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ABSTRACT
The formation of vapor bubbles in a metastable liquid, cavitation, is an activated process due to the free energy cost of having both phases at
contact. Such an energetic penalty enables the existence of the liquid beyond its thermodynamic borders. Establishing the stability limits of a
liquid as ubiquitous as water has important practical implications and has thereby attracted a lot of attention. Different experimental strategies
and theoretical analyses have been employed to measure and predict the cavitation line, or the pressure–temperature kinetic stability border of
liquid water. Understanding the location of the cavitation line requires knowing the cavitation rate dependence on pressure and temperature.
Such dependency is difficult to obtain in experiments, and we use molecular simulations with the TIP4P/2005 model to fill this gap. By deeply
overstretching liquid water below the saturation pressure, we are able to observe and quantify spontaneous cavitation. To deal with a lower
overstretching regime, we resort to the Seeding technique, which consists of analyzing simulations of a liquid containing a vapor bubble
under the theoretical framework of Classical Nucleation Theory. Combining spontaneous cavitation with Seeding, we get a wide overview
of the cavitation rate. We study two different temperatures (450 and 550 K) and complement our perspective with the results previously
obtained at 296.4 K [Menzl et al., Proc. Natl. Acad. Sci. 113, 13582 (2016)] to establish a broad simulation-experiment comparison. We
find a good agreement between simulations and both isobaric heating and isochoric cooling experiments using quartz inclusions. We are,
however, unable to reconcile simulations with other experimental techniques. Our results predict a decrease in the solid–liquid interfacial free
energy as the liquid becomes increasingly overstretched with a temperature independent Tolman length of 0.1 nm. Therefore, the capillarity
approximation underestimates the nucleation rate. Nonetheless, it provides a fair indication of the location of the cavitation line given the
steep rate vs pressure dependence. Overall, our work provides a comprehensive view of the water cavitation phenomenon and sets an efficient
strategy to investigate it with molecular simulations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0139470

I. INTRODUCTION

Many microwave ovens display a sticker with a symbol rec-
ommending placing a spoon in the mug where water is heated.
The spoon acts as a surface to aid the emergence of vapor bubbles.
When bubbles are formed, a liquid–vapor equilibrium is established,
and heat transferred by microwaves is employed in increasing the
number of molecules in the vapor phase rather than in a further tem-
perature raise. In the absence of a spoon, however, bubbles may not
form, and the liquid may get superheated beyond the boiling tem-
perature. In such cases, water can boil explosively when handled by

the user. Superheating is not the only manner to have metastable
liquid water with respect to the vapor. Metastability can also be
achieved by overstretching the liquid below the vapor saturation
pressure. This route enables probing negative pressures, which is of
great interest for the study of the thermodynamic behavior of liquid
water and the understanding of its anomalies.1–4 The emergence of
vapor cavities in the metastable liquid (cavitation) sets the limit for
the superheating or the overstretching that the liquid can sustain.
Cavitation plays an important role in many industrial, technologi-
cal, and geological processes,5–11 which makes the understanding of
the physics that governs it of paramount importance.
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This interest has prompted numerous experimental studies of
water cavitation where vapor bubbles arise upon isobaric heating,12

application of acoustic waves,13,14 or isochoric cooling.1,15–18 In these
experiments, the metastability limit of the liquid with respect to the
vapor is determined. The boundary between the metastable liquid
and the vapor is a cavitation line in the pressure–temperature plane
below which bubbles readily nucleate.1,19,20 This cavitation line is
analogous to the so-called homogeneous ice nucleation line,21 which
sets the temperature boundary (along pressure) for the metastabil-
ity of the liquid with respect to ice. In both metastability situations
(liquid vs vapor and liquid vs solid), it is the unfavorable interfa-
cial free energy between the emerging phase (vapor or ice) and the
surrounding liquid that enables the survival of the latter beyond its
thermodynamic stability limits.22,23

Experimental investigations on cavitation have been comple-
mented by theoretical work in the framework of Classical Nucleation
Theory (CNT)2,24,25 or, more recently, Density Functional Theory,20

with the aim of predicting and understanding the location of the
cavitation line. The agreement between theoretical predictions and
experiments is quite satisfactory1,19,20 if the interfacial free energy
between the liquid and the vapor is allowed to decrease when moving
away from coexistence.2,20

An important drawback of both theory and experiments is that
they do not have access to detailed information at the molecular
scale. For instance, the critical bubble (that has a 50% chance of
either growing or redissolving) cannot be visualized experimentally
due to its small size and short lifetime. Computer simulations can
bridge this gap, and they have been extensively used to study cavita-
tion in model systems like the Lennard–Jones fluid.26–33 By contrast,
simulation work for water cavitation is more scarce, due to the
technical difficulty of studying a rare event like cavitation—which
requires the use of special simulation methods—in a costly system
from a computational point of view due to the presence of electro-
static interactions. Reference 3 pioneers in the simulation work on
water cavitation. With the use of biased simulations that promoted
the appearance of bubbles in the overstretched liquid, the authors of
Ref. 3 were able to calculate the nucleation rate vs the liquid pres-
sure for temperature T = 296.4 K. The nucleation rate—the number
of critical bubbles that appear per unit of time and volume—is the
central parameter in nucleation. By knowing the nucleation rate, one
can estimate the pressure at which cavitation is going to take place in
a certain experimental setup, which means that one can predict the
location of the cavitation line. In fact, the authors of Ref. 3 report a
cavitation pressure of −126 MPa at the studied temperature and for
the selected water model (TIP4P/200534), which is in line with the
measurements obtained in isochoric cooling in quartz inclusions,1,15

although at odds with acoustic cavitation experiments.14,35–38

In this paper, we revisit the cavitation of overstretched water
with simulations using the TIP4P/2005 water model.34 We focus
on two different temperatures as compared to Ref. 3, namely 450
and 550 K, enabling a more direct comparison with the regime
where most experimental points of the homogeneous cavitation
line are available. Moreover, we use an efficient computational
approach based on directly simulating the liquid with a vapor
bubble already formed at the beginning of the simulations.39–41

This strategy, called Seeding,29,42–46 combines average properties
obtained in the simulations of the vapor bubbles with the theoret-
ical formalism of CNT.47–49 We complement Seeding with unbiased

“brute force” molecular simulations in a high overstretching regime
where bubbles appear spontaneously. Although such a regime is
not attainable in experiments, we use brute force results to validate
Seeding simulations that do overlap with experimentally relevant
conditions.

Our simulation results for the location of the homo-
geneous cavitation line compare satisfactorily with theoretical
predictions20,25 and experimental measurements.1,15 Simulated bub-
bles have an interfacial thickness of about 1 nm for 450 K and 2 nm
for 550 K. The equi-density28 definition of the bubble radius gives
a better consistency between Seeding and Brute Force simulations
than the Gibbs equi-molar surface. We infer from our simulations
that the interfacial free energy decreases as vapor bubbles become
smaller (or as pressure decreases). We also find that the vapor bub-
ble pressure obtained by equating its chemical potential to that of
the surrounding liquid is consistent with that given by the density
in the interior of the bubble. This result, although expected, is not
verified in liquid-to-solid phase transitions.50–52 Overall, our work
shows that water cavitation can be studied from a molecular perspec-
tive, giving experimentally relevant information in a rather efficient
manner.

II. SIMULATION DETAILS
We use the TIP4P/2005 force field for water, which is a

rigid model consisting of three fixed point charges and one
Lennard–Jones (LJ) center.34

Molecular dynamics simulations are performed with the
GROMACS package 2018 (single precision).53 When simulating in
the NpT ensemble, we use the Parrinhello–Rahman barostat,54 with
a relaxation time of 2 ps and a compressibility of 10−5 bar−1. To con-
trol the temperature, we use the Nosé–Hoover thermostat55 with
a relaxation time of 2 ps. For the Verlet integration of the equa-
tions of motion, we use a time step of 2 fs. To deal with electrostatic
interactions, we use particle mesh Ewald summations.56 The cut-off
radii for the neighbor list, the dispersive Lennard–Jones interactions,
and the real part of the electrostatic interactions are 13 Å. Ewald
summations have been previously used to deal with heterogeneous
systems,57 including water bubbles.3,58 We have checked for spe-
cific cases of bubble simulations that the energy barely changes by
increasing the Ewald cutoff to 20 Å. Moreover, we find that even
using a plain 20 Å cutoff for the electrostatic interactions does not
almost change the average energy. These arguments give us con-
fidence in the use of Ewald summations with the selected 13 Å
real part cutoff. No tail corrections are added to the Lennard–Jones
potential due to the presence of two phases with strongly different
densities in our simulations. We use a switch radius of 12 Å, mean-
ing that the LJ potential is not modified up to this radius, after which
it is gradually switched off to reach zero at the cut-off radius. The
LINCS algorithm is used to fix the geometry of the water molecules,
with an order of six and four iterations.59,60

III. RESULTS
Most results discussed below correspond to a temperature of

450 K. Only at the end, in Sec. III B 5, we add results corre-
sponding to 550 K in order to establish a broader comparison with
experiments.
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A. Coexistence properties
The liquid–vapor equilibrium for this model has been charac-

terized in Ref. 61. We recalculate here the coexistence pressure at
T = 450 K to both test our simulation setup and to account for the
use of a slightly different cutoff radius. We first equilibrate a liquid of
4096 water molecules in a cubic box in the NpT ensemble. After, we
introduce some empty space next to the liquid, finishing with a box
of 3.917 24 × 3.917 24 × 27.14 nm3. We run this system (in the NVT
ensemble) until equilibrium has been reached and obtain the pres-
sure components of the system. The average pressure component
normal to the vapor–liquid interface is the vapor (or coexistence)
pressure, and it does not depend on the system size; in our case, pz =
4.49 bar, in very good agreement with the values reported in Ref.
61 (4.46 bars) and Ref. 62 (4.5 bars). The average tangential compo-
nents of the pressure depend on the system size and in our case are
px = −24.38 bars and py = −24.48 bars. The interfacial free energy at
coexistence, γc, is obtained using the mechanical route,63

γc =
Lz[p̄z − p̄x+p̄y

2 ]
2

. (1)

We obtain γc = 40(1) mJ m−2, which is similar to the value
calculated in Ref. 62, γc = 38.8 mJ m−2.

B. Cavitation rate
1. Cavitation rate by brute force molecular
dynamics simulations

By lowering the pressure of the liquid below the coexistence
value, one should observe the nucleation of vapor cavities (cavita-
tion). Owing to the liquid–vapor interfacial free energy, this process
is activated and can take a long time. At very low pressures, how-
ever, the thermodynamic drive for the emergence of the vapor phase
is high, and the cavitation process is relatively quick. In fact, it is pos-
sible to observe it in brute force molecular dynamics simulations of
the bulk liquid for negative pressures below −650 bar. This is shown
in Fig. 1, where we plot the volume of the simulation box vs time
for ten different trajectories starting from a bulk liquid consisting of
20 000 water molecules under periodic boundary conditions at 450 K
and −700 bar. In all runs, the system abruptly increases its volume
after some induction period (which varies stochastically from one
trajectory to another) due to the sudden appearance and growth of a
vapor bubble. The stochastic character of cavitation is a consequence
of its activated nature. The fact that there is a long induction period
indicates that a single bubble is formed in the system (an unlikely
event does not happen twice or more at the same time). This enables
us to estimate the bubble nucleation rate as

J = 1
⟨t⟩⟨V⟩ , (2)

using 1 in the numerator because one only bubble forms in each run.
⟨t⟩ is the average time that it takes to observe the nucleation of a bub-
ble, which is obtained as the arithmetic average between the times at
which the volume sharply shoots up in our ten trajectories. ⟨V⟩ is the
average volume of the liquid where bubble nucleation takes place. In
Table I, we report the nucleation rates for different pressures along-
side the variables required to compute them. Obviously, the lower

FIG. 1. Volume of the simulation box vs time starting from ten liquid configura-
tions containing 20 000 molecules. The thermodynamic state point is 450 K and
−700 bar.

the pressure, the higher the cavitation rate. With our brute force cal-
culations, we span three orders of magnitude of the nucleation rate:
from 1033 m−3 s−1 at −750 bar to 1030 m−3 s−1 at −650 bar. Probing
lower nucleation rates with brute force calculation is too demanding
computationally. It is important, however, to get estimates of lower
nucleation rates given that in experiments one has access to rates of
the order of Ref. 20 1015 m−3 s−1. To do that, we resort to the Seeding
technique, which is described in Sec. III B 2.

2. Cavitation rate via NVT Seeding
We shall compute the nucleation rate for higher pressures

(lower rates) using Seeding.42–46 In this method, instead of wait-
ing for a bubble to spontaneously appear, the simulation is started
from a configuration of a liquid containing a bubble. When equili-
brated in the NVT ensemble, the bubble turns out to be the critical
vapor nucleus at the simulation temperature and at the pressure
acquired by the surrounding liquid.29 With such pressure and the
bubble radius, one can obtain an estimate of the nucleation rate
using CNT.29

To prepare the initial configuration, we first equilibrate liquid
water in the NpT ensemble at 450 K and a selected pressure below
saturation. Next, we remove the molecules inside a sphere in the cen-
ter of the box. This system is then simulated in the NVT ensemble
and allowed to equilibrate during 1 ns. We repeat this process with
different pressures, box sizes, and cavity radii looking for trajecto-
ries having a stable vapor bubble (stabilizing spherical nuclei in the
NVT ensemble is not always viable and depends on a subtle balance
between the size of the box and that of the nucleus29,51). In Table II,
we summarize the system sizes employed in our Seeding simulations

TABLE I. Data leading to the calculation of J via brute force molecular dynamics
simulations using a system of 20 000 TIP4P/2005 water molecules at 450 K.

p (bar) ⟨t⟩ (ns) ⟨V⟩ (nm3) J (s−1 m−3)

−750 0.5(2) 747.8(1) 3(1) × 1033

−725 1.1(2) 743.73(6) 1.2(2) × 1033

−700 7(3) 739.81(3) 2.0(8) × 1032

−675 40(10) 736.15(1) 3.1(8) × 1031

−650 300(100) 732.798(7) 4(2) × 1030
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TABLE II. Data corresponding to the different NVT Seeding simulations performed in this work. See the main text for the meaning of the different reported parameters.

T (K) N L (nm) pl (bar) Δp (bar) ρl (kg/m3) ρv (kg/m3) Red (nm) RG (nm) log10[Jed/(s−1 m−3)] log10[JG/(s−1 m−3)]

450

58 817 13.9305 −135.4 142.2 869.8 3.79 5.43 5.46 −293 −299
64 085 13.9305 −150.4 156.9 868.6 3.65 4.88 4.92 −227 −233
47 110 12.3315 −190.8 196.8 865.2 3.34 3.85 3.89 −124 −130
49 774 12.3315 −225.5 231.2 862.2 3.13 3.24 3.29 −75 −80
49 774 12.3315 −226.2 231.9 862.2 3.12 3.24 3.29 −75 −80
51 785 12.3315 −295.4 300.6 856.0 2.79 2.45 2.50 −24 −29
17 985 8.8216 −308.7 313.7 854.8 2.73 2.33 2.39 −17 −22
18 548 8.8056 −391.0 395.6 847.0 2.44 1.80 1.88 7 2
18 524 8.8023 −391.0 395.6 847.0 2.44 1.80 1.88 7 2

8 950 6.9651 −435.5 439.8 842.6 2.31 1.58 1.69 15 9

550
50 691 13.1049 −73.2 110.9 710.2 20.92 2.93 3.05 7 2
17 064 9.2936 −86.4 123.7 706.6 20.56 2.55 2.70 16 11
17 737 9.2936 −116.4 152.8 697.8 19.78 1.99 2.18 26 21

alongside the radii of the stabilized bubbles averaged over 19 ns.
We report two different radii for each bubble. One is RG, the radius
corresponding to the equi-molar Gibbs dividing surface, which is
computed as follows:

RG = (3(N − L3ρl)
4π(ρv − ρl) )

1/3
, (3)

where N is the total number of molecules, L is the length of the simu-
lation box edge (since we work with a cubic system the volume of the
box is L3), and ρl and ρv are the densities of the liquid and the vapor
phases, respectively. The former is obtained via the average virial
pressure, pl, and the bulk liquid equation of state (see Table II). The
latter is obtained by looking for the vapor that has the same chemi-
cal potential as the surrounding liquid:64,65 μl(T, pl) = μv(T, pv). We
search where this condition is satisfied by performing isothermal
thermodynamic integration of both the bulk vapor and the bulk liq-
uid molar volumes from the coexistence pressure, pcoex, as described

FIG. 2. Chemical potential difference with respect to the coexistence pressure at
450 K for the bulk liquid (black) and the bulk vapor (red) phases. Dashed and dot-
ted horizontal and vertical lines guide the search for the condition of equal chemical
potential in a bubble of radius ∼2.5 nm (see main text for more details).

in Ref. 28. In Fig. 2, we show μ(p) − μ(pcoex) at 450 K for the liquid
(black curve) and the vapor (red curve). The dotted vertical line at
p = −295.4 bar corresponds to pl for a bubble of 2.5 nm. The chem-
ical potential of such liquid can be obtained from the intersection
between the dotted line and the black curve. Then, we read from the
intersection between the horizontal dashed line and the red curve,
the pressure of the vapor that has the same chemical potential as the
liquid, pv. Δp, a key parameter in the CNT nucleation formalism, is
the difference between pv and pl. The vapor pressures, pv, and the
corresponding densities, ρv, thus obtained for all simulated bubbles,
are reported in Table II.

Alternatively, we compute the bubble radius by means of an
average radial density profile starting from the bubble center, as
shown in Fig. 3. Such a density profile is fitted to the following
sigmoid function (dashed orange curve in Fig. 3):

ρ(r) = ρv,dp + ρl,dp

2
+ (ρl,dp − ρv,dp

2
) ⋅ tanh[(r − Red)/α], (4)

FIG. 3. Radial density profile starting from the bubble center averaged over 19 ns
in the NVT ensemble (black line). The profile corresponds to a bubble surrounded
by a liquid of pressure −295.4 bar. The dashed orange line is a fit to the simulation
data given by Eq. (4).

J. Chem. Phys. 158, 124504 (2023); doi: 10.1063/5.0139470 158, 124504-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

where ρv,dp and ρl,dp are the densities of the vapor and the liquid
phases obtained with the density profile (dp) fit, α is a parameter
related to the width of the interfacial region, and Red is the critical
bubble radius estimated as the distance at which the density is the
average between both phases (“equi-density” criterion).28 The equi-
density radius, Red, reported in Table II is close to but systematically
lower than RG.

Both approaches obtain the radius [Eqs. (3) and (4)] assume
a spherical bubble shape. In order to visually inspect the shape, we
provide, in Fig. 4, a series of slabs cut through the bubble center at
different times along a Seeding simulation containing a 2.5 nm bub-
ble. The sequence of snapshots clearly shows that the bubble shape
fluctuates around a sphere, which justifies our approach to obtain
the bubble radius assuming an average spherical shape.

The fit parameter in Eq. (4) ρl,dp is fully consistent with the den-
sity obtained by means of the overall virial pressure of the system and
the bulk liquid equation of state. However, the vapor density pro-
vided by the fit given by Eq. (4), ρv,dp, is not accurate, given the small
size of the bubbles (the sigmoid does not reach a true plateau in the
interior of the bubble). Nevertheless, by estimating the vapor den-
sity as an average of the density profile in a region in the interior of
the bubble, one does obtain consistent values with the vapor density
resulting by imposing equal chemical potential between the bub-
ble and the surrounding liquid. This consistency, although expected,
should not be given for granted. For instance, for hard sphere crys-
tallization, the density (and the mechanical pressure) of the crystal
nucleus is lower than that obtained by imposing chemical poten-
tial homogeneity (in fact, the nucleus’s mechanical pressure is even
lower than that of the surrounding liquid).50–52

Knowing the bubble radius and Δp, we can use CNT to estimate
the nucleation rate, J,

J = A exp(−ΔGc

kBT
), (5)

where kB is the Boltzmann constant, A is a kinetic pre-factor, and
ΔGc is the Gibbs free energy associated with the formation of the
critical bubble, which is given by

FIG. 4. Slab cuts of 20 Å thickness through the bubble center in a Seeding
simulation at 450 K containing a ∼2.5 nm radius sphere.

ΔGc = 2π × Δp × R3
c

3
, (6)

where Rc is the critical bubble radius that we identify either with RG
or with Red. The kinetic pre-factor is computed following Blander
and Katz:24

A =
√

Δp × Rc

πm
ρl, (7)

where m is the mass of the molecule (18.02 u for water). This theoret-
ical expression gives consistent results with other routes to estimate
the kinetic pre-factor.66 One can also obtain from the bubble prop-
erties an estimate of the interfacial free energy via the Laplace
equation,

γ = Δp × Rc

2
. (8)

In Table II, we provide the nucleation rates for all simulated
bubbles alongside all parameters required for their computation.
The kinetic pre-factor A can be obtained with the data reported in
the table using Eq. (7) and is of the order of 1040 m−3 s−1 for all pres-
sures and both choices of radius definition. The rates corresponding
to RG and Red are shown as filled black and red circles, respectively,
in Fig. 5. Our data are consistent with those of Ref. 20, indicated with
crosses in the figure, which were obtained with Density Functional
Theory for two different temperatures, namely 423 and 523 K.

3. Surface free energy and the capillarity
approximation

The surface free energy, γ, between the bubbles equilibrated
in the NVT Seeding simulations and the surrounding liquid can
be estimated from Eq. (8). We plot γ in Fig. 6 as a func-
tion of the liquid pressure for all bubbles. Again, black and red
symbols correspond to the Gibbs and the equi-density defini-
tions of the critical bubble radius, respectively. Both sets of data
tend to the flat interface value (blue square) obtained from our
liquid–vapor direct coexistence simulations via Eq. (1). This is
a good consistency test passed by the Seeding approach. Given
that γ is proportional to the bubble radius [see Eq. (8)] and that
Red < RG, γ coming from the equi-density radius definition is sys-
tematically lower. As one approaches coexistence (higher pres-
sures/larger bubbles), both sets of data get closer to each other
because the difference between both radii becomes a small fraction
of the overall radius. The decrease of γ with pressure for the equi-
density radius definition is about 1 mN m−1/100 bars pressure drop,
whereas it is approximately half that for the Gibbs radius. In either
case, γ goes down by decreasing the pressure away from coexis-
tence. This is consistent with the results obtained in Ref. 3 at another
temperature (296.4 K).

The lowering of γ by moving away from coexistence is a com-
mon feature with other systems like the Lennard–Jones fluid in
the cavitation/condensation transition28–30,33 or ice nucleation in
water.45,67 In our case, both the curvature of the interface and the
pressure of the surrounding fluid change by moving away from coex-
istence. Both factors simultaneously contribute to the variation of γ,
and their effects cannot be decoupled. Nevertheless, it seems intu-
itive that by lowering the pressure (or the density) of the liquid, the
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FIG. 5. (a) Decimal logarithm of the cavitation rate as a function of the liquid pres-
sure. Blue squares are obtained by Brute Force simulations at 450 K. Circles are
obtained with NVT Seeding {black circles using the Gibbs definition for the criti-
cal bubble radius [Eq. (3)] and red ones using the equi-density criterion [Eq. (4)]}.
Filled circles correspond to T = 450 K and empty ones to 550 K. The black and red
dashed lines are fits to the NVT Seeding data using the CNT expressions given in
the main text and the γ(p) dependence shown in Fig. 6. The green (pink) dashed
line represents the capillarity approximation for 450 K (550 K). The horizontal dot-
ted lines indicate the expected rate range for cavitation in isobaric superheating12

and quartz inclusions isochoric cooling experiments.1,15 Crosses correspond to
Density Functional Theory for 423 K (brown) and 523 K (purple).20 (b) Enlargement
of the high nucleation rate regime.

similarity between the vapor and the liquid increases, which is in line
with a γ decrease.

The decrease of γ with pressure looks rather linear [see
Fig. 6(a)]. By fitting γ(p) to a straight line (dashed in Fig. 6) and
using Eqs. (5)–(8), we can fit the rate-pressure dependence29 and
obtain the dashed curves in Fig. 5, which we comment on in more
detail in Sec. III B 4.

The variation of γ with curvature is often described by the
following expression proposed by Tolman:65

γ = γc(1 − 2δ
Rc
), (9)

where δ is the Tolman length, which can be obtained from the slope
of a γ vs 1/Rc representation such as that shown in Fig. 6(c) (filled
data correspond to 450 K). We use Rc = Red to do such representa-
tion given that, as it will be shown later on, it turns out that Red better
predicts the nucleation rate in the spontaneous cavitation regime. A
positive δ is expected, given that γ diminishes as curvature increases.

FIG. 6. (a) and (b) Interfacial free energy as a function of the liquid pressure.
Black and red symbols correspond to estimates of γ from the NVT Seeding sim-
ulations using Eqs. (3) and (4) to obtain the bubble radius, respectively. The
blue square corresponds to the coexistence value obtained with simulations of
a flat vapor–liquid interface via Eq. (1). (a) and (b) correspond to 450 and 550 K,
respectively. (c) Interfacial free energy vs the inverse equi-density radius for both
temperatures as indicated in the legend.

The resulting δ is 0.1 nm. Later on, in Sec. III B 5, we extend our
study to a temperature of 550 K in order to compare our simu-
lations with experiments. Here, we anticipate the results for this
temperature regarding the Tolman length. From the representation
in Fig. 6(c) (empty symbols), we get the same δ as for 450 K, 0.1 nm,
suggesting that δ is temperature independent. A very recent simula-
tion estimate of δ at T = 296.4 K (0.091 ± 0.008 nm) using the same
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model as in this work confirms the non-dependence of the Tolman
length with temperature.58

Taking into account, the decrease of γ when lowering the liquid
pressure is crucial to get accurate estimates of the nucleation rate. To
illustrate this, we compute the rate that would be obtained by con-
sidering γ constant and equal to its value at coexistence (capillarity
approximation). To obtain such a rate, we express Eqs. (7) and (6) as
a function of γ via Eq. (8). Thus, one gets

ΔGc = 16πγ3

3Δp2 , (10)

and

A = ρl

√
2γ
πm

. (11)

Inserting Eqs. (11) and (10) into Eq. (5) and using the coexistence
γ for every pressure gives rise to the green dashed curve in Fig. 5,
which lies at lower rates as compared to Seeding or Brute Force data.
The capillarity approximation actually underestimates J by 6 orders
of magnitude when compared to Brute Force. The conclusion is that
a theoretical or a simulation treatment (Seeding and Brute Force
in the present case) that takes into consideration the variation of
γ with pressure/curvature is indeed needed to obtain accurate cav-
itation rates in overstretched water (it is not enough the use of the
capillarity approximation). It was also concluded that the capillarity
approximation fails to provide accurate nucleation rates for water
cavitation, in previous simulation and theoretical studies.2,3,20

4. Cavitation rate: Brute force vs Seeding
In Fig. 5 we plot the rate vs the liquid pressure as obtained from

Brute Force simulations (blue squares) and Seeding (black and red
circles using RG and Red as definitions for the critical radius, respec-
tively). More than 300 orders of magnitude of the nucleation rate
are spanned by our data. Brute Force data cover the highly negative
pressure regime, where cavitation is spontaneous in the simulation
time, whereas Seeding is used to obtain rate estimates in a higher
pressure regime, where the rate is much lower and nucleation does
not spontaneously occur. As discussed later on, the Seeding regime
is more relevant to experiments.

The Gibbs radius systematically gives smaller rates than the
equi-density one (by about 4–5 orders of magnitude), given that
the nucleation barrier is proportional to the cubed bubble radius
[Eq. (6)] and RG > Red. An extrapolation to low pressures of the fits
to Seeding data [done by linearly extrapolating the γ(p) fits shown
in Fig. 6(a)] suggests that by using Red as radius definition, a bet-
ter consistency with Brute Force is achieved [see the enlargement
shown in Fig. 5(b)]. We stress that the Brute Force rate is exempt
from theoretical approximations. In this respect, Red seems to be a
better definition than RG of the critical bubble radius, Rc, in the CNT
expressions given by Eqs. (6)–(8).

In Fig. 7, we plot the Gibbs free energy barrier, ΔGc, com-
puted according to Eq. (6), from our Seeding simulations (dots)
fitted via the linear γ(p) dependence found in Fig. 6. The predicted
free energy barrier height in the spontaneous cavitation pressure
range (−750 to −650 bars) goes from 15 to 20 kBT according to
the Red radius definition. These barrier heights are typical of sponta-
neous nucleation events in simulations.50,68 This consistency further

FIG. 7. Gibbs free energy as a function of the liquid pressure from Seeding simu-
lations considering the equi-density radius definition. 450 K. Black (red) circles are
data obtained using the Gibbs (equi-density) radius definition. Dashed curves are
fits based on the linear γ(p) dependence shown in Fig. 6.

demonstrates the match between Brute Force and Seeding extrapo-
lated via the γ(p) linear dependence of the data obtained with the
equi-density radius definition.

5. Comparison with experiments
Experimental studies of cavitation, rather than having direct

access to the nucleation rate, detect the thermodynamic state point at
which a liquid water sample undergoes cavitation. In Fig. 8, the cavi-
tation pressure is plotted against temperature. Empty and solid sym-
bols correspond to experimental measurements and simulations,
respectively. Lines correspond to theoretical predictions.

We compare first our data against experiments of isobaric
superheating12 and isochoric cooling, the latter performed with
quartz inclusions.1,15 The cavitation rate probed in these experi-
ments, Jexp, is determined by the (inverse) product of the employed
volumes and observation times and ranges from 1010 to 1015

(m−3 s−1).1,15,19,69 Therefore, in order to compare our simulations
against experiments, we have to find the pressure range that gives
the aforementioned rates (indicated with dotted horizontal lines
in Fig. 5). By using this strategy of identifying iso-rate lines we
were able to satisfactorily predict with simulations the location of
the so-called homogeneous ice nucleation line in studies of ice
nucleation.70

Using the J(p) curves in Fig. 5, we can estimate by interpola-
tion that cavitation in the experiments mentioned in the previous
paragraph will occur between p(J = 1010 m−3 s−1) = −41 MPa and
p(J = 1015 m−3 s−1) = −44 MPa at 450 K (we used the Red radius
definition for this estimate, but the values obtained using RG are very
similar). This pressure range is quite narrow due to the large slope
of the J(p) curve. Such pressure range is our simulation estimate
for the occurrence of cavitation in experiments of isobaric super-
heating or isochoric cooling (in quartz inclusions) at 450 K and is
indicated with a red dot for Red and with a black dot for RG in Fig. 8
[the size of the dot includes the values of p(J = 1010–1015 m−3 s−1)].
It is worth pointing out that at the pressures where we predict cavi-
tation to occur in experiments (−41 to −44 MPa), we obtain a ΔGc of
60–70 kBT from the fit to the Red data shown in Fig. 7. These barrier
heights are typical of nucleation experiments.
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FIG. 8. Cavitation pressure as a function of temperature obtained with experiments
(empty symbols), simulations (filled symbols), and theory (dashed lines). Black and
red filled dots correspond to our Seeding simulation predictions using RG and Red
as the radius definition, respectively, whereas the purple dot corresponds to tran-
sition sampling simulations.3 The dotted line is a spline fit to simulation data to
help visualize the trend predicted by TIP4P/2005. Filled green up triangles are
predictions combining simulation equations of state with the capillarity approxi-
mation (see main text). The pale blue dashed line is a CNT-like prediction from
Refs. 1 and 25 and the maroon one is a density functional approach.20 Blue1

and pink15 empty diamonds correspond to isochoric cooling experiments using
inclusions. Empty maroon up triangles are data from isobaric superheating exper-
iments.12 Right triangles correspond to Berthelot isochoric cooling experiments,
in pale blue16 and in pink.17 Centrifuge experiments are represented with orange
down triangles,72 shock wave experiments with blue left triangles,73 and acoustic
experiments with squares, in black from Ref. 14, in red from Ref. 37, and in green
from Ref. 38. The maroon circle is obtained using artificial trees.18

The dot in Fig. 8 obtained from our simulations at 450 K lies
in the low pressure limit of the rather scattered experimental data
cloud (blue empty diamonds) found around 450 K. This is consis-
tent with the hypothesis that, around this temperature, there might
be heterogeneous cavitation in the experiments,1 which is a pathway
that leads to bubble nucleation at higher pressures than its homoge-
neous counterpart. Our simulation point, obviously, corresponds to
homogeneous nucleation, which is why it stands close to the lowest
attainable experimental pressures.

At high temperatures, the experimental data are not scattered
anymore, and they all nicely fall into a neat line. In order to compare
our simulations with experiments in such a temperature regime, we
performed extra NVT Seeding simulations at 550 K. The simula-
tion details are identical to those described for 450 K except that we
used a lower integration time step, namely 1 fs. At 550 K, we find a
coexistence pressure of 39(1) bars and an interfacial free energy of
17(2) mJ m−2, both consistent with Ref. 61 (38.01 bars) and Ref. 62
(38.3 bars and 17.4 mJ m−2).

We run first a bubble of radius about 3 nm. We observe that
the interfacial width at 550 K doubles that of 450 K (2 vs 1 nm).
In equilibrium at 550 K, the bubble is surrounded by a liquid of
p =−73.2 bars. Since its corresponding rate, J = 107 m−3 s−1 (with the
Red radius criterion), turned out to lie below the J range relevant to
experiments, 1010–1015 m−3 s−1, we decided to equilibrate a couple
of smaller bubbles in order to enable the interpolation. The rates cal-
culated from the three Seeding runs are reported in Table II and are
represented as empty circles in Fig. 5 [the kinetic pre-factor, which
can be obtained with the data of the table using Eq. (7), is of the same
order of magnitude as that found at 450 K: 1040 m−3 s−1]. The γ(p)

dependence shown in Fig. 6(b) is used to fit the J(p) data at 550 K
(dashed lines through empty circles in Fig. 5). By interpolation, we
estimate that cavitation at 550 K will take place between −7.6 and
−8.5 MPa (using the Red radius definition). This pressure interval
is included as a red dot in Fig. 8 and is quite close to the experi-
mental line, which highlights the ability of the TIP4P/2005 model,
in combination with the Seeding technique, to predict and justify the
experimental cavitation behavior. In Fig. 8, we also include two low
temperature data coming from inclusion experiments (pink empty
diamond15) and simulations (purple solid circle3). Again, simula-
tions and inclusion experiments seem to be fully consistent with each
other.

To summarize, our simulations seem to be in good agreement
with superheating12 and with quartz inclusion experiments1 at high
temperatures, and those of Ref. 3 are consistent with more recent
quartz inclusions experiments performed at lower temperatures.15

We include in Fig. 8 a spline fit (red dotted line) to the three avail-
able simulation data (450 and 550 K from this work and 296.4 K
from Ref. 3) to give a visual idea of the cavitation line predicted by
the TIP4P/2005 model. A direct comparison between the model and
the experiment is enabled by the fact that TIP4P/2005 predicts quite
well the critical temperature and the surface tension.61 The model
seems to mildly overestimate the cavitation pressure, which indicates
that TIP4P/2005 overestimates the nucleation rate. Such overesti-
mation could be due to the model having a smaller γ than real
water.62 Also, it should be taken into account that γ is very sensitive
to the employed cutoff and that using larger cutoff distances could
improve the agreement between simulation and experiment.62,71 In
any case, the model predictions shown in Fig. 8 are already very
satisfactory.

However, the scenario is not fully clear yet: measurements of
the cavitation pressure with other strategies, such as the Berthelot,
centrifuge, acoustic cavitation, and artificial tree techniques, indi-
cated with empty symbols of different colors forming a cloud located
at around −25 MPa and between 0 and 25 ○C, do not agree with the
trend set by our simulations and those of Ref. 3. All these exper-
iments find cavitation pressures well above those predicted by the
simulations. In acoustic cavitation experiments, according to Ref. 35,
the accessible rate is of the order of 1020 m−3 s−1. This is 5 orders of
magnitude higher than the highest value we have used in this paper
(and in Ref. 3) to compare with inclusion experiments. However, if
we had used the 1020 m−3 s−1 rate, we would have found an even
larger discrepancy because we would have predicted a lower cav-
itation pressure (pressure goes down as the rate goes up). Hence,
we are unable to explain the discrepancy with acoustic cavitation
experiments. What about Berthelot’s experiments? In such experi-
ments, isochoric cooling is performed as in quartz inclusions but in
much larger volumes (about 5 orders of magnitude larger, 10−10 vs
10−15 m3).16 Also, the observation time is longer in Berthelot exper-
iments (104 vs 10 s). With these time and volume scales, rates as low
as 105 m−3 s−1 could be probed in Berthelot experiments. Inferring
the cavitation pressure from J = 105 m−3 s−1, which is 5 orders of
magnitude below the lower rate bound here considered, would go in
the right direction, although it is not enough: both in our work at
450 K and in that of Ref. 3 at 296.4 K, one can see that, in the experi-
mentally relevant region (that given by the dotted lines in Fig. 5), the
pressure barely changes 3 MPa every 5 orders of magnitude change
of the rate. This is clearly insufficient to explain the ∼100 MPa
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difference between simulations and Berthelot experiments shown in
Fig. 8. Possibly, the explanation for such a large discrepancy between
simulations and Berthelot or other sorts of experiments is that cavi-
tation occurs at large pressures via heterogeneous nucleation in these
experiments.

Finally, in Fig. 8, we also include the capillarity approxima-
tion prediction for the cavitation pressure in isobaric superheating
or quartz inclusion experiments (green upward triangles). These tri-
angles lie at lower pressures than circles corresponding to Seeding
predictions. This is justified as follows: We have already discussed
in Fig. 5 that the rate obtained from the capillarity approxima-
tion is lower than that coming from Seeding due to the decrease
of γ as the bubble radius diminishes (see Fig. 6). Since the cap-
illarity rate is lower, the pressure at which capillarity predicts a
certain rate is lower too. However, it is perhaps surprising that the
capillarity approximation prediction for the cavitation pressure is
quite close to that obtained by Seeding despite the fact that capil-
larity rates lie 5–10 orders of magnitude below Seeding (see Fig. 5).
Again, this is explained by the steep J(p) curve in the experimen-
tally relevant region (large rate changes correspond to rather small
pressure variations). This justifies the proximity between Seeding
and capillarity predictions of the cavitation pressure and between
different theoretical approaches shown in Fig. 8, disregarding1,25 or
taking into account20 the variation of the interfacial free energy with
pressure.

IV. SUMMARY AND CONCLUSIONS
We investigate water cavitation with molecular dynamics sim-

ulations using the TIP4P/2005 model. Our first goal is to establish
the cavitation rate vs pressure curve at 450 K. For that purpose, we
first evaluate the coexistence properties by simulating the liquid in
contact with the vapor phase in direct coexistence. We find that the
coexistence pressure is 4.49 bars and that the interfacial free energy is
40(1) mJ m−2. We then simulate the liquid at large negative pressures
until we find a regime where vapor bubbles spontaneously form in
the course of an unbiased simulation. Due to the small size of the
simulation volumes as compared to experimental ones, this regime
is found at very low pressures: below −650 bar. In such simulations,
we can estimate the nucleation rate by computing the average time
required for a bubble to appear in the simulated liquid volume. We
find nucleation rates in the range of 1030−1033 m−3 s−1 when lower-
ing the pressure from −650 to −750 bar. We cannot simulate lower
pressures because there is no longer an induction period before the
appearance of a bubble. To compute the nucleation rate at larger
pressures, which are more relevant to experiments, we resort to the
Seeding method, which consists in simulating a bubble surrounded
by the liquid in the NVT ensemble, in our case at 450 K. In such sim-
ulations, we compute the average pressure of the surrounding liquid
with the virial expression and the bubble radius by means of radial
density profiles (equi-density criterion). Alternatively, the radius is
estimated using the definition of the equi-molar Gibbs dividing sur-
face, which only requires knowing the volume of the simulation box,
the total number of molecules, the liquid density, and the vapor
density. To obtain the latter, we use thermodynamic integration
of the equation of state of both phases, previously obtained with
bulk phase simulations, and impose the condition of homogeneous
chemical potential throughout the system. The vapor density thus

obtained is consistent with that inferred from the density profile.
This is expected in vapor–liquid transitions but is not generally true
in solid–liquid equilibrium.51,52 We combine the aforementioned
simulation information (pressure of both phases, and bubble radius)
with CNT to obtain estimates of the nucleation rate and the interfa-
cial free energy. We get a huge variation of the nucleation rate (from
10−300 to 1010 m−3 s−1) in the pressure range going from −130 to
−430 bar. The interfacial free energy goes down from its coexistence
value as pressure goes down. The Gibbs radius definition predicts
an interfacial free energy drop of ∼0.5 mN/m/100 bars decrease
whereas the equi-density definition predicts approximately double
that. Both criteria to identify the bubble radius give a similar rate
trend although the Gibbs criterion gives lower values because it
predicts higher interfacial free energies. By fitting the variation of
the interfacial free energy with pressure to a straight line, we can
fit the rate data obtained with Seeding. We find that the fit to the
Seeding data obtained with the equi-density radius definition extrap-
olates better to the regime where we computed the nucleation rate
with unbiased simulations. Thus, the equi-density radius seems to
be more appropriate to describe water cavitation with CNT. The γ
variation with curvature obtained with the equi-density radius is fit-
ted by a 0.1 nm Tolman length. We also compare the Seeding rate
curves with those obtained using the capillarity approximation, i.e.,
by assuming that the interfacial free energy does not vary with pres-
sure. Obviously, the capillarity curve predicts lower rates because
it does not take into consideration the lowering of the interfacial
free energy when moving away from coexistence. Finally, we com-
pare our results with experiments. The experimental data available
at 450 K are rather scattered so we decided to run a few extra Seeding
simulations at 550 K where there are cleaner data. To compare with
experiments, we need to predict the pressure at which the system
undergoes cavitation at a given temperature. We do this prediction
by interpolating, in our rate vs pressure curves, the rate at which it is
expected that cavitation takes place in the experiments. With this
strategy, we get a successful comparison with both isobaric heat-
ing and isochoric cooling experiments with small volumes (quartz
inclusions). However, we find irreconcilable discrepancies with the
cavitation pressures obtained with other experimental techniques
like Berthelot or acoustic cavitation. We hypothesize that there could
be heterogeneous bubble nucleation in such experiments, given that
cavitation occurs at much higher pressures than predicted by our
simulations and those of Ref. 3, performed at 296.4 K. Overall,
our work shows an efficient manner to investigate and understand
the factors that control and affect water cavitation using molecular
simulations.
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