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MOLECULAR PHYSICS, 1992, VOL. 75, No. 2, 427-442 

A perturbation theory of hard quadrupolar fluids 

CARLOS VEGA 

Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, 
Universidad Complutense de Madrid, E-28040 Madrid, Spain 

(Received 17 June 1991; accepted 31 July 1991) 

A perturbation theory, derived by Boublik, for the polar hard Gaussian 
overlap model is extended to other hard polar models. The final equations are 
simple, and good agreement between theory and simulation is found for quad- 
rupolar hard dumbbells and for quadrupolar hard spherocylinders. Since there 
are no simulation data for quadrupolar hard spherocylinders, we have carried 
out some Monte Carlo simulations for this system at two different elongations. 
For quadrupolar hard spheres the theory presented is identical with a previous 
treatment of Patey and Valleau. Therefore the proposed perturbation theory can 
be applied to spherical, linear or nonlinear hard quadrupolar fluids, showing 
good agreement with the simulation results in all the cases. 

1. Introduction 
During the last decade, the statistical mechanics of nonpolar molecular fluids has 

undergone an important advance. Several perturbation theories have been developed 
which allow fast determination of the thermodynamic properties of the studied 
molecular fluid. Good perturbation schemes are now available for the site-site 
potential model [1-6], for the Gaussian potential model [7, 8] and for the Kihara one 
[9-12]. Therefore, interest is currently focused on the study of molecular polar fluids 
which present both short range and long range anisotropic forces. It is clear that the 
study of fluids with a quadrupolar symmetry charge distribution is simpler than the 
study of dipolar fluids since the quadrupole-quadrupole interaction decays faster 
than the dipole-dipole one. Therefore, quadrupolar molecular fluids constitute a 
good starting point for the study of polar fluids. 

The study of quadrupolar fluids is mainly concerned with the change caused in the 
Helmholtz free energy by the presence of the quadrupole A Q. At high densities, the 
structure of the system is dominated by the repulsive forces. Thus, A Q for a purely 
repulsive system is very close to the value of A ~ of a system with repulsive and 
attractive forces as has been shown by simulation. The study of repulsive quadrupolar 
molecular fluids is therefore worthwhile. Hence it is clear that accurate perturbation 
theories for hard quadrupolar fluids are needed. 

Several studies of hard quadrupolar molecular fluids have recently appeared. 
Wojcik and Gubbins [13] have studied the hard dumbbell quadrupolar fluid (HDQ) 
using second order perturbation theory, but the evaluation of the perturbation terms 
was very complicated and therefore was evaluated from the simulations of the 
reference system. More recently, Lombardero et al. [14] have shown that good results 
for HDQ can be obtained if the structure of the hard dumbbell fluid is obtained from 
RAM theory [15, 16]. Although the results are good, they require great numerical 
effort and, because of this, they are presently of limited utility for calculations 
covering all the liquid range of the fluid. For the hard Gaussian overlap quadrupolar 
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428 C. Vega 

model (HGOQ), Boublik [17] has recently proposed a theory which is very simple for 
numerical calculations. The theory has been tested against simulations of the model 
[18] and good agreement was found. The goal of the present work is to extend 
Boublik's theoretical treatment [17, 18] of the H G O Q  to other hard polar fluids such 
as quadrupolar hard dumbbells and quadrupolar hard spherocylinders (HSPQ), and 
thus to show that a semiquantitative description of  the behaviour of these fluids can 
be achieved with a very simple numerical treatment. This is important, since it allows 
an improvement in the understanding of the thermodynamic behaviour of quad- 
rupolar linear fluids and in the description of the thermodynamics of  real quadrupolar 
fluids. 

Although there are simulation studies of  HDQ and HGOQ fluids so that the 
proposed theory can be tested against the simulation results, the HSPQ has not yet 
been studied by simulation. We have therefore carried out some simulations for the 
HSPQ fluid so that the theory can be tested for three very different linear hard 
quadrupolar models, namely, HDQ, HGOQ and HSPQ. Furthermore, the proposed 
theory can be applied not only to hard linear quadrupolar fluids but to any hard 
quadrupolar model. 

2. Perturbation theory of hard linear quadrupolar fluids 

Recently, Boublik has presented a theory for H G O  polar fluids [17]. This theory 
has been checked for HGOQ fluids against simulation results of  the model and good 
agreement has been found [18]. In this section, we shall extend this theoretical 
approach to other hard quadrupolar fluids. We shall outline the theory briefly, as 
already been explained in [17] and [18], and show that the theory, originally conceived 
for the H G O  polar fluid, can be extended to any other hard polar fluid. 

We shall focus on the quadrupolar fluid, although the extension to dipoles is trivial 
(see [17]). Let us write the pair potential uHo of a hard quadrupolar molecule as 

UHQ(r, tO I, 0)2) = uu(r,  0)1, 0)2) + )~uQ(r, 0)1' 0)2), (1) 

where r is the distance between the centres of mass, 0)i a set of normalized orientational 
coordinates for molecule i, UH(r, 0)1, 0)2) the pair potential of  the hard system and 2 
a coupling parameter. The quadrupolar potential u o is given by 

3Q2 [1 - 5(c 2 + c22) - 15c2c~ + 2(SlS2C - 4c~c2)2], (2) UQ -- 4r 5 

where Q is the quadrupolar moment, ci = cos 0~, si = sin 01 and c = cos (~b~ - q~2). 
In equation (2), the polar axis is the one which connects the centres of mass of the 
molecules. Any hard body potential UH can be written as 

un(r,  0)1, 0)2) = O0 if r < d(0)1, 0)2) (3) 

UH(r, 0)1, 0)2) = 0 if r /> d(0)l, 0)2) (4) 

where d(0)l, 0)2) is the distance between the centres of  mass at which the two molecules 
are in contact with the relative orientation 0)1, 0)2 (see figure l(a)). 

Then, expanding the Helmholtz free energy of  the system in terms of 2, it appears 
that [19] 

A = A0 -t- A t -k- A 2 -t- A 3 -{- . . . .  (5)  

where A is the Helmholtz free energy of the system interacting through the potential 
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Perturbation of hard quadrupolar fluids 429 

(a) 

"7" 

(b) 

Figure 1. (a) Geometrical meaning of d(to), to.,) for hard dumbbells and hard sphero- 
cylinders. (b) The shortest distance p between hard spherocylinders. We also show the 
unit vector p in the direction of p. 

given by equation (1) with 2 = 1, .40 is the Helmholtz free energy of the system 
interacting through equations (3) and (4) (reference system) and the .4~, ,42, .43 a re  the 
first, second and third order perturbation terms, respectively. These perturbation 
terms are given by integrals involving the perturbation potential and the correlation 
function of the reference system: 

AI = `41A (6) 

A 2 = A2A + A2B + A2c (7) 

`43 = A3A + A3B + A3c + A3D + . . . .  + `43N (8) 

Explicit formulae for the integrals of equations (6)-(8) can be found in reference 
[19]. Let us assume, following the treatment in [17] and [18], that it is a good 
approximation to neglect the contribution from the following perturbation terms: 

.42B -'- .42C = .43C = .43D . . . . . .  .43N = 0 (9) 

The terms in equation (9) are exactly zero for quadrupolar hard spheres and we 
assume that they are negligible for other hard quadrupolar models. Therefore the 
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430 C. Vega 

Helmholtz free energy can be written to third order as 

A Q = (A - A0) = AIA + A2A n u A3A + A38. (10) 

The terms AIA, A2A, A3A and A3~ are given by 

AIA/NkT = 2rtnfl f (go(r, ml, 022)uQ)r z dr (11) 

f (go(r, 021, 022)UZQ) rz dr (12) AzA/NkT ~ ~ n ~  2 

A3A/NkT -= rcnfl3 f 3 (go(r, 021,022)u30) r2 dr (13) 

n2f13 f A3B/NkT - 6 (go(l, 2, 3)UQ(1, 2)UQ(1, 3)UQ(2, 3)) dr~2dr,3 , (14) 

where fl = (kT) 1, n is the number density, g0(r, 021,022) and g0(1, 2, 3) are the pair 
and the triplet correlation function of the reference system, respectively, with 
i = (ri, 02i) and the brackets stand for an unweighted average over all the orientational 
coordinates. Let us now define 

Q,2 = Q2/(kTa~ ) (15) 

3Q* 2 
X* = (16) 

4 

x = r/d(021, c02) (17) 

d* = d(021,022)/~ro (18) 

f(021,022) = [1 - 5(c 2 + c 2) - 15c~c~ + 2(sls2c - 4clc2) 2] (19) 

n* = no "3 (20) 

q = r tVm, ( 2 1 )  

where o- 0 is a characteristic length of the molecule, Vm is the molecular volume and 
f(021,022) is the orientational part of UQ. Let us now make the following approxi- 
mation for go(r, o91, 022): 

go(r, 021, 022, q) ~- g(r/d(021, 022), q) "~ gr~s(X, q) (22) 

where gHs(X, q) is the radial distribution function of hard spheres at the packing 
fraction t/. Then, substituting equation (22) into equations (11-14) and using the 
superposition approximation for g0(1, 2, 3), one obtains 

2nn*X* / f(021._022) \ f ~  g.s(X, q) dx AIA/NkT (23) 
\ a ' 2 ( 0 2 1 , 0 2 2 ) / J ~  x 3 

If2 (021, 022) ~ f 0o gHs(X ' ~) dx  
A 2 A / N k T  = --Tin*X*2 " ~  - - "  Jl X8 (24) 

\ t ,, 022) /  

_ 7tn*X*3 / f3(021,022) \ f ~  gHs(X, r/) dx A3A/NkT (25) 
\d*l-gi~, - - -  31 x13 3 \ t021, 022)/ 

A3B = 7fa~(l'2)f(l'B)f(2'3)'lgnS(X12'tl)gHs(X13'q)gHs(X?3'q)"12d*3"4*3"a/*3"13 "23 'X'12A'133t23" 4 . 4 . 4 (26) 

X dx12 dx13 dx23 
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Perturbation of hard quadrupolar fluids 431 

and 

4 ~ 2 n * 2 X  .3 
7 = (27) 

3 

In equations (23-26) the brackets stand for orientational average, but in equation 
(26) this average has to be calculated while maintaining the shape of the triangle made 
up by the centres of  mass. The symbol A denotes integration over x,2, x,3, x23 which 
form a triangle with a given set of angles (~t,, ~t2, ct3) between the centres of the 
molecules. Let us now define 

/(shape) = \d*2 t'~-,'l, --o92)/ (28) 

./(shape) = / f2 (o9 t '  O92)~ (29) 
\d'7(o9,, o92)/ 

/ f3(~l, _~2) \ (30) 
K(shape) = \ d , ~ i ,  092)/ 

M(shape, c t,, ~2) = ( f ( l ,  2)f(1,3)f(2,3).).12di3z/,3r "23 (31) 

f ~ gns(X, q) dx (32) 
a ( , 7 )  = x ~ I 

f ~ gns(X, q) dx (33) b(q) = x8 

f ~ g"s(X' q) dx 
c ( ~ )  = x ,  3 (34) 

I 

e(q, x12, Xl3, X23) = gns (Xl2 ,  q)gl.ls(Xl3, r/)gHs(X23 , r/) 
4 4 4 ( 3 5 )  

XI2XI3X23 
The dependence of  the integrals L J, K, M on the molecular shape arises from the 

fact that d(o9,, o92) is a function of  the molecular shape. Equations (23-26) can now 
be written as 

A~A/NkT = 2nn*X* /(shape) a(q) (36) 

A2A/NkT = - nn*X .2 J(shape) b(r/) (37) 

/ t n * X  .3 
A3A/NkT = ~ K(shape) c(rl) (38) 

= 7 fa M(shape. ~tl. ~ t 2 ) e ( q  , x12 , Xi3 , x23)dx12dx13dx23.  A3a/NkT (39) 

To accelerate the convergence of series (10), a Pade approximant can be used and 
we then have 

A Q = (A - -  A0) = AIA + A2A(1 - -  (A3A + A3B)/A2A) -I. (40) 

The pressure and internal energy of the hard quadrupolar fluid can be obtained 
from the expressions: 

( O A ~  - , (41) Z = pV/NkT = Z n +  . L \ 
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432 C. Vega 

U/NkT = X* (OAQ/NkT'] (42) 
\ aX* ) , '  

where ZH is the compressibility factor of the hard body fluid. 
Equations (10) and (40) are the basic expressions of this section. The proposed 

perturbation scheme can be applied to any hard quadrupolar fluid. They have already 
been used in references [17] and [18] for the HGO fluid, but in this work we have 
extended them to any other hard quadrupolar fluid. The generalization is contained 
in equation (22). 

3. Calculations and simulation details 

In this work we have studied three different kinds of hard quadrupolar fluids, 
namely, the quadrupolar hard Gaussian overlap model, the quadrupolar hard dumb- 
bell model and the quadrupolar hard spherocylinder model. The pair potential in 
these three models is given by equation (1). For the hard Gaussian overlap model u H 
is given by [20] 

UH = oo r < a(o)l, 1702) (43) 

uu = 0 r ~ 0"(1701, 1702) (44) 

'(O)I'O)2)~ 2 = ( 1 - ) ( C 2  -'k g2 q- --2Zclc2(glg2 -'k sls2g)-) -I, 
/ 1 (45) 

where #0 is a width,  Z = (~2 _ 1)/(x2 + 1) and ~ is the length to breadth rat io. For  
a hard dumbbell (HD), UH is given by 

UH = oO if a n y r  u < a0i, j = 1,2 (46) 

uu = 0 if a l l r  u ~> a0i, j = 1,2 (47) 

where r~s is the distance between the site i of molecule 1 and site j of molecule 2. o-0 
is the diameter of the sphere attached to the site. The shape parameter for hard 
dumbbell is L* = l/~o where l is the distance between the sites. 

For hard spherocylinder (HSP), UH is given by 

UH = oo P(o)1, o)2) = 0 (48) 

un = 0 P(o)~, o)2) > 0 (49) 

where p(o)~, o)2) is the shortest distance between the cores (rods) of the spherocylinder 
(see figure l(b). Algorithms to find the shortest distance between rods p(col, o)2) can 
be found elsewhere [21, 22]. The characteristic parameter is L* = l/ao where I is the 
length of the rod and o- 0 is the breadth of the spherocylinder (see figure l(a)). 

To evaluate /(shape), J(shape) and K(shape) (equations (28-30)) the function 
d(o)1, 1702) is needed. For the HGO, d(o)~, 1702) is given by a(o)l, 1702) (see equation (45)), 
For hard dumbbells it is also very easy to evaluate d(o),, 1702) 23 but for hard sphero- 
cylinders it has to be evaluated numerically for every relative orienttion. The integrals 
I, J, K were evaluated numerically using the Conroy integration method with 10 5 
relative orientations, generated by the procedure of reference [24]. 

In table 1 We give I, J and K for several linear models and for several anisotropies. 
For completeness we have also included the values of I, J and K for the HGO fluid. 
The estimated accuracy i n / i s  1 x 10 4, in J i t  is better than 0.5% and in K i t  is of 
the order of 0.5%. The function I is zero within the numerical uncertainties for the 
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Perturbation of  hard quadrupolar fluids 433 

Table 1. Values of L J and K (see text) for different linear geometries. Hard Gaussian overlap 
fluid (HGO), hard dumbbell (HD), hard spherocyclinder (HSP). We also show the 
average of d3(tol, o92) over all the relative orientations. In the HGO and HSP model, tr 0 
stands for the breadth of the molecule while, for HD, a 0 is the diameter of the sphere. 
For x = 1 or L* = 0 the exact values of L J, K are 0, 224/45 and 1024/245, respectively. 
We show, however, the values obtained numerically also in that case. 

K I J K (d  3 (to,, to2)/a 3 ) 

HGO 
1 0.0000 4-9777 4.1792 1.0000 
1.2 0.0000 2.8231 0.7910 1-2133 
1.35 0.0000 2.0302 0.5132 1-3910 
1-50 0.0000 1.5525 0-4792 1.5840 
1-65 0-0000 1.2458 0-4770 1.7925 
1.80 0.0000 1-0385 0.4716 2.0168 
2.00 0.0000 0-8527 0.4562 2-3406 
2.2 0.0000 0.7282 0-4361 2.6932 
2-5 0.0000 0.6059 0-4052 3.2768 

L* I J K (d  3 (to,, (o2)[ a3 ) 

HD 
0 0-0000 4-9777 4-1792 1.0000 
0.1 - 0-0006 3-3422 1.3521 1.1536 
0.2 -0.0025 2.3813 0.5299 1.3139 
0.3 - 0.0056 1.7859 0.2851 !-4801 
0.4 - 0.0100 1.4009 0-2132 i-6513 
0-50 -0.0157 1-1441 0-1927 1-8265 
0.60 - 0-0226 0.9700 0-1867 2.0045 
0.70 - 0.0308 0-8527 0-1836 2.1843 
0-80 - 0.0403 0.7776 0.1811 2.3648 

HSP 
0 0.0000 4-9777 4- i 792 1.0000 
0.1 -0.0006 3-3305 1.3454 1.1554 
0-2 - 0.0023 2.3694 0.5306 1-3168 
0-3 -0-0050 1.7693 0.2922 1-4857 
0.4 -0-0082 1-3763 0.2268 1.6621 
0.5 -0-0117 1.1083 0.2130 1.8460 
0.6 - 0.0151 0.9190 0.2128 2.0374 
0.7 -0.0182 0.7810 0.2149 2.2363 
0-8118 - 0-0211 0-6671 0-2168 2.4675 
0-9 -0-0230 0.5982 0.2174 2-6566 
1 - 0-0247 0.5360 0.2171 2.8780 

H G O  fluid, and  it is small but  different from zero for the H D  and  the HSP fluids. This 
is in agreement  with the values of  the A ~A term from simulat ions  for the H G O Q  [18] 
and for the H D Q  [13] fluids. For  x = 1 (HGO)  or L* = 0 ( H D  and  HSP), the hard 

body reduces to a hard sphere. For  hard spheres, I, J, K can be obta ined  analytically.  
Their exact values [25] are I = 0. J = 224/45 = 4.9778, K = 1024/245 = 4-1796, 
which compare  well with the values obta ined numerical ly  I = 0.0000, J = 4.9777, 
K = 4.1792 and  presented in table 1. We have fitted I, J, K and  (d3(o_)l, O)2)[0"0 3) as 
a funct ion of  the molecular  anisotropy to empirical formulae for the H G O ,  H D  and  
HSP models. The fitting expressions are given in the appendix and  allow us to apply 
the theory to anisotropies differing from those presented in table 1. 
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434 C. Vega 

The evaluation of  the function M(shape, ~ ,  0~2) of  equation (31) is numerically 
difficult. It is analytical for hard spheres but not for other geometries. For  hard 
spheres it is given by [25] 

M(sphere, ~j, ~2) = 1/450 { - 2 7  + 220 co s~  cos~2 cos73 

+ 490 cos2~ I COS20~ 2 COS20~ 3 q- 175 [cos2(~j - ~2) 

+ cos2(7, - ~3) + cos2(~2 - ~3)]} (50) 

Following the procedure of  [18], we shall obtain an estimate of  the A3B term for 
nonspherical models from the value of  A3B of a corresponding hard sphere of  the same 
volume at the same packing fraction. The final expression is 

A3B/NkT = 7/F5 fa M(sphere, oq, ~2)e(/], x12, x13, x23)dx12dx13dx23 (51) 

F = (Vm/~3)/(rt/6) (52) 

z(/]) = ;A M(sphere, ~l, ~2)e(/], x12, xl3, x23 ) dx12 dx13 dx23 (53) 

The evaluation of  a(/]), b(/]), r of  equations (32-34) and of  z(/]) of equation (53) 
has been perform using Verlet-Weiss parametrization [26] of gHs if~d) and Simpson's 
integration rule. We have fitted them to empirical expressions which are given in the 
appendix. 

To obtain the pressure of the hard quadrupolar fluid it is necessary to use an 
equation of  state EOS (Z . )  of  the hard body (see equation (41)). For  HGO, several 
EOS have been proposed recently [27, 28]. For  HSP we shall use [29, 30] 

Zn = 1 + (3~ - 2)/] + (3~ 2 - 3~ + 1)/] 2 - ~(6~ - 5 ) / ]  3 HSP (54) 
(1 -/])3 

= (2 + L*)(1 + L*)/(3L* + 2 ) H S P  (55) 

and for HD we shall use [30, 31] 

ZH = 1 + (30~ -- 2)/] + (3~ 2 -- 30~ + 1)/] 2 -- 0.r2/] 3 
(1 - /])3 H D  (56)  

= (2 + L*)(1 + L*)/(3L* + 2 -- L .3) HD (57) 

Thermodynamic integration of  equations (54-57) allows us to determine the free 
energy energy Ao of  the hard body (see equations (10) and (40)). 

The HGOQ fluid and the HDQ have been studied by simulation [13, 14, 18]. The 
proposed perturbation scheme can therefore be tested against simulation data. How- 
ever, there are no simulation data of  the HSPQ fluid. We have carried out some MC 
runs for this model. The main characteristics of the simulations are similar to the ones 
described in [18] and [32]. 

We used the standard procedure of  Metropolis et al. [33]. In all the simulations we 
used 256 particles in a cubic box with periodic boundary conditions. We started all 
the runs from an ~N2 FCC lattice. A run consists of an initial period of  3000-5000 
trial moves per particle to reach equilibrium followed by a period of 6000-10 000 trial 
moves per particle to obtain the averages. Every trial move consists of  an attempt to 
change the position of  the centre of  mass and the orientation of  the molecule. The 
acceptance ratio was kept in the range 25-55%. An order parameter [34] was evaluated 
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Table 2. MC results obtained for HSPQ fluid. Q*~ = Q2/(kTa~). 

435 

Model L* n* Q* " U/ Nk T Z 

HSPQ 0-3 0-55 0 0 8-04 
HSPQ 0.3 0.55 0-277 - 0.084 7-99 
HSPQ 0-3 0.55 0.555 - 0.323 7-62 
HSPQ 0-3 0.55 1. i I I - I. 166 6-90 
HSPQ 0-3 0.55 1.666 - 2-350 5-75 
HSPQ 0-81 ! 8 0-36 0 0 8.69 
HSPQ 0-8 ! 18 0.36 0-454 - 0.074 8-68 
HSPQ 0-8118 0-36 0-909 - 0,260 8-47 
HSPQ 0.8118 0.36 1-818 - 0.846 7.79 
HSPQ 0.8118 0.36 2-727 - 1-688 6.98 

during the runs to be sure that  the system was orientationally equilibrated. We neglect 
the contr ibut ion o f  the quadrupole  to the long range correction. Similar t reatment has 
been used in references [13, 14, 18, 35]. The quadrupole  interaction was cut at a 
distance o f  B/2 - I where B is the length o f  the side o f  the box. 

The internal energy and pressure o f  the H S P Q  fluid were obtained from 

U = U Q (58) 

U Q = E ~ u Q ( i , j )  (59) 
i<j 

Z = 1 + 2/3rtngav(p = 0) ( r  - /~)p=0 + Z Q (60) 

Z Q = pOV _ 5U Q (61) 
N k T  3 N k T '  

where gay(P) is the surface to surface distribution function [30] and the meaning of/u 
is illustrated in figure l(b). The values at contact  are obtained by extrapolat ion to 
p = 0 o f  the corresponding functions. 

AQ was obtained f rom the simulations by using the squared quadrupole  as the 
coupling parameter  within Ki rkwood ' s  formalism [36] 

f0 ~ A Q - ~  A(Q = Q) - A(Q = O) = (UQ/Q 2) dQ 2. (62) 

We followed the procedure o f  Patey et al. [25] and fitted the M C  values o f  U Q / N k T  
to the expression 

U Q / N k T  = tQ*4(sQ .2 + 2) 
(1 + sQ*2) 2 (63) 

so that  the parameters  t and s have to be determined. Substituting equation (63) in 
equation (62) one gets 

A Q / N k T  - tQ .4 
(1 + sQ .2)" (64) 

We have studied the system L* = 0-3 at the state point  n* = 0-55 with values o f  
Q,2 from 0 to 1.666 and the system L* = 0.8118 at the state point  n* = 0.36 with 
values o f  Q,2 from 0 to 2.727. Table 2 shows the M C  results. In table 3 we show the 
values o f  t and s so that AQ can be determined (see equat ion (64)). 
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436 C. Vega 

Table 3. Coefficients t and s in equations (63) and (64) obtained from the MC data of table 2. 

Model L* n* t s 

HSPQ 0'30 0"55 - 0"5921 0" 1542 
HSPQ 0'8118 0"36 -0 '1921 0.1599 

4 .  R e s u l t s  a n d  d i s c u s s i o n  

I t  was p roved  tha t  the pe r t u rba t i on  scheme o f  sect ion 2 gives sa t is factory  results 
for  the H G O Q  fluid. In  this sect ion we shall  show that  the extension o f  the theory  to 
H D Q  and  H S P Q  out l ined  in sect ion 2 is able  to descr ibe the t he rmodyna mic  
behav iou r  o f  these fluids. 

Table  4 shows a compar i son  between A Q, the compress ib i l i ty  fac tor  and  internal  
energy for  H D Q ,  as ob ta ined  f rom M C  a n d  f rom the theory  o f  this work .  W e  also 
show the results f rom L o m b a r d e r o  et al. [14], who used a R A M  theory  to get the 
s t ructure  o f  the ha rd  dumbbe l l  fluid. F o r  A Q and  Z,  equa t ion  (40) works  much  bet ter  
than  equa t ion  (10) but,  for  the in ternal  energy, equa t ion  (10) seems to be superior .  A Q, 
Z and U ob ta ined  f rom equa t ion  (40) are smal ler  than  those ob ta ined  f rom equa t ion  
(10). Equa t ion  (40) is able  to descr ibe A Q and  Z very well unti l  high values o f  the 
quad rupo le ,  such as X* = 2.5. F o r  the highest  value o f  the quadrupo le ,  X* = 3, 
equa t ion  (40) fails. Equa t ion  (10) yields good  agreement  for  in ternal  energy for  all the 
values o f  the quadrupo le .  The  results  o f  the Pad6 a p p r o x i m a n t  (equat ion  (40)) are 
c o m p a r a b l e  with those ob ta ined  f rom R A M  theory.  This holds  for  A Q, Z and  U. This 
is i m p o r t a n t  because the pe r t u rba t i on  theory  p r o p o s e d  in this work  proves  to be 
compu ta t i ona l l y  less demand ing  than  the R A M  theory.  

Table 4. A Q, Z and U for quadrupolar hard dumbbells as obtained from MC [14], from RAM 
theory [14] and from the proposed perturbation scheme of this work. The elongation is 
L* = 0.60 and the density n* = 0-4263. 

X* MC [14] Eqn (10) Eqn (40) RAM [14] 

AQ/NkT 
0-5 -0 -15  -0 -12  
1 - 0  - 0.48 - 0.42 
1-5 - 0.96 - 0.89 
2-0 - 1.57 - 1.49 
2-5 - 2 . 2 9  -2 .21  
3-00 - 3-10 - 3-02 

Z 
0.5 7.92 7-93 
1-0 7.24 7.48 
1-5 6.49 6.86 
2-0 5.51 6.21 
2-5 4-37 5.61 
3-0 3.44 5.17 

U/NkT 
0-5 - 0.24 - 0.22 
1-0 - 0.82 - 0'77 
1 - 5  - 1 . 6 6  - 1 . 6 1  

2.0 - 2-64 - 2.66 
2.5 - 3 . 8 6  -3 -85  
3-0 - 5"09 -- 5-I I 

- 0 . 1 2  
- 0-43 
- 0.90 
- 1 . 5 2  

- 2 . 2 8  
- 3 . 1 6  

7.93 
7-41 
6.62 
5'60 
4.37 
2.98 

- 0-22 
-0 .78  
- 1 . 6 5  

- 2 . 7 7  
- 4 . 1 2  
- 5'66 

-0-15  
- 0 . 5 0  
- 1 . 0 0  

- 1 . 6 6  

- 2 . 4 2  

- 3.29 

7.82 
7.25 
6.50 
5.61 
4-63 
3-59 

- 0.255 
- 0.867 
- 1.751 
- 2.844 
-4 .100  
-- 5-484 
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Table 5. A o, Z and U for quadrupolar hard spherocylinder with L* = 0-8118 and n* = 0.36 
as obtained from MC and from the proposed perturbation scheme of this work. 

Q.2 MC Eqn (10) Eqn (40) 

AQ/Nk T 
0-454 - 0.04 - 0-04 
0"909 -0-14 -0.13 
1 . 8 1 8  - 0.49 - 0-45 
2.727 - 0-99 - 0.92 

Z 
0 8-69 8-67 
0-454 8'68 8.61 
0.909 8-47 8.45 
1.818 7.79 7.94 
2.727 6-98 7.26 

U/NkT 
0.454 - 0-074 - 0-066 
0-909 - 0-260 - 0-232 
1 - 8 1 8  - 0-846 - 0-799 
2.727 -- 1-688 - 1-577 

-0 .04 
-0-13 
- 0-46 
- 0.95 

8.67 
8.61 
8-45 
7-88 
7.04 

0.066 
0.234 
0.823 
1-687 

In table 5 we show the results for HSPQ at L* = 0.8118. The agreement between 
MC and theoretical results is again very good. Also, the Pad6 approximant  (40) works 
better than equation (10) at high values of  the quadrupole moment,  where there are 
appreciable differences between the two methods. This holds for A ~ Z and U. The 
quality of  the results is very good, taking into account that the anisotropy of  the 
model is rather high and corresponds to a CO2 like elongation. The density studied 
corresponds to a packing fraction of  about  r/ = 0-418, which is a typical liquid 
density. The values of  Q,2 for CO2 are ranged from 2.5 (critical temperature) to 3.4 
(triple point temperature), so that the results of  table 5 can be considered as promis- 
ing. We have investigated the effect of  the quadrupole on the structure for the HSPQ 
with L* = 0.8118. In figure 2 the surface to surface distribution function [30] gay(P) 
as obtained from MC simulations for a hard spherocylinder and for a hard sphero- 
cylinder plus quadrupole is shown. At large and medium distances, the effect o f  the 
quadrupole is small. At short distances the presence of  the quadrupole increases 
the value at contact of  gay(p). This accords with the fact that the contact values of  the 
radial distribution function of  quadrupolar  hard spheres are larger than those of  hard 
spheres. Let us recall that, for hard spheres, gav(P) reduces to the radial distribution 
function. However, the effect of  the quadrupole on gay(P) seems to be less pronounced 
for hard spherocylinders than for hard spheres. In figure 3 we show the first coef- 
ficients gtrm(r) of  the expansion of  g(r, to~, oJ2) in spherical harmonics ~m(CO) 

g(r, ah, ~o2) = 41t ~ gu.m(r) Ytm(tO,) Yr_,,(092) (65) 
II'm 

for hard spherocylinders with L* = 0-8118 when Q.2 = 0 and Q,2 = 2-727. The 
presence of the quadrupole strongly modifies the radial distribution function (gooo(r)) 
and the g2oo(r) coefficient. The changes are similar to those found for hard dumbbells 
with quadrupole [13]. 

In table 6 we show the results for HSPQ with L* = 0.30. For the pressure, 
equation (40) works better than equation (10). However, for A Q and U, equation (10) 
works slightly better than equation (40). The agreement is again good. 
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F i g u r e  2. T h e  su r f ace  to su r f ace  d i s t r i b u t i o n  f u n c t i o n  [30] g,v (P) for  h a r d  s p h e r o c y l i n d e r s  
w i th  L*  = 0-8118 a n d  n* = 0 '36.  Q,2  = 0 (sol id line) a n d  Q,2 = 2.727 ( d a s h e d  line). 

T a b l e  6. A ~ Z a n d  U for  q u a d r u p o l a r  h a r d  s p h e r o c y l i n d e r  wi th  L*  = 0.30 as o b t a i n e d  f r o m  
M C  a n d  f r o m  t he  p r o p o s e d  p e r t u r b a t i o n  s c h e m e  o f  th is  work .  

Q,2 M C  E q n  (10) E q n  (40) 

AQ/NkT 
0.277 --  0-04 
0"555 - 0 - 1 7  
1.110 - - 0 . 6 2  
1.666 --  1.31 

Z 
0.00 8-04 
0.277 7.99 
0 '555  7.62 
1.110 6.90 
1-666 5"75 

0"04 - 0 .04 
0.17 - 0 . 1 7  
0-65 - 0"65 
1-39 - 1.41 

7 '89  7-89 
7.81 7.81 
7-61 7.59 
6-96 6.76 
6.21 5.51 

Q* M C  E q n  (10) E q n  (40) 

U/NkT 
0 '277 - 0 .084 - 0 .086 - 0 .086 
0.555 - 0.323 - 0-323 - 0-330 
1.110 - 1.166 - 1-226 - 1.243 
1-666 - 2-350 - 2 .562 - 2 .642 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
0
:
0
3
 
5
 
J
a
n
u
a
r
y
 
2
0
1
1



Perturbation of hard quadrupolar fluids 439 

0 

8 

2.0 

1.0 

0 
1.0 

( a )  
I I I 

/^ \  0 "2 = 0 - 

/ \ . . . . .  =2.727 

t 
/ 

! 
/ 

I I 
~.s 2.0 2.'s 3.0 

r i o .  

1.0 

0.5 

--oo 0.0 

-0.5 

(b) 
I I I I 

Q * 2  = 0 

. . . .  Q,,,Z = 2.727 

- 1 . 0  I I I I 
0.5 1.0 1.5 2.0 2.5 3.0 

r l  Oo 

Figure 3. Coefficients of the expansion in spherical harmonics of the pair correlation function 
for hard spherocylinders with L* = 0.8118 and n* = 0.36. Q,2 = 0 (solid line) and 
Q,2 = 2.727 (dashed line): (a) radial distribution function which is given by the gooo(r) 
coefficient; (b) g2oo(r) coefficient. 

Let us remark that in all cases the values of  A2A were negative while those of  A3A 
and A3a were positive. That guarantees that the second term of  equation (40) remain 
finite. The ratio A3A/A3B is not much affected by the value of the quadrupole for a 
given geometry at a fixed density. However, this ratio depends strongly on the 
geometry, ranging from large values in the case of  very anisotropic models to values 
slightly smaller than unity for spherical or quasispherical models. To neglect the A3B 
term provokes a decrease of A Q, and this conclusion holds for equation (10) and for 
the Pad6 approximant (40). The values of  A Q obtained from equation (40) are always 
smaller than those from equation (10) as follows from the different sign of  the A2 and 
the A3 (A3A and A3B) perturbation terms. 

Until now we have shown results for anisotropic quadrupolar models. If we set 
L* = 0 then we get results for quadrupolar hard spheres. To illustrate the quality of  
the results we show in table 7 A ~ Z and U for quadrupolar hard spheres. For  Z and 
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Table 7. 

C. Vega 

A ~ Z and U for quadrupolar hard spherocylinder with L* = 0.8344 as obtained 
from MC and from the proposed perturbation scheme of this work. 

Q,2 MC [25] Eqn (10) Eqn (40) 

AQJNkT 
0.2 - 0.09 
0.5882 - 0.71 
0.8333 - 1.33 
1.25 - 2.70 
1-666 - 4-32 

Z 
0.2 8-77 
0-5882 7.55 
0.8333 6.79 
1.25 4.89 
1.666 2.86 

U/NkT 
0.2 -0-18 
0.5882 - 1.30 
0-8333 -2-33 
1-25 -4.57 
1.666 - 6.99 

- 0.09 - 0-09 
-0.71 -0.73 
- 1 .29 - 1.38 

- 2.40 - 2.81 
-3.37 -4.58 

8.48 
7-41 
6-40 
4.30 
1.90 

0.18 
1.35 
2.47 
4.84 
7-60 

U we show the results of  the Pad6 approximant  (equation (40)) only because equation 
(10) fails completely in that case. The agreement between MC results and those of 
equation (40) is again good. This is not surprising since when L* = 0 the theoretical 
treatment presented in this work can be reduced to the treatment given by Patey et al. 
[25] of  quadrupolar  hard spheres. Therefore, the proposed perturbation approach 
gives good results for spherical and highly nonspherical hard quadrupolar  molecules, 
and can be considered as a natural extension of the theoretical treatment of  Patey et al. 
to hard nonspherical quadrupolar  systems. 

5 .  C o n c l u s i o n  

We have shown how the perturbation scheme proposed by Boublik [17, 18] for the 
H G O Q  can be extended to other hard quadrupolar  fluids as H D Q  and HSPQ with 
good results, given the simplicity of  the treatment. The extension to dipolar fluids is 
trivial [17]. The theory developed in section 2 can also be applied to any hard polar 
fluid. The only numerical problem is the evaluation of the contact diameter d(r ~o2) 
for every relative orientation and for every molecular geometry. We have shown that, 
with a very simple theoretical treatment, it is possible to describe the main features 
of  the contribution of the quadrupole to the Helmholtz free energy, to the pressure 
and to the internal energy in a hard quadrupolar  fluid. Overall, the quality of  the 
results can be considered as good. The main advantage of the formalism is to combine 
reasonable accuracy with a very high simple numerical treatment. 

This work has been financially supported by Project PB 88/0143 of  the Spanish 
D G I C Y T  (Direcci6n General de Investigaci6n Cientifica y T6cnica). Helpful dis- 
cussions with Dr  S. Lago, Professor T. Boublik and Professor K. E. Gubbins are 
gratefully acknowledged. 
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Appendix 
The functions a(r/), b(r/), c(r/) and z(r/) (equations (32), (33), (34) and (53), respect- 

ively, have been evaluated by using the Verlet-Weis parametrization o fg . s ( r /d )  and 
Simpson's integration rule. We have fitted a(~/), b(r/), c(~/), z(r/) to the empirical 
expressions 

a(r/) = 0-49204 + 0.50870/-" + 0-12020/-' (A1) 

b(r/) = 0.14154 exp (2.00393)7) (A2) 

c(r/) = 0-08283 + 0-19477)/ + 0.10865q 2 + 0"63337r/3 (A3) 

z(~/) = 0-01555 exp (4.3158)/) (A4) 

We have also fitted the function/(shape), J(shape), K(shape) and (d  3 (tol, 092)/trg) 
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f r o m  tab le  1 for  the  H G O ,  H D  a n d  H S P  fluid to  empi r i ca l  express ions .  T h a t  a l lows  

the  i n t e r p o l a t i o n  the  va lues  o f  L J ,  K a n d  (d3(COl, co2)/a3o> to  a n i s o t r o p i e s  n o t  

i nc luded  in tab le  1. In  the  case  o f  the  H G O  m o d e l ,  the  f u n c t i o n  ( d  3 (oh,  0)2)/~ 3 > can  

be o b t a i n e d  ana ly t i ca l ly  [37] a n d  is g iven  in e q u a t i o n  (A8),  whe re  ~ s tands  fo r  
Z = ( x2 - 1)/( x2 + 1). 

HGO 

I (x)  = 0 (A5)  

J(tr = 150.976 - 449.321tr + 576.401tr 2 - 400.301x 3 + 157.387tr 4 

- 33 .0521x 5 + 2 .88737x 6 

K(tc) = exp  (104.879 - 278.632x + 291.025x 2 - 150-42tr 3 + 38.48K 4 

(A6)  

I(L*) = - 5 " 4 5 4 7 3  x 10 6 .3!_ 3"25328 x 1 0 - 4 L  * - 6"33442 x 1 0 - 2 L  .2 (A9)  

J(L*) = 4"97695 - 20"9293L* + 53"9763L .2 - 85"5252L .3 + 74"6615L .4 

- 26"8366L .5 (A10) 

K(L*) = exp  (1.43041 - 11.2838L* - 6-9547L *z + 79 .9358L .3 - 118.363L .4 

+ 54-6096L .5) (A11)  

<d3(~o~, o)2)/Cro 3> = 1.00007 + 1.49591L* + 0 .399339L .2 --  0 .170959L .3 (A12)  

HSP 

I(L*) = - 5 . 9 1 5 0 3  x 1 0 - 6 +  3.25087 x 10-3L * - - 9 . 1 1 9 3 3  x 10-2L .2 

+ 8-80672 x 1 0 - 2 L  .3 - 2"48054 x 10 2L '4  (A13)  

J(L*) = 4"97403 - 20"6841L* + 50"4076L .2 - 71"9131L .3 + 54-1431L .4 

- 16"3942L .5 (A14) 

K(L*) = exp  (1.4317 - 11.0522L* - 12.5528L .2 + 117.028L .3 - 213 .022L .4 

+ 162.835L .5 - 46 .1821L .6) (A15)  

(d3(ag~, o92)/ff3o> = 1"00063 + 1.5048L* + 0"372372L .2. (A16)  

E q u a t i o n s  ( A I - A 1 6 )  a l o n g  wi th  the  p r o p o s e d  p e r t u r b a t i o n  t h e o r y  a l low the  

d e t e r m i n a t i o n  o f  the  t h e r m o d y n a m i c  p rope r t i e s  o f  h a r d  q u a d r u p o l a r  fluids.  

- 3"90058x 5) (A7)  

arcs in  (X) "] (A8)  
( d 3 ( f o , ,  o92)/ff3o> = tr 1 + Z( 1 _ Z2)m] 

HD 
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