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A perturbation theory, derived by Boublik, for the polar hard Gaussian
overlap model is extended to other hard polar models. The final equations are
simple, and good agreement between theory and simulation is found for quad-
rupolar hard dumbbells and for quadrupolar hard spherocylinders. Since there
are no simulation data for quadrupolar hard spherocylinders, we have carried
out some Monte Carlo simulations for this system at two different elongations.
For quadrupolar hard spheres the theory presented is identical with a previous
treatment of Patey and Valleau. Therefore the proposed perturbation theory can
be applied to spherical, linear or nonlinear hard quadrupolar fluids, showing
good agreement with the simulation results in all the cases.

1. Introduction

During the last decade, the statistical mechanics of nonpolar molecular fluids has
undergone an important advance. Several perturbation theories have been developed
which allow fast determination of the thermodynamic properties of the studied
molecular fluid. Good perturbation schemes are now available for the site-site
potential model [1-6}, for the Gaussian potential model [7, 8] and for the Kihara one
[9-12]. Therefore, interest is currently focused on the study of molecular polar fluids
which present both short range and long range anisotropic forces. It is clear that the
study of fluids with a quadrupolar symmetry charge distribution is simpler than the
study of dipolar fluids since the quadrupole—quadrupole interaction decays faster
than the dipole-dipole one. Therefore, quadrupolar molecular fluids constitute a
good starting point for the study of polar fluids.

The study of quadrupolar fluids is mainly concerned with the change caused in the
Helmholtz free energy by the presence of the quadrupole 4°. At high densities, the
structure of the system is dominated by the repulsive forces. Thus, 42 for a purely
repulsive system is very close to the value of A2 of a system with repulsive and
attractive forces as has been shown by simulation. The study of repulsive quadrupolar
molecular fluids is therefore worthwhile. Hence it is clear that accurate perturbation
theories for hard quadrupolar fluids are needed.

Several studies of hard quadrupolar molecular fluids have recently appeared.
Wojcik and Gubbins [13] have studied the hard dumbbell quadrupolar fluid (HDQ)
using second order perturbation theory, but the evaluation of the perturbation terms
was very complicated and therefore was evaluated from the simulations of the
reference system. More recently, Lombardero et al. [14] have shown that good results
for HDQ can be obtained if the structure of the hard dumbbell fluid is obtained from
RAM theory [15, 16]. Although the results are good, they require great numerical
effort and, because of this, they are presently of limited utility for calculations
covering all the liquid range of the fluid. For the hard Gaussian overlap quadrupolar
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model (HGOQ), Boublik [17] has recently proposed a theory which is very simple for
numerical calculations. The theory has been tested against simulations of the model
[18] and good agreement was found. The goal of the present work is to extend
Boublik’s theoretical treatment [17, 18] of the HGOQ to other hard polar fluids such
as quadrupolar hard dumbbells and quadrupolar hard spherocylinders (HSPQ), and
thus to show that a semiquantitative description of the behaviour of these fluids can
be achieved with a very simple numerical treatment. This is important, since it allows
an improvement in the understanding of the thermodynamic behaviour of quad-
rupolar linear fluids and in the description of the thermodynamics of real quadrupolar
fluids. -

Although there are simulation studies of HDQ and HGOQ fluids so that the
proposed theory can be tested against the simulation results, the HSPQ has not yet
been studied by simulation. We have therefore carried out some simulations for the
HSPQ fluid so that the theory can be tested for three very different linear hard
quadrupolar models, namely, HDQ, HGOQ and HSPQ. Furthermore, the proposed
theory can be applied not only to hard linear quadrupolar fluids but to any hard
quadrupolar model.

2. Perturbation theory of hard linear quadrupolar fluids

Recently, Boublik has presented a theory for HGO polar fluids [17]. This theory
has been checked for HGOQ fluids against simulation results of the model and good
agreement has been found [18]. In this section, we shall extend this theoretical
approach to other hard quadrupolar fluids. We shall outline the theory briefly, as
already been explained in [17] and [18], and show that the theory, originally conceived
for the HGO polar fluid, can be extended to any other hard polar fluid.

We shall focus on the quadrupolar fluid, although the extension to dipoles is trivial
(see [17]). Let us write the pair potential uy, of a hard quadrupolar molecule as

uHQ(ra wla wZ) = uH(ra wl’ 602) + j'uQ(r’ wla Cl)z), (1)

where r is the distance between the centres of mass, «; a set of normalized orientational
coordinates for molecule i, u, (r, ®,, ®,) the pair potential of the hard system and 1
a coupling parameter. The quadrupolar potential u, is given by

3 2
Uy = 4—% [1 — 5(ct + &) — 15¢3c2 + 2(sys5¢ — de,¢,)], Q)

where Q is the quadrupolar moment, ¢; = cosf;, s, = sinf, and ¢ = cos(¢;, — ¢,).
In equation (2), the polar axis is the one which connects the centres of mass of the
molecules. Any hard body potential uy can be written as

uy(r, 0, @) = oo if r < d(w,, w,) 3
uy(r, o, w;) = 0 if r > do,, w,) 4)

where d(®w,, ®,)is the distance between the centres of mass at which the two molecules
are in contact with the relative orientation w,, w, (see figure 1(a)).
Then, expanding the Helmholtz free energy of the system in terms of 4, it appears
that [19]
A = Ag+ A + A+ A + . ... (5

where A is the Helmholtz free energy of the system interacting through the potential
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Figure 1. (a) Geometrical meaning of d(w,, w,) for hard dumbbells and hard sphero-
cylinders. (b) The shortest distance p between hard spherocylinders. We also show the
unit vector g in the direction of p.

given by equation (1) with i = 1, 4, is the Helmholtz free energy of the system
interacting through equations (3) and (4) (reference system) and the A4,, 4,, A are the
first, second and third order perturbation terms, respectively. These perturbation
terms are given by integrals involving the perturbation potential and the correlation
function of the reference system:

A = A (6)
A, = Ay + Ay + Ay )
A; = Ay + Ay + Asc + Ap + -+ Asy 3

Explicit formulae for the integrals of equations (6)—(8) can be found in reference
[19]. Let us assume, following the treatment in [17] and [18], that it is a good
approximation to neglect the contribution from the following perturbation terms:

A23=A2C=A3C=AJD=""=A3N=0 9

The terms in equatidn V(9) are exactly zero for quadrupolar hard spheres and we
assume that they are negligible for other hard quadrupolar models. Therefore the
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Helmbholtz free energy can be written to third order as
A% = (A — A)) = Aip + Ay + A + Ay, (10)
The terms A4,,, A,5, A3 and As are given by

A AINKT = 2mnf J(go(r, ), 0 r* dr an
An[NKT = —nnf? j(go(r, @, UG yr* dr (12)
3
AnINKT = [ 5, 1, 0ri > ar (13
n2

A [NKT = F f(go(l, 2, Dug(1, ug(1, ug(2, 3)) drdr;, (14)

6
where § = (kT) ', nis the number density, g,(r, ®,, ®,) and g,(1, 2, 3) are the pair
and the triplet correlation function of the reference system, respectively, with
i = (r;, w;) and the brackets stand for an unweighted average over all the orientational
coordinates. Let us now define

0% = Q(kTo}) (1)
30%

X* = % (16)

x = rldw,, w,) an

a* = dw,, ,)|a (18)

flo, @) = [1 = 5(cf + 3) — 15¢ic3 + 2s;8:¢ — 4ei6)’] 19)
n* = no; (20)

n = nl,, 21

where g, is a characteristic length of the molecule, ¥, is the molecular volume and
Sf(w,, w,) is the orientational part of u,. Let us now make the following approxi-
mation for g,(r, w,, w,):

&o(r, ®, Wy, ) = glr/d(w,, w,), 1) = gus(x, 1) (22)

where gys(x, 1) is the radial distribution function of hard spheres at the packing
fraction . Then, substituting equation (22) into equations (11-14) and using the
superposition approximation for gy(1, 2, 3), one obtains

flo,, o,) * gus(x, n)
— Y %
A,A|NKT 2nn*X <d*2(co,, ) 1 = dx (23)
2 0
4 = —mprY*? S (o, »,) J‘ gus(x, 1) d 24
w[NKT ™ <d*7(w1, )/ )i x* * @
wm*X* [ f(w, ;) * gus(x, 1)
_ > 25
AWINEE = 7 <d*”(w1, 250 ), 9
Ay = 7 S, 2) (1, 3) (2, 3)\ gus(X12, Mgus (13- Mgus (X3, 7) (26)
*® A ay’ ax’d¥’ Xt Xt x§3

X dx;; dxyy dx,,
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and

2 %2 V%3
In equations (23-26) the brackets stand for orientational average, but in equation
(26) this average has to be calculated while maintaining the shape of the triangle made
up by the centres of mass. The symbol A denotes integration over x,,, X3, X,; which
form a triangle with a given set of angles (a,, ,, ;) between the centres of the
molecules. Let us now define

I(shape) = <di*%ﬁ%> (28)
2
J(shape) = <‘-1f-*7(%“’72))> (29)
1s 2
K(shape) = <£,§((Da')' waz)Z)> (30)
M(shape, ,, @) = <f R 3)> (1)
12
[ * gus(x, 1)
- Bus'X> 1) 4 32
a(n) J o x (32)
bn) = Mg—-—“si’ﬁ’ D g ()
Ji A
e, X1zy Xi3s Xa3) = 8us (X125 'I)gus(xlaa Mgus (X2, ’7) (35)

x12xl3x23

The dependence of the integrals 7, J, K, M on the molecular shape arises from the
fact that d(w,, w,) is a function of the molecular shape. Equations (23-26) can now
be written as

A\A[NKT = 2mn*X* I(shape) a(n) (36)

A,\[NKT = —mn*X*? J(shape) b(n) 37N
* Y %3

AWINKT = X7 Kishape) c(n) (38)

A [NKT = y J M(shape, a,, ay)e(n, x5, X3, X33) dxpdx;3dx,3. 39
A

To accelerate the convergence of series (10), a Pade approximant can be used and
we then have

A = (A — A)) = Aip + Ap(1 — (A3 + Ap)/A0) " (40)

The pressure and internal energy of the hard quadrupolar fluid can be obtained
from the expressions:

Z = pVINKT = Z, + (a—A—%VH) n 41
T
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0Aq [Nk
UINKT = x* (Q—’) 2)
ax+ ),

where Z,, is the compressibility factor of the hard body fluid.

Equations (10) and (40) are the basic expressions of this section. The proposed
perturbation scheme can be applied to any hard quadrupolar fluid. They have already
been used in references [17] and [18] for the HGO fluid, but in this work we have
extended them to any other hard quadrupolar fluid. The generalization is contained
in equation (22).

3. Calculations and simulation details

In this work we have studied three different kinds of hard quadrupolar fluids,
namely, the quadrupolar hard Gaussian overlap model, the quadrupolar hard dumb-
bell model and the quadrupolar hard spherocylinder model. The pair potential in
these three models is given by equation (1). For the hard Gaussian overlap model uy
is given by [20]

Uy = o r < o(w,, ©,) 43)
0

uy = rz oo, o) (44)

a(w;, m,) ’ _ C% + Cg + —2xc,6(c16 + 5,5,0) -
—_— = l —_ X 2 s (45)
0y I — x(cic; + 5155¢)

where g, is a width, y = (¥* — 1)/(x¥* + 1) and « is the length to breadth ratio. For
a hard dumbbell (HD), uy is given by

Uy = © ifany r; < g,i,j = 1,2 (46)
w, = 0 ifallr; > a,i,j = 1,2 (47)

where r;; is the distance between the site i of molecule 1 and site j of molecule 2. g,
is the diameter of the sphere attached to the site. The shape parameter for hard
dumbbell is L* = I/o, where / is the distance between the sites.

For hard spherocylinder (HSP), u; is given by

Uy = 0 plw, ) = 0 (48)
ugy = 0 plwy, ;) > 0 49

where p(w,, w,) is the shortest distance between the cores (rods) of the spherocylinder
(see figure 1(b). Algorithms to find the shortest distance between rods p(w,, w,) can
be found elsewhere [21, 22]. The characteristic parameter is L* = lfg, where [ is the
length of the rod and o, is the breadth of the spherocylinder (see figure 1(a)).

To evaluate I(shape), J(shape) and K(shape) (equations (28-30)) the function
d(w,, w,)1s needed. For the HGO, d(w,, w,) is given by a(w,, w,) (see equation (45)).
For hard dumbbells it is also very easy to evaluate d(w,, w,)* but for hard sphero-
cylinders it has to be evaluated numerically for every relative orienttion. The integrals
I, J, K were evaluated numerically using the Conroy integration method with 10°
relative orientations, generated by the procedure of reference [24].

In takle 1 we give I, J and K for several linear models and for several anisotropies.
For completeness we have also included the values of I, J and K for the HGO fluid.
The estimated accuracy in 7is 1 x 107 in J it is better than 0:5% and in K it is of
the order of 0-5%. The function I is zero within the numerical uncertainties for the
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Table 1. Values of I, J and K (see text) for different linear geometries. Hard Gaussian overlap
fluid (HGO), hard dumbbell (HD), hard spherocyclinder (HSP). We also show the
average of d*(w,, w,) over all the relative orientations. In the HGO and HSP model, g,
stands for the breadth of the molecule while, for HD, o, is the diameter of the sphere.
Fork = 1 or L* = 0theexact values of I, J, K are 0, 224/45 and 1024/245, respectively.
We show, however, the values obtained numerically also in that case.

K I J K (d (o, w)]o5)
HGO
1 0-0000 4-9777 41792 1-0000
1-2 0-0000 2-8231 0-7910 1-2133
1-35 0-0000 2-0302 0-5132 1-3910
1-50 0-0000 1-5525 0-4792 1-5840
1-65 0-0000 1-2458 0-4770 1-7925
1.80 0-0000 1-0385 0-4716 2:0168
2:00 0-0000 0-8527 0-4562 2-3406
22 0-0000 0-7282 0-4361 2:6932
25 0-0000 0-6059 0-4052 3-2768

L* 1 J K (d* (w,, w,)]a3)
HD
0 0-0000 4-9777 4-1792 1-0000
01 —0-0006 3-3422 1-3521 1-1536
0-2 —0-0025 2-3813 0-5299 1-3139
03 —0-0056 1-7859 0-2851 1-4801
04 —0-0100 1-4009 0-2132 1-6513
0-50 —0-0157 1-1441 0-1927 1-8265
0-60 —0-0226 0-9700 0-1867 2:0045
0-70 —0-0308 0-8527 0-1836 2:1843
0-80 —0-0403 0-7776 0-1811 2-3648
HSP
0 0-0000 4-9777 4-1792 1-0000
01 —0-:0006 33305 1-3454 1-1554
0-2 —0-0023 2-3694 0-5306 1-3168
03 —0-0050 1-7693 0-2922 1-4857
0-4 —0-0082 1-3763 0-2268 1-6621
0-5 —0-0117 1-1083 0-2130 1-8460
06 —0-0151 0-9190 0-2128 2:0374
07 —00182 0-7810 0-2149 2-2363
0-8118 —0-0211 0-6671 0-2168 2:4675
09 —0-0230 0-5982 02174 2-6566
1 —0-0247 0-5360 0-2171 2-8780

HGO fluid, and it is small but different from zero for the HD and the HSP fluids. This
is in agreement with the values of the 4,, term from simulations for the HGOQ [18]
and for the HDQ [13] fluids. For k = 1 (HGO) or L* = 0 (HD and HSP), the hard
body reduces to a hard sphere. For hard spheres, I, J, K can be obtained analytically.
Their exact values [25) are I = 0. J = 224/45 = 49778, K = 1024/245 = 4-1796,
which compare well with the values obtained numerically I = 0-0000, J = 4-9777,
K = 4:1792 and presented in table 1. We have fitted 7, J, K and {(d*(w,, w,)/a}) as
a function of the molecular anisotropy to empirical formulae for the HGO, HD and
HSP models. The fitting expressions are given in the appendix and allow us to apply
the theory to anisotropies differing from those presented in table 1.
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The evaluation of the function M(shape, «,, a,) of equation (31) is numerically
difficult. It is analytical for hard spheres but not for other geometries. For hard
spheres it is given by [25]

M(sphere, «,, a,) = 1/450 {—27 + 220 cosa, cosa, cOs o
+ 490 cos2a, cos2a, cos2a; + 175 [cos 2(a, — o)
+ cos2(x, — a3) + cos2(a, — a3)]} (50)

Following the procedure of 18], we shall obtain an estimate of the 45, term for
nonspherical models from the value of 4. of a corresponding hard sphere of the same
volume at the same packing fraction. The final expression is

AINKT = 3fF* [ MGsphere, 2, 2)et, 3, xis: %) s (1)
A
F = (V,/03)/(r/6) (52)
z(n) = JM(Sphere, oy, 0h)e(1], Xip, X3, Xp3) dxppdx dxg, (53)
A

The evaluation of a(n), b(n), c(n) of equations (32-34) and of z(#) of equation (53)
has been perform using Verlet—Weiss parametrization [26] of gys(r/d) and Simpson’s
integration rule. We have fitted them to empirical expressions which are given in the
appendix.

To obtain the pressure of the hard quadrupolar fluid it is necessary to use an
equation of state EOS (Z) of the hard body (see equation (41)). For HGO, several
EOS have been proposed recently [27, 28]. For HSP we shall use [29, 30]

_ 2 2 _ 3
I + Ba — 2)y + B 30 + 1)y o6 — Sy HSP

ZH = (1 — ’1)3 (54)
o = 2+ L*)(1 + L*/(3L* + 2) HSP (55)
and for HD we shall use [30, 31]
Z, - 1 + Bax — 2y + (32 -330: + Dy — on’ HD (56)
(I —mn
« = 2+ LYHQA + L¥QGL* + 2 — L¥*)HD 57

Thermodynamic integration of equations (54-57) allows us to determine the free
energy energy A, of the hard body (see equations (10) and (40)).

The HGOQ fluid and the HDQ have been studied by simulation [13, 14, 18]. The
proposed perturbation scheme can therefore be tested against simulation data. How-
ever, there are no simulation data of the HSPQ fluid. We have carried out some MC
runs for this model. The main characteristics of the simulations are similar to the ones
described in [18] and [32].

We used the standard procedure of Metropolis et al. [33]. In all the simulations we
used 256 particles in a cubic box with periodic boundary conditions. We started all
the runs from an aN, FCC lattice. A run consists of an initial period of 3000-5000
trial moves per particle to reach equilibrium followed by a period of 6000-10 000 trial
moves per particle to obtain the averages. Every trial move consists of an attempt to
change the position of the centre of mass and the orientation of the molecule. The
acceptance ratio was kept in the range 25-55%. An order parameter [34] was evaluated
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Table 2. MC results obtained for HSPQ fluid. 0** = Q%/(kTo;).

Model L* n* o* U/NkT zZ

HSPQ 0-3 0-55 0 0 8-04
HSPQ 03 0-55 0-277 —0-084 799
HSPQ 03 0-55 0-555 —0-323 7-62
HSPQ 03 0-55 1-111 —1-166 6-90
HSPQ 03 0-55 1-666 —-2-350 575
HSPQ 0-8118 0-36 0 0 869
HSPQ 0-8118 0-36 0-454 —0-074 8-68
HSPQ 0-8118 0-36 0-909 —0-260 8-47
HSPQ 0-8118 0-36 1-818 —0-846 779
HSPQ 0-8118 0-36 2-727 —1-688 698

during the runs to be sure that the system was orientationally equilibrated. We neglect
the contribution of the quadrupole to the long range correction. Similar treatment has
been used in references {13, 14, 18, 35]. The quadrupole interaction was cut at a
distance of Bf2 — [ where B is the length of the side of the box.

The internal energy and pressure of the HSPQ fluid were obtained from

U = U° (58)
U = Zlg ug(i, j) (59)
Z = 1+ 23nng,(p = OKr - ud,_ + Z° (60)

where g,.(p) is the surface to surface distribution function [30] and the meaning of g
is illustrated in figure 1(b). The values at contact are obtained by extrapolation to
p = 0 of the corresponding functions.

Aq was obtained from the simulations by using the squared quadrupole as the
coupling parameter within Kirkwood’s formalism [36]

QZ
A = AQ = Q) - AQ = 0) — f UYQ*y dQ-. 62)

We followed the procedure of Patey et al. [25] and fitted the MC values of UY/NkT
to the expression

*4 *2 2

so that the parameters 7 and s have to be determined. Substituting equation (63) in
equation (62) one gets

UNKT =

Q tQ*4 64)
AYNKT = —=——n".
/ T+ 50 (
We have studied the system L* = 0-3 at the state point n* = 0-55 with values of
0* from 0 to 1-666 and the system L* = 0-8118 at the state point n* = 0-36 with
values of Q*? from 0 to 2-727. Table 2 shows the MC results. In table 3 we show the
values of 7 and s so that 4, can be determined (see equation (64)).
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Table 3. Coefficients ¢ and s in equations (63) and (64) obtained from the MC data of table 2.

Model L* n* 1 s
HSPQ 0-30 0-55 —0-5921 0-1542
HSPQ 0-8118 0-36 —0-1921 0-1599

4. Results and discussion

It was proved that the perturbation scheme of section 2 gives satisfactory results
for the HGOQ fluid. In this section we shall show that the extension of the theory to
HDQ and HSPQ outlined in section 2 is able to describe the thermodynamic
behaviour of these fluids.

Table 4 shows a comparison between 4%, the compressibility factor and internal
energy for HDQ, as obtained from MC and from the theory of this work. We also
show the results from Lombardero ef al. [14], who used a RAM theory to get the
structure of the hard dumbbell fluid. For A% and Z, equation (40) works much better
than equation (10) but, for the internal energy, equation (10) seems to be superior. 4%,
Z and U obtained from equation (40) are smaller than those obtained from equation
(10). Equation (40) is able to describe A? and Z very well until high values of the
quadrupole, such as X* = 2-5. For the highest value of the quadrupole, X* = 3,

- equation (40) fails. Equation (10) yields good agreement for internal energy for all the

values of the quadrupole. The results of the Padé approximant (equation (40)) are
comparable with those obtained from RAM theory. This holds for A%, Z and U. This
is important because the perturbation theory proposed in this work proves to be
computationally less demanding than the RAM theory.

Tabled. A% Zand U for quadrupolar hard dumbbells as obtained from MC [14], from RAM
theory [14] and from the proposed perturbation scheme of this work. The elongation is
L* = 0-60 and the density n* = 0-4263.

X* MC [14] Eqn (10) Eqn (40) RAM [14]
AYNKT

0-5 —0-15 —012 —012 —0-15
1-0 —048 —0-42 —043 —0-50
1-5 —0-96 —0-89 —0-90 —1-00
2:0 —1-57 — 149 —1:52 —1-66
25 —229 -221 —2-28 —2:42
3-00 —3-10 —302 —316 -329
4

0-5 7:92 793 793 7-82
1-0 7-24 7-48 7-41 7-25
1-5 649 686 662 650
2:0 5-51 621 5-60 561
25 4-37 561 437 4-63
30 344 517 298 3-59
U/NkT

0-5 —0-24 —022 —0-22 —0-255
1-0 —0-82 -0-77 —078 —0-867
15 —1-66 —1-61 —165 —1-751
2:0 —2:64 —2:66 —277 — 2844
25 —3-86 —3-85 —412 —4-100

30 - 509 —511 —5:66 — 5484
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Table 5. 49, Z and U for quadrupolar hard spherocylinder with L* = 0-8118 and n* = 0-36
as obtained from MC and from the proposed perturbation scheme of this work.

o* MC Eqn (10) Eqn (40)
AYNkT
0-454 —0-04 —004 —0-04
0-909 —0-14 —-013 —0-13
1-818 —0-49 - 045 —0-46
2-727 -099 —~092 —-095
Z
0 8-69 8-67 8-67
0-454 8-68 8-61 861
0-909 8-47 8-45 8-45
1-818 779 7-94 7-88
2:727 6-98 726 7-04
U/NkT
0-454 —0-074 —0-066 —0-066
0-909 —0-260 —-0-232 —-0-234
1-818 —0-846 —-0-799 —0-823
2:727 — 1-688 —1-577 —1-687

In table 5 we show the results for HSPQ at L* = 0-8118. The agreement between
MC and theoretical results is again very good. Also, the Padé approximant (40) works
better than equation (10) at high values of the quadrupole moment, where there are
appreciable differences between the two methods. This holds for 42, Z and U. The
quality of the results is very good, taking into account that the anisotropy of the
model is rather high and corresponds to a CO, like elongation. The density studied
corresponds to a packing fraction of about n = 0-418, which is a typical liquid
density. The values of Q*? for CO, are ranged from 2-5 (critical temperature) to 3-4
(triple point temperature), so that the results of table 5 can be considered as promis-
ing. We have investigated the effect of the quadrupole on the structure for the HSPQ
with L* = 0-8118. In figure 2 the surface to surface distribution function [30] g,.(p)
as obtained from MC simulations for a hard spherocylinder and for a hard sphero-
cylinder plus quadrupole is shown. At large and medium distances, the effect of the
quadrupole is small. At short distances the presence of the quadrupole increases
the value at contact of g,,(p). This accords with the fact that the contact values of the
radial distribution function of quadrupolar hard spheres are larger than those of hard
spheres. Let us recall that, for hard spheres, g,,(p) reduces to the radial distribution
function. However, the effect of the quadrupole on g,,(p) seems to be less pronounced
for hard spherocylinders than for hard spheres. In figure 3 we show the first coef-
ficients g, (r) of the expansion of g(r, w,, ®,) in spherical harmonics Y, ()

glr, 0, @) = 4n ”z &im(r) Yim(@)) Y)_ () (65)

for hard spherocylinders with L* = 0-8118 when Q* = 0 and Q** = 2-727. The
presence of the quadrupole strongly modifies the radial distribution function (g (r))
and the g,y (r) coefficient. The changes are similar to those found for hard dumbbells
with quadrupole [13].

In table 6 we show the results for HSPQ with L* = 0-30. For the pressure,
equation (40) works better than equation (10). However, for 42 and U, equation (10)
works slightly better than equation (40). The agreement is again good.
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Figure 2. The surface to surface distribution function [30] g,,(p) for hard spherocylinders
with L* = 0-8118 and n* = 0-36. Q*? = 0 (solid line) and Q** = 2-727 (dashed line).

Table 6. A%, Z and U for quadrupolar hard spherocylinder with L* = 0-30 as obtained from
MC and from the proposed perturbation scheme of this work.

0 MC Eqn (10) Eqn (40)
AYNKT
0-277 —0-04 —-0-04 —0-04
0-555 —0-17 -0-17 —-0-17
1-110 —062 —0-65 —0-65
1-666 —1-31 —1-39 — 141
Z
0-00 8-04 7-89 7-89
0-277 799 7-81 7-81
0-555 7-62 7-61 7-59
1-110 6-90 6-96 676
1-666 575 621 5-51
o* MC Eqn (10) Eqn (40)
U/NkT
0277 —0-084 —0-086 —0-086
0-555 —0-323 —-0-323 —0-330
1-110 —1-166 —1-226 —1-243

1-666 —2:350 —2-562 —2:642
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Figure 3. Coefficients of the expansion in spherical harmonics of the pair correlation function
for hard spherocylinders with L* = 0-8118 and n* = 0-36. 0** = 0 (solid line) and

Q** = 2:727 (dashed line): (@) radial distribution function which is given by the g0 (r)
coefficient; (b) gq0(r) coefficient.

Let us remark that in all cases the values of A4,, were negative while those of 4;,
and A5 were positive. That guarantees that the second term of equation (40) remain
finite. The ratio A;,/A,5 is not much affected by the value of the quadrupole for a
given geometry at a fixed density. However, this ratio depends strongly on the
geometry, ranging from large values in the case of very anisotropic models to values
slightly smaller than unity for spherical or quasispherical models. To neglect the A4,
term provokes a decrease of 4, and this conclusion holds for equation (10) and for
the Padé approximant (40). The values of A2 obtained from equation (40) are always
smaller than those from equation (10) as follows from the different sign of the 4, and
the A4; (434 and Asp) perturbation terms.

Until now we have shown results for anisotropic quadrupolar models. If we set
L* = 0 then we get results for quadrupolar hard spheres. To illustrate the quality of
the results we show in table 7 4%, Z and U for quadrupolar hard spheres. For Z and



00: 03 5 January 2011

Downl oaded At:

440 C. Vega

Table 7. 4% Z and U for quadrupolar hard spherocylinder with L* = 0-8344 as obtained
from MC and from the proposed perturbation scheme of this work.

o MC [25] Eqn (10) Eqn (40)
AYNKT
02 —-0-09 —0-09 —0-09
0-5882 —0-71 —0-71 —-0-73
0-8333 —1-33 -1-29 —1-38
1-25 —-270 —-2:40 —2-81
1-666 —4-32 -337 —4-58
Z
02 877 8-48
0-5882 7-55 7-41
0-8333 679 6-40
1-25 4-89 4-30
1-666 2-86 1-90
U/NKT
02 —0-18 -0-18
0-5882 —-1-30 -1-35
0-8333 —2-33 —2:47
1-25 —4-57 —4-84
1-666 —6:99 —17-60

U we show the results of the Padé approximant (equation (40)) only because equation
(10) fails completely in that case. The agreement between MC results and those of
equation (40) is again good. This is not surprising since when L* = 0 the theoretical
treatment presented in this work can be reduced to the treatment given by Patey et al.
[25] of quadrupolar hard spheres. Therefore, the proposed perturbation approach
gives good results for spherical and highly nonspherical hard quadrupolar molecules,
and can be considered as a natural extension of the theoretical treatment of Patey et al.
to hard nonspherical quadrupolar systems.

5. Conclusion

We have shown how the perturbation scheme proposed by Boublik [17, 18] for the
HGOQ can be extended to other hard quadrupolar fluids as HDQ and HSPQ with
good results, given the simplicity of the treatment. The extension to dipolar fluids is
trivial [17]. The theory developed in section 2 can also be applied to any hard polar
fluid. The only numerical problem is the evaluation of the contact diameter d(w,, w-)
for every relative orientation and for every molecular geometry. We have shown that,
with a very simple theoretical treatment, it is possible to describe the main features
of the contribution of the quadrupole to the Helmholtz free energy, to the pressure
and to the internal energy in a hard quadrupolar fluid. Overall, the quality of the
results can be considered as good. The main advantage of the formalism is to combine
reasonable accuracy with a very high simple numerical treatment.
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DGICYT (Direccion General de Investigacion Cientifica y Técnica). Helpful dis-
cussions with Dr S. Lago, Professor T. Boublik and Professor K. E. Gubbins are
gratefully acknowledged.
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Appendix
The functions a(n), b(n), c(n) and z(n) (equations (32), (33), (34) and (53), respect-
ively, have been evaluated by using the Verlet-Weis parametrization of gus(r/d} and
Simpson’s integration rule. We have fitted a(y), b(n), c(n), z(n) to the empirical
expressions

a(m) = 049204 + 0-50876n° + 0-12026n (A1)

b(y) = 0-14154 exp (2:00393n) (A2)

on) = 0-08283 + 0-19477y + 0-1086577 + 0-63337n’ (A3)
2(n) = 0-01555 exp (4-3158n) (A4)

We have also fitted the function K(shape), J(shape), K(shape) and {d’(w,, w,)/a}>
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from table 1 for the HGO, HD and HSP fluid to empirical expressions. That allows
the interpolation the values of I, J, K and {d*(w,, ,)/d3) to anisotropies not
included in table 1. In the case of the HGO model, the function {d*(w,, w,)/os can
be obtained analytically [37] and is given in equation (A8), where y stands for
1= (¢ = DI + 1),

HGO
Iy = 0 (AS)
J(x) = 150976 — 449-321k + 576-401x> — 400-301x’ + 157-387«*
— 33-0521x° + 2-88737x" (A6)
K(x) = exp (104879 — 278:632x + 291-025k> — 150-42x* + 38-48«*

— 3-90058") (A7)
arcsin (y)
(o, @)]oy) = K[2 <1 + W) (A3)
HD
I(L*) = —545473 x 107% + 3-25328 x 107*L* — 6:33442 x 107°L** (A9)

J(L*) = 497695 — 20-9293L* + 53-9763L** — 85-5252L* + 74-6615L*
— 26-8366L*% (A10)
K(L*) = exp (1443041 — 11-2838L* — 6-9547L** + 79-9358L* — 118-363L**
+ 54-6096L*°) (All)
(d* (o, wy)agy = 100007 + 1-49591L* + 0-399339L** — 0-170959L** (A12)

HSP
I(L*) = —591503 x 107° + 3-25087 x 107°L* — 9:11933 x 107 2L*?
+ 880672 x 107°L** — 2:48054 x 107 L** (A13)

J(L*) = 497403 — 20-6841L* + 50-4076L*> — 71-9131L*} + 54-1431L*
— 16:3942L%° (A14)
K(L*) = exp (14317 — 11-0522L* — 12:5528L*> + 117-028L*} — 213-022L**
+ 162:835L* — 461821 L*%) (A15)
(¥ (w,, wy)]ay> = 100063 + 1-5048L* + 0-372372L*. (A16)

Equations (A1-A16) along with the proposed perturbation theory allow the
determination of the thermodynamic properties of hard quadrupolar fluids.



