch at a time). Our model
is essentially identical to the one used by Bianchi et al.27

In what follows, we use reduced units: T∗ = kBT/εCSW ,
ρ∗ = (N/V)σ3, � =

π
6 ρ
∗, p∗ = pσ3/kBT, and time as

√
σ2m/(kBT).

In order to keep the isotropic HS-like interaction in our simulations
as similar as possible to a pure HS interaction, we follow Ref. 33 and
fix kBT/εR at a value 1.5.33,35 We then control the effective strength
of the attraction by varying εCSW such that the reduced temperature
T∗ = kBT/εCSW is of order O(0.1).

III. METHODS AND SIMULATION DETAILS
To locate the boundaries between the various phases of our

model systems, we used the Direct Coexistence (DC) simulation
method.35–37 DC simulates coexistence by preparing periodically
extended slabs of the two coexisting phases, e.g., the liquid and the
vapor, in the same simulation box. For the liquid-vapor equilibrium
DC simulations, we prepare the initial configurations by using the
following procedure. We first equilibrate the liquid phase in an NPT
simulation at p∗ = 0 and at low T∗ (where the equilibrium vapor
pressure is negligible) using a cubic box. After the liquid has been
properly equilibrated, we elongate the periodic box in one direction
(say, x) by flanking the original simulation box by two empty cubic
boxes. We then perform constant NVT MD simulations at different
temperatures. Once the system has reached equilibrium, we estimate
the equilibrium densities of each phase by computing a density pro-
file along the long side of the box. By calculating the pressure tensor
during the simulation, the L-V interfacial free energy (γ) can be
evaluated using the following expression:

γ =
LN
2

(pN − pT), (3)

where LN denotes the length of the long edge of the simulation box,
pN denotes the normal component of the pressure tensor perpen-
dicular to the interface, and pT denotes the average of the tangential
components of the pressure tensor.

We estimate the critical temperature in L-V diagrams, T∗c , by
fitting the density difference between the coexisting low-density and
high-density fluid phases of the upper points of the phase diagram
to the expression

(�l(T
∗
) − �v(T

∗
))

3.06
= d(1 −

T∗

T∗c
), (4)

where �l and �v are the volume fractions of the coexisting phases
and d is a fitting parameter. The critical packing fraction, �c, is esti-
mated assuming that the law of rectilinear diameter holds close to
T∗c ,

(�l + �v)/2 = �c + s2(T∗c − T
∗
). (5)

We note that our estimate of the critical point is approximate and
subject to finite size effects. We did not attempt to carry out a sys-
tematic finite-size scaling analysis38 because we are mainly inter-
ested in the qualitative features of the phase diagram. To com-
pute the Liquid-Solid (L-S) coexistence lines, we also used the
DC methodology. We start by preparing an initial configuration
consisting of a half-liquid half-solid simulation box. We equili-
brate a NPT simulation of the bulk solid phase and then melt it
(NVT simulation at a high temperature). Once melted, we equi-
librate the melted liquid phase in a NPxT simulation, keeping
constant the cross section of the simulation box. Next, we “glue”
the liquid and the solid box together, avoiding particle overlaps,
and we equilibrate the liquid-solid interface for a short time. To
locate the coexistence pressure, we choose isotherms and perform
NPxT simulations at different values of Px. Finally, our estimate
for the coexistence point is half way between the lowest pressure
for which the crystal slab grows and the highest one for which it
melts.

We carry out all the simulations in LAMMPS.39 Our typical sys-
tem sizes for evaluating the L-V diagram were 1200 patchy particles
for the lowest temperatures and 2400 for the highest ones where
finite size effects can be larger due to the proximity of a critical
point. To reach the equilibrium in a typical simulation of a sys-
tem of 2400 particles at moderate T∗, it took around eight days
of computation using 16 central processing units (CPUs) work-
ing in parallel. Regarding the simulations performed to evaluate
freezing lines, systems sizes were of about 3000 patchy particles,
with half of the system forming the crystalline slab and the other
half belonging to the liquid phase. By using the same number of
CPUs, these simulations usually took six days. With respect to the
numerical details of our simulations, the timestep chosen for the
Verlet integration of the equations of motion was ∆t = 0.0004 in
reduced units (that corresponds to 0.5 fs in the LAMMPS input
file). The cutoff radius for both HS and CSW interactions is 1.175 σ.
We use the Nosé-Hoover thermostat40,41 for NVT simulations with
a typical relaxation time of 0.1 in reduced units. In the case of
NPT simulations, the Nosé-Hoover barostat was used42 (in com-
bination with the Nosé-Hoover thermostat) with a typical relax-
ation time of 0.5 in reduced units. To account for the rotational
motion of the patchy particles, we described the colloidal particles
as rigid bodies, using the method implemented in LAMMPS.43 The
geometries of the various patch distributions are shown in Fig. 1.
All the files needed for running an example simulation of the MD-
Patchy model in LAMMPS can be downloaded from the webpage.44

Notice that the example is for the M = 4 p-p case, but the files can
be easily modified to simulate any other type of colloidal patchy
particles.

IV. RESULTS
A. Validation of the model against
a discontinuous potential

To validate our MD-Patchy model, we compare our simula-
tion results for the L-V equilibrium with the earlier simulations of
Bianchi et al.,10,27 who used a discontinuous potential (i.e., with a
HS potential and patchy sites interacting through short range square
well potentials) that is very well approximated by our MD-Patchy
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model. In particular, we computed the L-V coexistence curves for
particles with three and four patches. Notice that particles with only
two patches do not have L-V equilibrium.45

In Fig. 3, we compare our estimates for the location of the criti-
cal point with those of Bianchi et al.10,27 As found in Refs. 10 and 27,
Fig. 3 shows that increasing the valency expands the L-V equilibrium
region shifting T∗ and �∗c toward higher values. However, interest-
ingly, we find that for the four-patch system, the liquid branch of
the L-V coexistence curve shows a maximum and a minimum as the
temperature is decreased below T∗c .

To verify that the observed maximum and minimum in the
density of the liquid coexisting with the vapor phase are not arte-
facts, we repeated the simulations starting from different initial
conditions, one with a density higher than the computed liquid-
phase coexistence density and the other with a lower one. Both
simulations converged to similar values of density of the coexisting
liquid.

As an additional check, we computed the volume fraction of
the M = 4 p-p fluid for several temperatures along the p∗ = 0 isobar
(Fig. 4), which also shows a nonmonotonic temperature variation
of the liquid density. Earlier simulations had found evidence for
the presence of a weak minimum in the pressure as a function of
temperature at T∗ ≈ 0.105 for hard, tetrahedral patchy particles.26

In addition, in a study of a different but related model (tetrahe-
dral patchy origami particles), Ciarella et al. presented evidence for
a nonmonotonic density dependence of the internal energy of the
system.46 In fact, direct inspection of the phase diagram reported
in this paper suggests a nonmonotonic variation of the density of
the coexisting fluid with temperature, but the corresponding density
histograms do not show a clear trend, and the authors do not com-
ment on this aspect of the phase diagram.46 A density maximum was
not reported in the phase diagram of tetrahedral patchy particles in

FIG. 3. L-V equilibrium curves for M = 4 p-p (red squares) and M = 3○–120○ (blue
circles). Empty squares (M = 4 p-p) and circle (M = 3○–120○) account for the
estimated location of the critical points obtained via Eqs. (4) and (5) and crosses
account for the calculated equilibrium packing fractions and critical points of a
discontinuous potential from Refs. 10 and 27. Empty diamonds account for the
averaged packing fractions between the liquid and the vapor phases. Only the four
upper ones (in both cases) have been used for estimating the location of critical
point.

FIG. 4. Packing fraction of the fluid for the isobar of p∗ = 0 for the four-patch colloid
(M = 4 p-p, red squares).

Ref. 47, but this may be due to the fact that the models studied in that
paper had different patch-patch interactions. We note that a doubly
re-entrant binodal is also predicted by Wertheim’s first order per-
turbation theory, but only for particles with two types of patches,
for a range of interaction strength ratios48 that could be argued to
be mimicking a tetrahedral arrangement (although strictly speak-
ing, such geometrical information is absent from the Wertheim
theory).

To estimate the critical points (empty square for M = 4 p-p
and empty circle for M = 3○–120○) of Fig. 3, we use Eqs. (4) and
(5). As shown in Fig. 3, for M = 3○–120○, the law of rectilinear
diameter works reasonably well, but for M = 4 p-p, it fails below
temperatures of T∗ = 0.1. In both systems, only the 4 upper points
(empty diamonds) have been used to estimate the critical packing
fraction. As a comparison, we also determine the critical tempera-
ture by fitting the liquid-vapor interfacial free energies as a function
of temperature. T∗c can be extracted by assuming that just below
T∗c , γ scales as (T∗c − T∗)1.26 (see Fig. 5). The fact that γ is zero at
T∗c is well known,49 and similar results as the ones shown in Fig. 5
have been also previously reported for other types of colloidal patchy
particles.50

B. Comparison with Wertheim theory
In the work of Bianchi et al.,10,27 the simulations results are

compared with the predictions of Wertheim’s first order thermody-
namic perturbation theory (TPT1),27,30–32 for various patch geome-
tries. We do the same because later we will compare simulations of
systems with different patch arrangements that, at least within the
Wertheim theory, should have the same phase diagram. Figure 6
shows our simulation results for the M = 3○–120○ and M = 4 p-p
L-V phase diagrams, together with the theoretical predictions based
on Wertheim’s theory from Ref. 27 (dashed red curve for M = 4 p-p
and dashed black curve for M = 3○–120○). The theoretical prediction
for the L-V coexistence curve is reasonable for the three-patch sys-
tem and better than for the four-patch system. Crucially, in the case
of the four-patch system, the presence of a maximum and a mini-
mum in density is not predicted by perturbation theory.10,27,51 This
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FIG. 5. Liquid-vapor interfacial free energies for M = 4 p-p. The empty square
represents the value of T∗c estimated using Eq. (4). The cross corresponds to the
estimate T∗c estimate obtained in Ref. 27.

failure of TPT1 is not surprising as the limitations of this theory for
the description of tetrahedral fluids (as in the case of water) are well
known.52–54

The shape of the LV coexistence curve predicted by Wertheim’s
perturbation theory depends on several factors such as the number
of associative sites, the specificity of the interactions among the dif-
ferent sites, and the range of the interaction. However, the theory
does not account for the effect of the geometrical distribution of the
interaction sites on the surface of the particles and whether they are
symmetrical or asymmetrical.10,55,56

In order to study whether the geometry of the patch arrange-
ment has a pronounced effect on the L-V equilibrium, we designed
a three-patch system with vectors from the HS particle to the
interaction sites that are all mutually perpendicular (see Fig. 1).

FIG. 6. Comparison between the results of the MD-Patchy model and Wertheim’s
perturbation theory for M = 3○–120○ and M = 4 p-p in the L-V T∗–� diagram.
Symbols account for simulation results, and dashed lines (red for M = 4 p-p and
black for M = 3○–120○) accounts for the theoretical predictions.

Figure 7 shows the L-V phase diagram for the M = 3○–90○ sys-
tem. Although the packing fraction for the liquid branch and the
critical � are comparable at low temperatures, the value of T∗c for
M = 3○–90○ is considerably lower than the one of the M = 3○–120○
system. Figure 7 also shows the theoretical prediction for the three-
patch system. We find that the Wertheim theory is in much better
agreement with the M = 3○–120○ L-V results than with the ones
for the M = 3○–90○ model. It seems likely that the L-V diagram
of M = 3○–90○ compares poorly with TPT1 because it can form
“inert” cubic structures (see Fig. 8); the TPT1 does not account for
this possibility. At this stage, it is not yet known if a recently pro-
posed generalization of Wertheim’s theory for the assembly of rings
and closed loop structures57 would perform better for the case of
M = 3○–90○.

While it is not surprising that different patch geometries result
in different phase diagrams, the magnitude of the effect is unex-
pectedly large. Figure 9 shows � (a) and U (b) as a function of p∗
for the two different 3-patch models at T∗ = 0.075. In both cases,
the simulations were started from a fluid equilibrated at p∗ = 0.8.
Subsequently, the pressure was decreased down to p∗ = 0.01. For
the M = 3○–120○ system, T∗ = 0.075 is below the critical temper-
ature, and as we start from a liquid density, the system remains
liquid upon decreasing the pressure down to the coexistence region.
In contrast, for the M = 3○–90○ system, T∗ = 0.075 is above T∗c
and hence � tends to zero as p∗ → 0. Yet for pressures above
p∗ = 0.1, the two 3-patch systems behave similarly (see Fig. 7). Not
surprisingly, similar behavior is observed for the potential energy
[Fig. 9(b)].

C. Flexibility vs rigidity
Having established that the phase diagram of a patchy-particle

fluid is sensitive to the geometric distribution of patches, it is
clearly interesting to know what the effect of relaxing the geo-
metric constraints on the location of the attractive patches is. To
investigate this, we consider how the L-V phase diagram of the

FIG. 7. L-V phase diagram in the T∗–� plane for both three-patch systems,
one with patches located on the equatorial plane (M = 3○–120○, black circles)
and the other with a Cartesian arrangement. (M = 3○–90○, orange squares).
Empty symbols account for the estimation of the critical points in each case.
Dashed black line represents the L-V equilibrium from Wertheim’s theory for
M = 3.
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FIG. 8. (a) Snapshot of a direct coexistence simulation of the Cartesian three-
patch system (M = 3○–90○) at T∗ = 0.057. Small closed structures (cubes) can
be observed in the vapor phase. (b) The same for a system of M = 3○–120○

at T∗ = 0.0833. Notice that in (b) no closed structures appear in the vapor
phase.

M = 3○–120○ three-patch system changes if we allow the patches to
fluctuate moderately (±15○ as maximum) around their original posi-
tion. To implement flexibility in our model, we introduce a bond-
angle potential with a strength of about 2 εCSW between the vectors
joining the center of the particle to the patchy interaction sites. The
distance from the particle center to the patches was kept constant at
σ/2. Figure 10 shows that the L-V coexistence densities for the flexi-
ble (red triangles) system are very similar to those of the rigid system
(black circles). To be more precise, in both cases, the critical volume
fraction and temperature are approximately the same, and the main
difference appears in the liquid branch where � is slightly higher for
the flexible model. However, density shift is a minor effect compared
to the effect of the overall patch geometry on the location of the L-V
coexistence curve.

D. Effect on patch specificity
As shown in Ref. 47, the phase behavior of patchy particle

systems depends strongly on whether all patches interact equally
strongly or certain patches can interact only with specific comple-
mentary patches. The effect of selective patch-patch interactions is
well known from the study of a patchy particle model for water [the
primitive model of water (PMW)58]. The latter model consists of
a HS particle decorated with four associative sites that are tetra-
hedrally arranged. In the PMW, two of the patches represent the
hydrogen atoms (sites A) and the other two patches represent the
lone-pair electrons (sites B). In PMW, only A sites are allowed to
interact with B sites. In Fig. 11, we compare our results for the non-
specific four-patch system, where all sites were equivalent (denoted
in Fig. 11 as M = 4 p-p), to a specific four-patch system (denoted
M = 4 p-ap for patch-antipatch), where only A-B interactions are
attractive, as in the PMW. In Fig. 11, we also include the values for
the critical points estimated for the M = 4 p-p case from Refs. 10

FIG. 9. (a) Packing fraction for the M = 3○–120○ three-patch colloid (black cir-
cles) and for the M = 3○–90○ one (orange squares) as a function of pressure p∗

for the isotherm of T∗ = 0.075. (b) Same as in (a) but for the potential energy
(U). Units of U are given in number of bonds per particle (nb). Notice that the
potential energy also includes the contribution from the HS repulsive interac-
tions.

and 27 and for the PMW model (which is slightly different from
our model in terms of the distance from the lone pair patches to
the center of the particles, 0.45 σ, and in terms of the cutoff of the
patchy interaction, 0.15 σ) from Refs. 26 and 59. In Fig. 11, we show
that both systems exhibit L-V phase diagrams with a maximum and
a minimum in density. However, when only specific interactions
are allowed (blue circles), the location of the critical temperature is
shifted to lower values. This decrease in critical temperature is con-
sistent with the earlier simulations of Filion et al.47,59 However, the
model used in Ref. 47 was different from the one used in the present
work and did not show clear evidence of a nonmonotonic variation
with the temperature of the density of the liquid phase. The shift
in the critical temperature between the M = 4 p-p and M = 4 p-ap
systems (∆T∗ ≈ 0.015 is well accounted for (∆T∗ ≈ 0.01) by TPT1
(see Ref. 53 for the PMW case and Ref. 27 for the M = 4 p-p
model).
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FIG. 10. L-V phase diagram for the rigid M = 3○–120○ three-patch colloid (black
circles) and for the flexible one (red triangles). Empty symbols mean the estimated
critical points for each model.

E. Liquid-solid vs liquid-vapor equilibrium
Using the MD-Patchy model described above, we can also study

solid-fluid coexistence for patchy particles. We have carried out such
simulations for the four-patch system60 (M = 4 p-p), considering two
different solid crystalline phases, namely, a low-density diamond
structure (D) and a BCC-like interpenetrating double-diamond
structure (BCC), which is a high-density solid phase formed by two
interpenetrated but not interconnected diamond structures (i.e., the
analogous of ice VII in the phase diagram of water). Although we
denote this structure as BCC as the spheres form a simple BCC lat-
tice, notice that each sphere is bonded to only four nearest neighbors
[as in the NaTI (B32) structure]. Both these crystal phases resemble
different ice phases. The diamond phase can be interpreted as cubic

FIG. 11. Coexistence densities for the L-V equilibrium of a four-patch colloid with
four equivalent patches (M = 4 p-p) and for a four-patch colloid with two patches
type A and two patches of type B, where attractive interactions are only allowed
between A-B ones (M = 4 p-ap). Crosses indicate the location of the critical points
for the discontinuous version of the M = 4 p-p reported in Refs. 10 and 27 and for
the PMW model reported in Refs. 26 and 59.

ice I and the BCC-like phase as ice VII. These structural similari-
ties are independent of allowing patch-patch interactions (instead of
patch-antipatch as in water), as they emerge simply from the tetra-
hedral geometry of the patches around the hard core. By means of
NPT direct coexistence simulations, we have identified the coexis-
tence pressure for several isotherms by bracketing it between the
lowest pressure at which the solid crystallized and the highest one at
which it melted. In Fig. 12(a), we show the coexistence packing frac-
tions between the liquid and the vapor (red squares) and between
the liquid and the diamond phase (red circles and thick line). The
L-V equilibrium is metastable with respect to the diamond phase,
which has a re-entrant stability as � (pressure) increases. We note
that the meta-stable diamond structure is always less stable than the
liquid for T∗ > 0.131. As we increase the pressure at constant tem-
perature T∗ = 0.126, we observe first a liquid phase, which freezes
into the diamond phase. As we keep increasing the pressure beyond
the point where the low density fluid has been fully converted into
diamond, the diamond phase melts again. We find that the density
of the diamond phase varies by barely 0.2% between T∗ = 0.06 and
T∗ = 0.12.

FIG. 12. T∗–� diagram for the p-p four-patch colloid. L-V equilibrium is repre-
sented by squares joined by dashed lines. In (a), liquid packing fractions for the
liquid-diamond transition are represented by circles, and the thick continuous line
accounts for the diamond packing fraction at coexistence conditions. (b) The same
as in (a) but also considering the coexistence packing fractions along the freezing
line between liquid and BCC (triangles).
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The maximum of the diamond-liquid coexistence curve in our
model is at T∗ = 0.131 and � = 0.305, which is similar to the one
reported in for the PMW model (approximately T∗ = 0.13 and
� = 0.3).53 At the highest point on the diamond-liquid coexistence
curve, the density of both phases is the same. However, the solid-
liquid transition is still first a first order transition since the melting
enthalpy is nonzero.

We note that the L-D curves for the p-p and p-ap 4-patch
models behave almost identically; this in contrast to the LV binodals.

If we now also consider the high density crystal phase, BCC,
we find [see Fig. 12(b)] that BCC is always more stable than the
diamond phase, as the fluid coexisting with the BCC phase has a
lower density (and hence a lower free energy) than the D phase. The
coexistence � between the liquid and the BCC crystal phase (red tri-
angles) is shown in Fig. 12(b). Our results obtained for the L-BCC
coexistence curve are in good agreement with the ones reported pre-
viously for the same freezing line of a p-p four-patch system in Ref.
61 using a discontinuous colloidal patchy model.62 Hence, the L-V
coexistence occurs in a temperature density regime where the fluid
is less stable than both the D and BCC phases.

V. CONCLUDING REMARKS
One of the striking features of the L-V phase coexistence curve

of the 4-patch model is that the density maximum is very close
to the critical temperature. This is clearly very different for water,
where the density maximum at low pressures is at temperatures that
are far removed from the critical temperature. It would be interest-
ing if experimental systems could be prepared such that they would
exhibit a density maximum close to the critical temperature. One
consequence of the unusual shape of the L-V coexistence curve is
that the law of rectilinear diameter (i.e., the rule that suggests that
the critical density can be found from a linear extrapolation of the
average of the densities of the coexisting liquid and vapor) has an
anomalously small region of validity.
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