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In this work, the melting point and the phase diagram of methanol is determined via computer
simulations using the OPLS model. The three different solid structures that are found experimentally
were considered. By computing the free energies of both the fluid phase and the three different solid
structures �� ,� ,��, the initial solid-solid and fluid-solid coexistence points were determined. By
performing Gibbs–Duhem integration, the complete coexistence lines were evaluated. In this way,
it was possible to compute, for the first time, the complete phase diagram for a potential model of
methanol. It is found that the optimized potential model for liquid simulations �OPLS� provides
reasonable predictions for the densities of the three solid polymorphs, although they tend to be
somewhat low when compared with the experiment. Overall the model provides a qualitatively
correct description of the phase diagram of methanol. The � solid, which is thermodynamically
stable in the experimental phase diagram of methanol, is found to be metastable in the phase
diagram of the model. The � phase is stable at low pressures and the � phase is stable at high
pressures, in agreement with experiment. Thus, the model is able to predict the existence of the �
solid at high pressure. From free energy calculations we found that the melting point of the model
at room pressure is 215 K. That was further confirmed by direct coexistence simulations. Thus, the
model presents a melting point about 40 K above the experimental value of 175 K. Thus the OPLS
model provides a reasonable description of the phase diagram of methanol, but it could probably be
modified to improve the phase diagram predictions. © 2010 American Institute of Physics.
�doi:10.1063/1.3328667�

I. INTRODUCTION

The current development of algorithms and computer
power allows one to perform simulations of almost any sys-
tem from simple fluids such as argon to systems as complex
as proteins in solution.1 The results obtained by computer
simulation describe the properties of the proposed Hamil-
tonian describing the interaction between molecules. Unfor-
tunately, it happens quite often that the simulation results do
not reproduce quantitatively �sometimes even qualitatively�,
the experimental results. The reason of this is that the poten-
tial model used may not describe properly the true potential
energy surface �PES� of the system considered. The interac-
tion potential between molecules can be obtained in principle
by two different approaches. The first is to use first principles
calculations to obtain the PES. This route has been quite
successful for simple fluids and small molecules and there is
no doubt that it will be used more and more in the future.2–5

However, even for a molecule as relatively simple as water,
the success of first principles calculations to describe con-
densed matter properties quantitatively is limited.3,4 The sec-
ond approach to obtain a potential interaction between mol-
ecules is to propose a functional form for the interaction and
obtain some of the parameters of the potential by forcing the
model to reproduce experimental properties,6,7 such as the
experimental density and the vaporization enthalpy at room

temperature. This second approach has been relatively suc-
cessful in providing a first estimate for the interaction poten-
tial. However, quite often, one is interested in studying a
system far from room temperature and pressure conditions
and there is no guarantee that the performance of the model
will be good for these conditions, far from where the param-
eters were obtained. A possible route of improving the per-
formance is to increase the number of parameters of the
model and force the model to reproduce experimental prop-
erties in a broader range of temperatures and pressures. The
possibility of directly determining the vapor-liquid equilibria
of a potential model, by using the Gibbs ensemble simula-
tions, first proposed by Panagiotopoulos8 is particularly in-
teresting. In fact, it seems a good idea to obtain the param-
eters of the potential model by forcing the model to
reproduce experimental values of the vapor pressure curve,
coexistence properties, and critical conditions. For instance,
for methanol several potential models has been proposed in
this way.9–12 The lesson is that phase equilibria can help to
determine the parameters of potential models. However,
vapor-liquid equilibria is not the only phase equilibria which
a pure fluid exhibits. A pure compound will also present
fluid-solid and quite often solid-solid equilibria. Although
fluid-solid and solid-solid equilibria can be obtained via
computer simulations they are not computed as often. There
is no technical reason for this since free energy calculations
can be performed for solid phases using the Einstein crystala�Electronic mail: cvega@quim.ucm.es.
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methodology, proposed by Frenkel and Ladd,13 allowing
fluid-solid equilibria to be obtained. Besides this, Gibbs–
Duhem integration14 allows one to determine the complete
coexistence curve. The study of the fluid-solid equilibria can
be of interest per se, for instance, to design separation pro-
cesses or to study solid nucleation15 �the equilibrium condi-
tions of the model should be known in advance before at-
tempting a nucleation study�, phase diagram and polymorph
predictions. Besides, the study of fluid-solid and solid-solid
equilibria can be quite useful to improve the current potential
models. The phase diagram of a molecule is a macroscopic
signature of the microscopic interaction potential. Therefore,
one could use this information to improve current potential
models.

We have recently shown, for water, how phase diagram
calculations can help in improving the potential model. In
fact, after computing the phase diagram for two popular wa-
ter models,16 TIP4P and SPC/E, it was found that one of
them �TIP4P� provided a much better description of the
phase diagram. Both models yielded rather low melting
points.17 For this reason, it was clear that the TIP4P could be
slightly modified to still predict a correct phase diagram but
improve the description of the melting point. In this way, we
proposed a new model,18 TIP4P/2005 with the same geom-
etry as TIP4P, but with a significant improvement in the
phase diagram prediction, melting point, and prediction of
the density maximum of water. Quite recently we have com-
pared the performance of this model to other potential mod-
els for ten different properties and found that the model does
indeed represent an improvement over the previous
potentials.19 Thus, TIP4P/2005 is an example �probably one
of the first� of a potential model inspired by phase diagram
calculations involving solid phases. We believe that a similar
approach can be used for other molecules. Obviously, before
presenting a new model, it is necessary to compute the phase
diagram for at least a potential model.

After water, methanol is probably one of the most inter-
esting molecules to consider. It is often used as a pressure
transmitting medium in ultrahigh pressure measurements.20

Also it is commonly used as cosolvent to stabilize nanopar-
ticles at interfaces21 and in natural gas pipelines to avoid the
formation of methane hydrates.22 It is relatively simple and
common, its physics is dominated by hydrogen bonding, and
it has the interesting feature �not present in water� of forming
a glass phase rather easily. In fact, the formation of the glass
phase of methanol has been studied by computer simulation
in a number of cases.23–25 Somewhat surprisingly in these
studies of glass formation, the melting point of the model
was unknown. Another interesting feature of methanol is its
amphiphilic character with a polar group and an apolar head,
so it can be considered to be one of the simplest amphiphilic
molecules. The study of methanol-water mixtures26,27 and in
particular, of the excess properties,28,29 is also of interest.
Several potential models have been proposed for methanol,
but probably the most popular one is that proposed by
Jorgensen,30 denoted as optimized potential model for liquid
simulations �OPLS�. In this work, we compute the melting
point of the OPLS model of methanol and obtain its phase
diagram. The ability of the model to describe the properties

of the different solid phases will also be considered. The
phase diagram of methanol is not as complex as that of wa-
ter, but still it exhibits three different solid structures, de-
noted as �, �, and �. As it will be shown, the model predicts
a rather high melting temperature and melting enthalpy when
compared with the experimental value. This in itself indi-
cates that there is probably room for improvement. Our aim
here is twofold. First, to provide the melting point of the
model for those researchers who use this model when de-
scribing methanol. The second goal is more general, since it
intends to illustrate that melting points and phase diagram
calculations can now be performed for molecular fluids.31 In
our view, such phase diagram calculations could be per-
formed for other molecules and the information obtained
could be useful in provided revised version of current poten-
tial models.

II. METHODOLOGY

In this work we shall use the OPLS model of methanol.30

In this model, one Lennard-Jones �LJ� center is located on
the position of the carbon atom �to represent the CH3 group�.
Another LJ is located on the position of the oxygen atom.
Three charges are located on the position of the C, O, and H
atoms. Thus, the hydrogen atom is represented by a charge
without any LJ center associated �as it is done in water mod-
els�. The dipole moment of the model is of 2.20 D, compared
to the dipole moment of the molecule in the gas phase which
amounts to 1.70 D. To compute the fluid-solid equilibria of
methanol with the OPLS model, we consider three possible
solid structures �, �, and �, which are found in the experi-
mental phase diagram. The space groups are �-P212121,

�-Cmcm, and �-P1̄, respectively, the unit cell being ortho-
rhombic in the first two structures and triclinic in the last
one. These features have been determined experimentally
from diffraction studies. The initial configuration used in the
simulations was obtained from the experimental data �after
adjusting slightly the bond lengths and angles to the values
of the OPLS model�.

The equation of state �EOS� of the solid was obtained
from anisotropic NpT Monte Carlo �MC� simulations. In an-
isotropic NpT simulations, both the volume of the system
and the shape of the simulation box fluctuate along the
run.32,33 The use of the anisotropic version of the NpT en-
semble is absolutely required to simulate solid phases. It
guarantees that the shape of the simulation box �and there-
fore that of the unit cell of the solid� is the equilibrium one.
It also guarantees that the solid is under hydrostatic pressure
and free of stress �the pressure tensor will then be diagonal
with the three components being identical to the thermody-
namic pressure�. For the solid phases �, �, and �, we used
300, 320, and 270 molecules, respectively. The EOS of the
fluid was obtained from isotropic NpT simulations using a
cubic box containing 300 molecules. We typically used
20 000 cycles for equilibration followed by about 40 000
cycles to obtain thermodynamic averages for � and � phases
and 60 000 cycles in both cases for the � phase �we defined
a cycle as a trial move per particle plus an attempt to change
the volume of the system�.
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In our MC simulations, the LJ site-site interactions were
truncated at 10 Å �except for the � solid for which we trun-
cated at 9.0 Å�. Standard long range corrections to the LJ
energy were added. Ewald summation technique has been
employed for the calculation of the long range electrostatic
forces. Ewald sums are especially convenient to deal with
solid phases. The real space contribution of the Ewald sum
was truncated at the same values of the LJ interaction. The
screening parameter and the number of vectors of reciprocal
space considered had to be carefully selected for each crystal
phase.1,34 The number of molecules for each solid phase was
chosen so as to fit at least twice the cutoff distance in each
direction.

To compute phase equilibria, besides the EOS �which is
obtained from NpT simulations� the evaluation of the chemi-
cal potential is required. Therefore free energy calculations
are needed. Let us describe briefly how the free energy was
obtained for the fluid and for the solid phases. The free en-
ergy of the methanol in the liquid phase was obtained by
thermodynamic integration. Thermodynamic integration al-
lows one to obtain the free energy at any thermodynamic
state provided that the free energy at a reference state is
known and that no phase transition is crossed along the in-
tegration. Formulae to describe the change in the residual
part of the free energy change along isotherms, isobars, and
isochores have been given elsewhere.31 We used 1 bar and
298 K as the reference state for which the density of the
OPLS model is 0.762 g /cm3. To obtain the free energy at
this reference state, we started from an ideal gas at zero
pressure and T=800 K �a supercritical temperature�, and in-
tegrate along the isotherm to the reference density. Then we
integrate along the isochore up to the reference temperature
of 298 K. In this way, no phase transition was crossed. Once
the residual free energy of the liquid is obtained at a certain
thermodynamic state, the total free energy is obtained by
adding the ideal term given by

A��,T�
NkBT

= ln���3� − 1. �1�

In this calculation the rotational, vibrational, and electronic
contributions to the partition function were set to one �they
are certainly not one, but its exact value does not affect phase
equilibria since for a rigid molecule treated by classical me-
chanics these contributions will be identical for the two co-
existence phases�. In this work, we shall assign the thermal
de Broglie wavelength to be �=1 Å both for the liquid and
the solid phases. This is an arbitrary choice but again it does
not affect phase equilibria �see Ref. 31 for further details�.

Let us now describe briefly the procedure used to com-
pute the free energy of the solid phase. We shall use the
Einstein molecule35 as extended to rigid nonlinear molecules
in Refs. 31 and 36. The Einstein molecule, is a small modi-
fication of the well known Einstein crystal method proposed
by Frenkel and Ladd.13 In Einstein molecule method, the
reference point of one of the molecules of the system re-
mains fixed instead of fixing the location of the center of
mass. Another interesting procedure to obtain free energies
of solids has been proposed recently by Radu et al.37 We
have shown recently that the Einstein molecule method pro-

vides free energies identical to those of the Einstein crystal
method. Since all details about the implementation of the
Einstein molecule can be found elsewhere,31,36 we give here
just a brief summary.

In the Einstein molecule approach, the free energy of a
given solid is estimated by designing a path from the ideal
Einstein crystal to the real solid following the next three
steps procedure. In the first step, the difference in free energy
between the ideal Einstein crystal and the ideal Einstein mol-
ecule, which is equal to the former except that molecule 1 is
fixed, is evaluated. This contribution is computed analyti-
cally and takes the value of kBT ln�V /�3�. In the second step,
the difference between the free energy of the ideal
Einstein molecule and the real solid with molecule 1 fixed is
calculated. Finally, in the last step, the constraint over mol-
ecule 1 in the real solid is removed; the change in free energy
in this step is −kBT ln�V /�3�. Since contributions in the first
and three step cancels out, it is only necessary to evaluate the
free energy of the ideal Einstein molecule and its change in a
path connecting it with the real solid with molecule 1 fixed.

In the ideal Einstein molecule, the molecules �without
any intermolecular interactions� vibrate around a harmonic
external field forcing the molecules to be around the equilib-
rium positions and orientations. The calculation of the free
energy of the ideal Einstein molecule AEin-mol-id �here in after
A0� is easily obtained31,36 once the translational and the ori-
entational contributions are defined for the specific model.
For OPLS methanol, the external field has the following con-
tributions. The translational term �UEin-mol-id,t� is given by

UEin-mol-id,t = �
i=2

N

��E�ri − rio�2� , �2�

where rio is the position of the reference point of molecule i
in the reference Einstein solid, while ri represents its position
in the current configuration. As can be seen in Eq. �2�, all the
particles except particle 1 �which is fixed� are attached to
their lattice positions by harmonic springs. We used the oxy-
gen atom as the reference point. An orientational field
�UEin,or� that forces the particles to adopt the right orientation
is also included �this field acts over all the particles of the
system, including particle 1�. The orientational contribution
is given by

UEin,or = �
i=1

N ��E,a��a,i

�
�2

+ �E,b��b,i

�
�2	 . �3�

The angles �a,i and �b,i are defined in terms of two unit
vectors, a� and b� , that specify the orientation of the molecule.
�a,i is the angle formed by the unit vector a� of molecule i in
a given configuration �a� i� and the unit vector �a� io� of that
molecule in the reference lattice. The angle �b,i is defined
analogously but with vector b� . The definition of vectors a�
and b� used here for a rigid triatomic molecule as methanol is
similar to that used previously for another triatomic molecule
�water�.31 Vector b� goes along the C–O–H bisector �it was
calculated using two unit vectors, one in the OH direction
and the other in the OC direction�, and vector a� is perpen-
dicular to b� and located in the plane of the molecule �that
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formed by the C, O, and H atoms�. The reference lattice, i.e.,
the values of rio, �a� io�, and �b� io�, were obtained from the final
configuration in an annealing run which consists in consecu-
tive NVT simulations of the real solid �with molecule 1
fixed� decreasing the temperature slowly, while keeping the
shape of the simulation box constant.

Once the free energy of the ideal Einstein molecule A0 is
evaluated, the free energy of the real solid Asol is calculated
following the next expression:

Asol = A0 + �A1 + �A2, �4�

where �A1+�A2 represents the change in free energy be-
tween the ideal Einstein molecule and the real solid with
molecule 1 fixed. The first term �A1 is the change of free
energy between the ideal Einstein molecule and the interact-
ing Einstein molecule, in which both the springs and the
intermolecular potential are present with molecule 1 fixed.
This quantity is obtained in a perturbative approach

�A1 = Ulattice − kBT ln
exp�− ��Usol − Ulattice���Ein-mol-id.

�5�

where Usol is the energy of the solid calculated with the
intermolecular potential and Ulattice is the energy of the fro-
zen lattice, i.e., the energy of the reference lattice. The brack-
ets with the subscript Ein-mol-id indicates that the average is
evaluated by sampling configurations in the ideal Einstein
molecule �only the external field is present� within the NVT
ensemble. The second quantity �A2 represents the change in
free energy between the interacting Einstein molecule and
the real solid with molecule 1 fixed. This calculation is made
by slowly turning off the springs, according to the following
expression:

U�	� = 	Usol + �1 − 	��UEin-mol-id + Usol� , �6�

where 	 is a parameter that takes values between 0 and 1.
The free energy change corresponding to this transformation
can be estimated by numerically evaluating the following
integral:

�A2 = − �
0

�E 
UEin-mol-id�N,V,T,	

�E
d�	�E� . �7�

This integral is usually performed by using a Gauss–
Legendre quadrature formula. For that purpose, the integrand
of this expression must be evaluated at several values of
	�E, which can be done by performing NVT MC simulations
for those values of the coupling parameter �in our case, we
use ten values of 	�.

The shape of the box is the same for all the NVT simu-
lations of Einstein molecule method used for the evaluation
of the free energy of a real solid at a specific thermodynamic
state. This was the equilibrium one obtained from a NpT
anisotropic simulation of the real solid �no particle is fixed�
at the specific thermodynamic state. Length of the runs used
in the free energy calculations were similar to those used
in the NpT runs. In this work, we used �E / �kBT /Å2�
=�E,a / �kBT�=�E,b / �kBT�=25 000. The value of �E must be
chosen not too small because in this case extremely long
runs would be required to evaluate �A1 accurately, and not

too high since then many values of 	�E should be evaluated
to determine the integral appearing in Eq. �7� accurately. A
common recipe �used in this work� is to set this value such as
the difference between �A1 and Ulattice would be around
0.03NkT.

Once the Helmholtz free energy of the solid A is ob-
tained for a certain reference state, the free energy for other
states can be obtained through thermodynamic integration.
The chemical potential 
 is obtained as


/kT = �G/NkT� = �A/NkT� + �pV/�NkT�� , �8�

so that once the EOS and the Helmholtz free energy are
known, then it is straightforward to obtain the chemical po-
tential. Coexistence between two phases is obtained from the
condition of identical chemical potential at a certain pressure
and temperature. It is worth noting that the free energies
computed for the fluid and solid phases correspond to that of
the model under consideration �OPLS in this case�. To evalu-
ate its free energy the Hamiltonian is changed from the
model of interest to that of a reference system, but the com-
puted free energies correspond to those of the potential under
consideration.

Once an initial coexistence point between two phases is
known, the rest of the coexistence curve can be obtained by
performing Gibbs–Duhem integration. The Gibbs–Duhem
integration, first proposed by Kofke in 1993 is a numerical
integration of the Clapeyron equation.14,38,39 The Clapeyron
equation between two coexistence phases �labeled as I and
II� can be written as

dp

dT
=

sII − sI

vII − vI
=

hII − hI

T�vII − vI�
, �9�

where we use lower case for thermodynamic properties per
mole �or per particle�. Since the difference in enthalpy and
volume between two phases can be determined easily �at a
certain T and p� the equation can be integrated numerically.
When implementing the Gibbs–Duhem integration one ob-
tains the coexistence pressure for the selected temperatures
�the temperature acting as the independent variable�. This is
quite convenient when the coexistence line does not present
a large slope in the p−T plane. Some times it is more con-
venient to integrate the Clapeyron equation in a different
way: dT /dp=T�v /�h. We used a fourth order Runge–Kutta
algorithm to integrate the Clapeyron equation. In the Gibbs–
Duhem simulations anisotropic NpT simulations were used
for the solid phases, whereas isotropic NpT simulations were
used for the liquid.

Finally we have also computed fluid-solid equilibria by
direct coexistence. In this method, the fluid and the solid
phases are introduced into the simulation box, and simula-
tions are performed to achieve equilibrium between the two
coexistence phases.40–42 The method can be applied in sev-
eral ways. One of the possible implementations is to perform
simulations in the NpT ensemble, for several temperatures, at
a given fixed pressure. If the temperature is above the melt-
ing temperature the solid will melt �i.e., the total energy of
the system will increase� on the contrary, if the temperature
is below the melting temperature the fluid will freeze �i.e.,
the total energy will decrease�. In this way, it is possible to
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establish a lower and upper limit to the melting temperature.
We have performed direct coexistence simulations to deter-
mine the melting point of the � phase of methanol at room
pressure. A total number of 826 molecules were introduced
in a simulation box. About half of them occupying the left
hand side of the simulation box were in the solid state
�� solid� whereas the rest �in fluid phase� occupied the right
hand side of the simulation box. The approximate size of the
simulation box was of about 60�28�28 Å3. The x axis
was perpendicular to the fluid-solid interface. Simulations
were performed at the following temperatures 200, 220, 225,
230, and 240 K. Simulations typically lasted about 100 ns,
although longer runs were used for some selected tempera-
tures. To perform the direct coexistence simulations, molecu-
lar dynamics �MD� calculations were performed using
GROMACS �version 3.3�.43 The time step used in the simula-
tions was 2 fs. The temperature is kept constant by using a
Nose–Hoover44,45 thermostat with a relaxation time of 2 ps.
To keep the pressure constant, a Parrinello–Rahman
barostat46,47 was used. The relaxation time of the barostat
was 2 ps. The pressure of the barostat has been set to 1 bar in
all the simulations. The three sides of the simulations box
were allowed to change independently. The geometry of the
methanol molecules was enforced using constraints.48,49 The
LJ part of the potential was truncated at 10 Å and usual LJ
long range corrections were used. Ewald sums are used to
deal with the electrostatic interactions. The real part of the
Coulombic potential is truncated at 10 Å. The Fourier part of
the Ewald sums are evaluated by using the particle mesh
Ewald method of Essmann et al.50 The width of the mesh is
set equal to 1 Å and fourth-other interpolation is used. As
can be seen, the conditions used in the direct coexistence
simulations are similar to those used in the NpT and NVT
MC simulations used to determine the EOS and free energies
of the different phases of methanol.

III. RESULTS

The simulation results of the EOS for both the fluid
phase and solid phases of methanol are given in Tables I–III.
Densities obtained from simulation for the fluid phase at 298
K and 1 bar �0.762 g /cm3�, for � phase at 160 K and 1 bar
�0.994 g /cm3�, for � phase at 170 K and 1 bar
�0.991 g /cm3�, and for � phase at 298 K and 40 000 bar
�1.276 g /cm3� were compared to their experimental counter-
parts �0.7864 g /cm3�, �1.0147 g /cm3�, �0.9921 g /cm3�,
and �1.3526 g /cm3�. The experimental densities for � and �
phases were obtained from Torrie et al.,51 whereas for the �
phase it was taken from Allan et al.52 As can be seen, the
OPLS model provides good values for the orthorhombic
phases �especially for the � phase� and reasonable predic-
tions for the triclinic one. In all the cases, the model under-
estimates the experimental densities.

The free energy for methanol fluid at the reference state
A �298 K, 1 bar� was �12.18 �in NkT units� as calculated
from thermodynamic integration using the simulated EOS
along the 800 K isotherm and the 0.762 g /cm3 isochore. On
the other hand, the free energy A of �, �, and � solid phases
at the reference states are shown in Table IV. As was men-

tioned in Sec. II, before computing the free energy, the solid
structure must be relaxed to equilibrium. We shall report here
the unit cell dimensions at 100 K and 1 bar: The lengths of
the edges for the � phase were a=23.44 Å,
b=24.63 Å, and c=27.02 Å; for the � phase a=24.15 Å,
b=27.96 Å, and c=24.63 Å; and for the � phase
a=28.30 Å, b=22.25 Å, and c=22.60 Å, the angles of the

unit cell for the � phase are bĉ=89.68°, aĉ=100.85°, and

bâ=94.64°. As a check of consistency, we evaluated the free
energy for the � and � phases at 150 K and 1 bar and for the
� phase at 100 K and 40 000 bar by means of the thermody-
namic integration technique using the value at 100 K and 1
bar as reference point. For �, �, and � phases, we obtained
the values �in NkT units� of �29.55, �29.44, and �35.22,
respectively, which coincide extremely well with the values
of Table IV.

The chemical potential of the � and � solid phases was

TABLE I. Density � and residual internal energy U as a function of tem-
perature T and pressure p for methanol in the fluid phase. Only some rep-
resentative points were included. Uncertainties are given in parenthesis.

p/bar T/K �/�g /cm3� U/�kJ/mol�

1 150 0.897�3� �43.31�3�
1 175 0.880�2� �42.37�4�
1 200 0.861�4� �41.38�3�
1 225 0.835�3� �40.07�3�
1 250 0.809�1� �38.55�1�
1 275 0.784�3� �37.03�2�
1 298 0.762�2� �35.75�2�
1 800 0.000 488�1� �0.018�2�
10 800 0.00 484�1� �0.165�3�
50 800 0.0246�1� �0.833�5�
100 800 0.0505�4� �1.67�3�
250 800 0.133�1� �4.19�2�
500 800 0.260�1� �7.71�3�
1000 800 0.417�3� �11.77�8�
2000 800 0.559�2� �15.21�5�
3000 800 0.636�2� �17.01�3�
4000 800 0.690�5� �18.14�1�
5000 800 0.731�4� �18.95�3�
6000 800 0.766�2� �19.61�2�
7000 800 0.793�1� �20.02�2�

TABLE II. Residual internal energy U along the isochore 0.762 g /cm3 as a
function of temperature T for methanol in the fluid phase. Only some rep-
resentative points were included. Uncertainties are given in parenthesis.

T/�K� U/�kJ/mol�

298 �35.75�2�
350 �33.37�2�
400 �31.14�2�
450 �29.08�5�
500 �27.08�3�
550 �25.41�3�
600 �23.89�2�
650 �22.68�4�
700 �21.49�3�
750 �20.48�2�
800 �19.52�1�
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obtained along the 1 bar isobar using 100 K and 1 bar as the
reference state. In Fig. 1, their values are plotted compared to
those of methanol fluid. As can be seen, the chemical poten-
tial of the � phase is always higher than that of the � phase
which indicates that the last is the most stable phase at 1 bar
between the solid ones �the � phase was excluded of Fig. 1
since its chemical potential is significantly higher than the
other ones as can be inferred from Table IV�. When the
chemical potential of the fluid phase is compared to that of
the � phase, it is clear that this one is more stable for tem-
peratures below 215 K, whereas the situation is the opposite
at higher temperatures. Therefore, a coexistence point ap-
pears at 215 K, which is the melting point of the OPLS
model. For the � solid the melting temperature is 209 K,
which is a consequence of the lower stability of this phase.
These results point out that the only stable phases at the
pressure of 1 bar are the � solid for temperatures below 215
K and the liquid for temperatures above this value �being the
� solid a thermodynamically metastable phase at this pres-
sure�.

We have also used direct coexistence simulations �MD�
to obtain the melting point of the model in a totally different
way �details were provided in Sec. II�. In Fig. 2, the evolu-
tion of the potential energy of the system with time at several
temperatures is shown. As can be seen, at 240 K, the energy
increases with time reaching a plateau which corresponds
�and confirmed by visual inspection� to the complete melting
of the solid. The same behavior is found at 230 and 225 K,
although the time required to melt the solid completely in-
creases as the temperature decreases �in fact, it changes from
about 3 ns at 240 K to more than 100 ns at 225 K�. The
energy of the final plateau is different for the different tem-
peratures considered, reflecting the variation of the internal
energy of liquid methanol with temperature �at room pres-
sure�. For the temperature of 200 K the energy of the system
decreases with time, and visual inspection reveals the slow
growth of the solid �which freezes completely in about 140
ns�. It is interesting to note that the rate of growth of the �
solid of methanol seems to be smaller than that found for ice
Ih in water simulations. Obviously the growth rate is a prop-

TABLE III. Density � and residual internal energy U as a function of temperature T and pressure p for the �,
�, and � solid phases of methanol. Only some representative points were included. At 225 K and 1 bar the �
phase is mechanically unstable and melts so no value is reported. Uncertainties were estimated to be within
0.001 g /cm3 for the densities and within 0.01 kJ/mol for the energies.

p/bar T/K
�

�/�g /cm3�
�

�/�g /cm3�
�

�/�g /cm3�
�

U/�kJ/mol�
�

U/�kJ/mol�
�

U/�kJ/mol�

1 75 1.035 1.034 1.043 �50.01 �49.88 �47.52
1 100 1.024 1.024 1.032 �49.32 �49.19 �46.81
1 125 1.012 1.013 1.019 �48.59 �48.47 �46.07
1 150 0.999 1.001 1.007 �47.82 �47.73 �45.30
1 175 0.986 0.989 0.993 �47.05 �46.95 �44.50
1 200 0.972 0.976 0.977 �46.22 �46.13 �43.62
1 225 0.958 0.960 ¯ �45.38 �45.23 ¯

1 100 1.023 1.024 1,032 �49.30 �49.18 �46.84
2000 100 1.056 1.056 1.064 �49.48 �49.33 �46.99
6000 100 1.103 1.104 1.112 �49.34 �49.19 �46.85

10 000 100 1.138 1.140 1.147 �48.91 �48.74 �46.40
30 000 100 1.252 1.253 1.264 �44.98 �44.87 �42.41
50 000 100 1.324 1.325 1.339 �39.98 �39.88 �37.40
70 000 100 1.381 1.381 1.395 �34.47 �34.46 �32.05
80 000 100 1.405 1.405 1.419 �31.67 �31.67 �29.30
90 000 100 1.427 1.427 1.441 �28.86 �28.87 �26.55

100 000 100 1.447 1.447 1.461 �26.06 �26.09 �23.81
110 000 100 1.466 1.465 1.479 �23.27 �23.29 �21.04
120 000 100 1.483 1.483 1.497 �20.48 �20.47 �18.24
130 000 100 1.499 1.499 1.513 �17.67 �17.64 �15.45

TABLE IV. Free energies �Asol� for the �, �, and � solid phases of methanol, as well as their contributions �A0,
�A1, and �A2� for several thermodynamic states. In all these simulations, �E / �kBT /Å2�=�E,a / �kBT�
=�E,b / �kBT�=25 000. Uncertainty in the free energies was estimated in 0.01NkT.

Solid p/bar T/K �/�g /cm3� A0 /NkT �A1 /NkT �A2 /NkT Asol /NkT

� 1 100 1.024 28.17 �62.18 �15.08 �49.09
� 1 150 0.999 28.17 �41.24 �16.47 �29.55
� 1 100 1.024 28.17 �62.02 �15.08 �48.93
� 1 150 1.001 28.17 �41.15 �16.46 �29.44
� 1 100 1.032 28.16 �58.98 �15.04 �45.86
� 40 000 100 1.305 28.16 �50.62 �12.76 �35.22
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erty which depends on the substance, on the degree of super-
cooling, on the solid considered and on the plane
considered.53 At 220 K, the energy seems to be stable for the
longest considered run �of about 100 ns�. Inspection of the
final configuration reveals that both the fluid and solid phases
are present in approximately the same amount. Thus, from
these MD simulations, it is obvious that the melting point
should be between 225 and 200 K, and that in fact, it should
not be far from 220 K for which the interface is stable for
more than 100 ns. In summary, these MD runs suggest again
a melting point around 220�5� K, in excellent agreement with
the results obtained from free energy calculations 215�4� K.
We have found previously for water models that melting
point temperatures estimated from free energy calculations
and from direct coexistence simulations were mutually
consistent.54 The same is found here for methanol.

Once we have computed the melting point of methanol
by free energy calculations, the reader may wonder why it
was not obtained from NpT simulations by simply heating
the solid at constant pressure �in NpT simulations� and
checking the temperature at which the solid melts. In Fig. 3,
the evolution of the potential energy with temperature �at
room pressure� is shown. The simulations were performed
for the � solid starting at low temperatures and using the
final configuration of a run as the input configuration of the

next run �at the next higher temperature�. As can be seen
there is a jump in the internal energy and at the temperature
of 350 K, the solid has melted completely. Since the true
melting point of the model is 215 K it can be seen that the �
solid can be superheated in NpT simulations by about 110 K,
and therefore this technique cannot be used to determine the
melting point. This behavior is similar to that found for water
where it was found that ices could be superheated by about
80 K above the true melting temperature.55 It appears that
solid methanol can be superheated even more �about 110 K�.
For the � solid we found similar behavior and the solid
melted spontaneously at the same temperature than the �
solid. This is consistent with the quite similar free energies
found for the � and � solids.

In order to find coexistence points between solid phases,
their chemical potentials were obtained along the isotherm of
100 K between 1 and 150 000 bar by means of the thermo-
dynamic integration technique, using as reference their val-
ues at 100 K and 1 bar. Results are shown in Fig. 4. It has
been found that the � phase is always less stable than the �
for all the studied pressures. The competition between � and
� had the following results: for pressures lower than 115 047
bar the first one is the most stable whereas that for higher
pressures the most stable is the second one. Thus, 115 047
bar and 100 K is a coexistence point between the � and �
phases.

The complete phase diagram was determined using
Gibbs–Duhem integration starting from the melting point
and the coexistence point at high pressure obtained between
the � and � phase. Some representative results of this pro-
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FIG. 1. Chemical potential 
 as a function of temperature T at 1 bar for
fluid phase �dashed� and for � �solid� and � �dashed-dotted� solid phases of
methanol.
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FIG. 2. Evolution of the potential energy with time in direct coexistence
simulations of the OPLS model of methanol at 1 bar. The number of mol-
ecules was of 826.

0 100 200 300 400
T/K

-60

-55

-50

-45

-40

-35

-30

-25

U
/(

kJ
/m

ol
)

FIG. 3. Internal energy of the � solid phase as a function of temperature.
The jump observed around 325 K corresponds to the spontaneous melting of
the solid �i.e., the lost of mechanical stability�. The true melting point of the
� solid obtained from free energy calculations corresponds to 215 K.
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and that of � solid phase of methanol plotted against pressure p at 100 K.
�-� �solid line� and �-� �dashed line�.
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cedure are shown in Tables V–VII, whereas the complete
phase diagram is plotted in Fig. 5 compared with the experi-
mental diagram. As stated before the OPLS model overesti-
mates the melting temperature by about 40 K, which is a
reasonable result taking into account that it was not opti-
mized to reproduce the melting point. It should be mentioned
that the model underestimates the critical temperature by
about 30 K �Ref. 56� �thus the critical temperature is under-
estimated and the melting temperature is overestimated�. The
melting enthalpy �h of the OPLS model at room pressure is
5.2 kJ/mol, which is too high when compared with the ex-
perimental value �3.215 kJ/mol�.57 It is likely that reducing
the strength of the hydrogen bond in the model could reduce

both the melting temperature and the melting enthalpy to
bring the results in closer agreement with experiment. The
OPLS model is able to predict correctly the existence of the
�, � and fluid phases within the phase diagram of methanol.
However the � phase is missing in the computed phase dia-
gram whereas it appears in the experimental one. Notice that
experimentally when methanol is cooled at room pressure it
freezes into the � solid, which is stable for about 15 K and
then transforms into the � phase. Thus the stability range of
the � solid is quite small. It follows then that the properties
of the � and � solids must be quite similar �as an example,
the density of these two solids is quite similar and it will be
shown later that the same is true for the structure�. For this

TABLE V. Coexistence properties along the fluid-� coexistence curve. Densities � and molar enthalpies h are
given for each coexistence point. Only some representative points were included. Uncertainties were estimated
to be within 0.002 g /cm3 for the densities and within 0.02 kJ/mol for the enthalpies. The asterisk indicates the
melting point of the OPLS methanol, which was used as the initial point in the Gibbs–Duhem integration. The
uncertainty in the melting point was estimated in 4 K.

p/ bar T/ K
Fluid

�/�g /cm3�
�

�/�g /cm3�
Fluid

h/�kJ/mol�
�

h/�kJ/mol�

1 *215 0.844 0.964 �40.51 �45.71
250 219.7 0.852 0.967 �39.56 �44.79

1000 232.6 0.876 0.980 �36.70 �42.21
3000 259.7 0.931 1.008 �29.57 �35.61
5000 280.0 0.963 1.032 �22.46 �29.28
7000 296.6 0.991 1.053 �16.20 �23.13

10 000 318.1 1.025 1.081 �6.19 �14.19
14 000 340.7 1.071 1.112 5.05 �2.57
18 000 359.3 1.101 1.138 17.19 8.63
22 000 374.6 1.129 1.162 28.20 19.52
28 000 393.8 1.164 1.193 44.52 35.44
34 000 409.1 1.196 1.221 60.25 50.90
40 000 422.3 1.225 1.245 75.19 66.11
52 000 442.4 1.272 1.288 105.19 95.58
64 000 456.1 1.313 1.324 133.94 124.23
79 000 467.6 1.357 1.364 167.88 158.96
94 000 472.4 1.397 1.399 201.73 192.76

106 000 473.4 1.426 1.424 226.80 219.12
115 000 471.0 1.445 1.442 245.97 238.54
124 000 468.2 1.462 1.459 265.23 257.68
130 000 466.0 1.474 1.470 277.78 270.40

TABLE VI. Coexistence properties along the �-� coexistence curve. Densities � and molar enthalpies h are
given for each coexistence point. Only some representative points were included. Uncertainties were estimated
to be within 0.002 g /cm3 for the densities and within 0.02 kJ/mol for the enthalpies. The asterisk indicates the
coexistence pressure between � and � solids used as initial point in the Gibbs–Duhem integration. Its uncer-
tainty was estimated in 1500 bar.

p/bar T/K
�

�/�g /cm3�
�

�/�g /cm3�
�

h/�kJ/mol�
�

h/�kJ/mol�

*115 047 100 1.474 1.489 228.12 228.06
117 083 150 1.474 1.488 233.83 233.69
119 831 210 1.474 1.488 241.34 241.16
122 705 270 1.474 1.488 249.16 248.84
125 824 330 1.474 1.488 257.49 257.18
128 614 390 1.474 1.488 265.18 264.85
131 414 450 1.474 1.488 272.87 272.36
133 152 490 1.473 1.487 277.72 277.32
133 964 510 1.473 1.488 280.08 279.54
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reason the disappearance of the � phase in the calculated
phase diagram, although not pleasant, cannot be regarded as
a important failure, since only an extremely accurate poten-
tial could capture the small free energy differences that exists
between the � and the � structures. From a quantitative point
of view the pressure at which the � phase appears within the
phase diagram of the OPLS model is too high. Although the
experimental �−� coexistence curve has not been reported
the � phase has been found experimentally at pressures of
about 35 000 bar, whereas for the model it appears at pres-
sures above 100 000 bar. Even for water it has been difficult
to reproduce quantitatively the high pressure part of the
phase diagram. It seems that the same is true for methanol.
This may be connected with the fact that the repulsive part of
the potential �which becomes increasingly important at high
pressures� is not well described the LJ potentials.

In Figs. 6–8, the C–C, O–O, and O–H radial distribution
functions for �, � and � methanol as obtained from com-
puter simulations at 150 K and 1 bar are presented. The first
peak of the O–H distribution function provides an idea of the
number of molecules that form hydrogen bonds. As can be
seen, the results for � and � phases are almost undistinguish-

able presenting a higher peak than the � phase. In other
words hydrogen bonding is more favorable in the � and �
phases and that explains why these phases are more stable
than the � phase at low T and p. The results of � and � for
the OH distribution function are different for distances larger
than 4 Å. For the C–C distribution function the results of the
� and � solids are almost indistinguishable �differences ap-
pears only at about 8 Å� but clearly different from those of
the � phase. For the O–O distribution function, � and �
presents a similar first coordination layer, and they differ in
the second coordination layer. In summary the structure of
the � and � phases is quite similar at short distances, differ-
ences emerging at longer distances. That explains why their
densities, internal energies, and free energies are so similar:
they are due to the strong structural similarities between the
two phases. To provide further evidence of that the fluid-�
and fluid-� coexistence curves of the OPLS model are pre-
sented in Fig. 9. As can be seen both phases melt at quite
similar temperatures �except at low pressures where the melt-
ing temperature of the � phase is slightly larger�. Therefore
the model is able to capture the similar free energies of those
two phases. Notice the existence of re-entrant melting in the
fluid-� �and fluid-�� coexistence curves. In the region where
the slope of the melting curve is negative the solid becomes
less dense than the fluid. Similar behavior was found at high
pressures in the melting curves of several water models.16
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FIG. 6. C–C radial distribution function at 150 K and 1 bar. � �solid�,
� �dashed�, and � �dashed-dotted�.

TABLE VII. Coexistence properties along the fluid-� coexistence curve. Densities � and molar enthalpies h are
given for each coexistence point. Only some representative points were included. Uncertainties were estimated
to be within 0.002 g /cm3 for the densities and within 0.02 kJ/mol for the enthalpies. The asterisk indicates the
�-�-fluid triple point which was used as the initial point in the Gibbs–Duhem integration. Its uncertainty was
estimated in 2000 bar.

p/bar T/K
Fluid

�/�g /cm3�
�

�/�g /cm3�
Fluid

h/�kJ/mol�
�

h/�kJ/mol�

*131 120 465.1 1.474 1.486 281.13 272.24
136 523 470.0 1.485 1.495 292.12 283.75
142 655 475.0 1.494 1.504 305.56 296.64
148 955 480.0 1.505 1.514 318.16 309.86
156 754 485.0 1.518 1.526 334.34 325.94
165 102 490.0 1.531 1.537 351.04 343.15
174 620 495.0 1.545 1.551 370.43 362.66
185 318 500.0 1.559 1.565 392.05 384.30
197 312 505.0 1.575 1.579 416.52 408.43
211 705 510.0 1.593 1.597 444.86 437.11
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FIG. 5. Phase diagram of OPLS methanol �solid� compared to the experi-
mental one �dashed�. The experimental phase diagram was determined be-
tween 1 bar and 15 000 bar detecting two coexistence curves; going from
low to high temperature, the first coexistence line represents the transition
between the � solid phase to the � phase and the second defines the transi-
tion between the � phase and the fluid. The single point represents the only
experimental thermodynamic state for which the existence of the � phase
has been reported.
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IV. CONCLUSIONS

By performing computer simulations, we have deter-
mined the phase diagram of the OPLS model of methanol.
Free energy calculations were performed to locate initial co-
existence points, and Gibbs–Duhem integration was used to
determine the complete coexistence curves. The model pro-
vides a reasonable description of the densities of the solid
phases of methanol. It also predicts correctly the appearance
of the solid phases � and �. Taking into account that the
model was fitted to reproduce just the liquid density and
vaporization enthalpy at room temperature the results can be
considered to be satisfactory. However, it is clear that there is
room for improvement of the model. The model predicts that
the � solid phase is metastable within the phase diagram of
the OPLS model of methanol. According to the OPLS model
� and � solids have similar free energies, being that of the �
phase always slightly lower. Experimentally this similarity
must also occur since the stability range of the � phase is
quite small. The model predicts a melting point temperature
of about 215 K. This melting point was further confirmed by
direct coexistence simulations. Taking into account that the
experimental value of the melting point is 175 K, the model
overestimates the melting temperature by about 20%. Similar
deviations in the estimate of the melting point was found for
popular models of water as SPC,58 SPC/E,59 or TIP4P.6 Tak-
ing just these two substances, water and methanol, it is clear
that models fitted to reproduce the properties of the liquid at
room temperature may have errors in the estimate of the
melting point temperature as large as 20% �although for

methanol it seems that the melting point temperature is over-
estimated whereas for water the models tend to underesti-
mate the melting point�.

This work shows that phase diagram calculations can be
performed for realistic potentials of molecular fluids. Notice
however that this methodology is not absent of significant
sources of uncertainties.60 In fact, the free energy of the fluid
is evaluated from the ideal gas along a pathway that bypasses
the critical point. Along such an integration path, errors ac-
cumulate rendering accurate computations of melting points
extremely difficult. Additionally, coexistence lines are com-
puted via Gibbs–Duhem integration, a second integration
procedure, which is again prone to errors. Finally, the system
sizes studies are rather small, producing another source of
error.

Previous work on idealized molecular models have illus-
trated that it can be quite useful to understand the underlying
physics of molecular systems61–68 The interest in this type of
studies is twofold. First the knowledge of the melting point
temperature is of interest to study nucleation phenomena and
supercooled fluids.69 Second the phase diagram calculations
can help in improving and developing new potential models,
not only for those researchers interested in solid phase prop-
erties, but also for those researchers interested in the fluid
phase. The study of solid phases can be useful to test and
improve potential models even for those researchers inter-
ested in the fluid phase. This point of view was advocated a
long time ago by Whalley,70 Morse and Rice71 �setting water
as an example� and more recently by Monson.68 Using melt-
ing properties and phase diagram calculations to develop and
improve potential models is in our opinion a suggestion
worth to consider in the future, especially once technical
details about phase diagram calculations have been settled.
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