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In this work, we exploit an efficient algorithm for the sampling of hydrogen-bond networks in order to study
the order/disorder transition and the dielectric properties of ice Ih. Our results show that all of the rigid point
charge models studied, TIP4P/Ice, TIP4P/2005, TIP4P, and SPC/E, yield a very low dielectric constant as
compared with experiment. The analysis of the polarization factor, G, reveals that the structure of ice Ih as
predicted by the TIP4P family of models studied is very similar. For all such models, G ≈ 2.5, the differences
in the dielectric constant being given mainly by the different molecular dipole moments. The angular correlations
in the SPC/E model are very different, however, yielding G ≈ 1.8. Our study suggests that the dielectric
anisotropy of ice Ih is very small and at any rate smaller than the statistical uncertainty of our results. We
show that for sufficiently anisotropic structures, such as ice V, the method employed does indeed reveal a
strong anisotropy. At 5000 bar and 180 K, we find that the principal dielectric constants of ice V according
to the TIP4P/Ice model are 34, 164, and 76. The order/disorder transition could not be well characterized,
because of very strong hysteresis. Whereas low temperature ordered phases were readily disordered at
temperatures below 50 K, the high temperature phase remained disordered upon cooling. Nevertheless, our
plots of dielectric constant versus temperature reveal a clear lambda-like shape and obey a Curie-Weiss law.
All of the models studied show a higher stability of the antiferroelectric Pna21 phase than the experimental
ferroelectric Cmc21 phase.

Introduction

Ordinary ice, also known as ice Ih is not quite an ordinary
crystal. Rather, oxygen atoms lay on regular lattice positions
forming hexagonal rings, but the hydrogen positions may be
chosen such that water molecules adopt randomly one out of
six possible orientations.1 Ice Ih is therefore a rotational
disordered crystal, although the number of possible configura-
tions that contribute are limited to those obeying the Bernal-
Fowler rules. Consistent with the tetrahedral arrangement of
hydrogen bonds which is also found to a smaller extent in liquid
water, the possible realizations of the lattice are separated by
large energy barriers, of the order of two hydrogen bonds, and
hence, the sampling of molecular orientations within the crystal
is very slow. It is widely believed that such sampling requires
collective rearrangements involving cooperative rotation of at
least six water molecules along a ring. Such a slow dynamics
points to dielectric relaxation as the most appropriate technique
for probing the orientation rearrangements. Johari and Whalley
have estimated that the relaxation time of such modes is several
microseconds at the melting temperature but may become many
years long at 100 K. In practice, however, the presence of
impurities lowers the free energy for creation of rotational
defects and provides an extra path for relaxation below ca. T )
240 K, though the time scales for relaxation remain well beyond
the µs.2

As a result of this very slow dynamics, ice Ih displays a well-
known violation of the third law. Cooling down to very low
temperatures does not lead to any visible phase transition into
a fully ordered phase. The system gets kinetically trapped into
a rotational glass with a measurable entropy excess3 that was

first estimated by Pauling.4 So far, this situation has only been
remedied by doping ice with KOH. The doped sample so
prepared then undergoes a phase transition into an orthorhombic
ordered phase at about 70 K.5-7 There are two possible
orthorhombic ordered crystal structures compatible with a fixed
orientation of the oxygens (cf., Figure 1). One is an antiferro-
electric phase with space group Pna21 (A/Pna21) that was
proposed theoretically by Davidson and Morokuma.8 The other
is a ferroelectric phase with space group Cmc21 (F/Cmc21) that
was conjectured by Kamb and Minagawa.9,10 All subsequent
neutron diffraction studies on deuterated samples have favored
the F/Cmc21 structure as the low temperature phase of ice.11-14

It does not come as a surprise that the computer simulation
of ice might become a very tricky issue.15 Sampling of the slow
collective ring rotations by molecular dynamics is obviously
out of question, but conventional Monte Carlo simulations are
also unable to sample the possible hydrogen-bond networks
consistent with the Bernal-Fowler rules. In practice, simulations
are usually performed by choosing one possible realization of
the hydrogen-bond network. Properties such as density or
pressure are not much affected by the lack of sampling, while
others such as the crystal’s free energy may be corrected for
the quenched disorder using Pauling’s result for the residual
entropy.4

Such tricks do not allow one to observe (directly) the order/
disorder transition or low frequency dielectric properties. As a
result, only a very limited number of simulation studies have
been performed on the dielectric constant of ice. The first few
were performed on a lattice and employed a Monte Carlo
sampling technique that attempts to rotate cooperatively all of
the molecules inside a ring.16-18 Subsequently, Rick and Haymet
extended this algorithm to off-lattice models.19,20 More recently,
Lindberg and Wang have proposed a different methodology
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which attempts to create a number of uncorrelated configurations
by switching the electrostatic interactions smoothly from a fully
spherical reference system.21

The availability of a technique that allows one to sample ring
rotations may allow one to study ice more accurately than
hitherto. In ice Ih, for example, the disorder is thought to be
complete within a large temperature interval. A single repre-
sentative realization of disorder may be used to sample many
properties (with the notable exception of the dielectric constant).
Furthermore, the Pauling entropy estimate that is added ad-hoc
in free energy calculations has been found to be very close to
the exact result estimated recently.22,23 However, other solid
phases of water, such as ice III and ice V exhibit partial disorder,
and the amount of disorder changes continuously with
temperature.24,25 This problem can be somewhat remedied by
preparing partially disordered configurations that are compatible
with experimental findings, as described in ref 26. Unfortunately,
such configurations need not be fully consistent with the force
field employed, and usual Monte Carlo techniques will not allow
for changes in the hydrogen-bond network with temperature.

In this work, we employ the ring rotation method proposed
by Rick and Haymet,19 in order to study the spontaneous
disordering of initial ordered structures, as well as to calculate
the dielectric properties of ice. We will consider two well-known
water models, TIP4P and SPC/E,27,28 as well as two other
recently developed models, TIP4P/Ice and TIP4P/2005.29,30 The
last two models provide a significant improvement over TIP4P
and yield also good results for more complex systems.31-33 By
using this technique, we are able to observe ring excitations,
follow the temperature dependence of the hydrogen-bond
network, and accurately measure the dielectric constant.

The remaining of the paper is arranged as follows. In the
next section, we present the theoretical framework needed to
calculate the dielectric constant with due account of the
anisotropy. The next section describes the method that has been

employed to properly sample the hydrogen-bond network.
Subsequently, a section is devoted to gather all the results and
finally the main conclusions of this work are presented.

Theory

The relation of the dielectric constant with molecular proper-
ties has been a subject of much debate.34 It was not until
Kirkwood and Fröhlich that a clear relation could be estab-
lished.35,36 However, with the advent of computer simulations,
the standard result needed generalization in order to properly
account for the assumed boundary conditions, and this also
required careful reexamination of the problem.37-39 Whereas
the working expressions for isotropic materials are now well
established,40,41 the calculation of dielectric constants of aniso-
tropic materials from molecular considerations has been seldom
considered.9,19,37,42 A brief summary of the working equations
is presented here.

The average dipole moment of a dielectric material under
the effect of an external field Ee is given by

where M is the instantaneous dipole moment, U is the potential
energy in the absence of a field, and dΓ denotes integration
over configuration space. Expanding this equation to first order
in the field, we find

For a dielectric material, we expect 〈M〉0 to vanish. However,
in the course of a simulation, where the sampling is limited to
part of configuration space, or in a ferroelectric material, we
may find a net polar moment. We will therefore retain this term
for the time being. The average polarization due to the field
can then be written as

where ∆P ) PEe - P0, P is the dipole moment per unit volume
or polarization and the notation AB denotes a dyad with matrix
elements ABR� ) ARB�. For an isotropic dielectric, the term in
squared brackets may be written as a diagonal matrix, because
the polarization is always parallel to the applied field. For an
anisotropic material, however, this is not generally the case and
tensor notation must be retained.

The averaged macroscopic field within the dielectric medium
includes the effect of the external field as well as that created
by the material’s polarization. At the macroscopic scale, the
polarization is uniform and we can write

where Tm is the volume integral of the dipole-dipole tensor
and the subscript recalls this has to be suitably modified to
account for the chosen boundary conditions of the simulation.39

In accordance with the preceding microscopic description, we
account explicitly for the presence of a net polarization of the
sample within the limited time of observation, so that the above
equation is written as

Figure 1. Possible orthorhombic structures for the low temperature-low
pressure ordered phase of ice. Left, ferroelectric Cmc21 phase as
determined experimentally (the upper and lower rings are obtained upon
rotation about the screw 21 axis parallel to c and crossing x ) 1/2, b )
1/2). Right, antiferroelectric A/Pna21 phase conjectured by Morokuma
(the upper and lower rings are obtained from the central one upon
reflection of a glide plane crossing the b axis at b ) 1/2). In order to
allow for comparison, the antiferroelectric phase is shown here under
the nonstandard space group P21cn. The standard space group is
obtained by interchanging the a and c axis and displacing the origin
by 1/4 along the direction of the b axis. Hatched circles indicate fully
occupied proton sites. In the high temperature phase, both the hatched
and empty circles (unoccupied proton sites in the low temperature
phase) adopt occupancies of 1/2. Under the convention followed in
the figure, the extra symmetry leads to the nonstandard orthorhombic
space group Cmc. This is equivalent to the standard P63/mmc hexagonal
phase of ice Ih.

〈M〉Ee
) ∫Me-�[U-M ·Ee] dΓ/ ∫ e-�[U-M ·Ee] dΓ (1)

〈M〉Ee
) 〈M〉0 + �〈MM ·Ee〉0 - �〈M〉0〈M ·Ee〉0 (2)

∆P ) �
V

[〈MM〉0 - 〈M〉0〈M〉0] ·Ee (3)

E ) Ee + Tm ·P (4)
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The second term of the right-hand side can be immediately
identified with the microscopic field, E0, created by the material
in the absence of an external field. We can therefore write

where ∆E ) E - E0.
In order to relate this equation with eq 3, we need to

supplement the macroscopic description with a constitutive
equation relating the field with the polarization. Comparing eq
6 with eq 3, it becomes apparent that ∆P must be linearly related
to ∆E, so that we must accept the following modified constitu-
tive relation:

where � is the susceptibility tensor of the dielectric material.
Whereas this is somewhat unusual for the definition of the
electric susceptibility, it is the implied constitutive relation
employed usually in simulations.19,21,41

Substitution of the constitutive relation into eq 6 yields

Further substitution of eq 3 into the above result yields37

Since this equation must hold for arbitrary external fields, it is
clear that the term in curly brackets must vanish for the equality
to hold. It follows that the susceptibility tensor is the solution
of the following linear equation:

where I is the unit matrix and F is the dipole moment fluctuation
tensor:

Equation 10 is the general solution for the susceptibility tensor
of an anisotropic dielectric material. The solution depends
formally on the assumed boundary conditions, which are
explicitly accounted for in the integrated modified dipole-dipole
tensor, Tm. In computer experiments, it has been convenient to
assume a spherical sample of dielectric material surrounded by
an isotropic dielectric.40,41 In such a case,38

where εs is the dielectric constant of the surrounding medium.
Several choices for the surrounding medium have been studied.43,44

One simple such choice is to consider the material surrounded

by a vacuum, as in the Lorentz-Lorenz theory. Another possible
choice is to assume surroundings of the same material as the
sample employed (similar to the Kirkwood-Frohlich theory).
However, this choice requires a priori knowledge of the
dielectric constant. The situation is further complicated if the
surrounding material is anisotropic, as not only the principal
dielectric constants are required a priori but also the principal
dielectric axes.42 Hence, in most practical situations, one chooses
conducting boundary conditions, so that εs ) ∞ and Tm may be
ignored altogether. The general solution then takes the simple
form

For an isotropic medium (such as cubic crystals), a properly
averaged F tensor should become diagonal for whatever choice
of reference frame, all the diagonal elements are equal, and the
equation may be solved right away for the dielectric constant
by performing the trace operation on both sides of the equation.
For anisotropic materials, F will not generally be diagonal.
However, there exists a coordinate system fixed in the crystal
such that F is diagonal. Furthermore, the orientation of the
principal dielectric axes is given by symmetry in most crystal
structures (trigonal, tetragonal, hexagonal, and orthorhombic),
the principal axes not being trivial relative to the crystallographic
axis only for monoclinic and triclinic structures.45 At any rate,
for conducting boundary conditions, the problem of finding the
principal dielectric constants and axes is reduced to suitable
diagonalization of F, such that

Note that this equation accounts explicitly for a nonvanishing
polarization in analogy with results for isotropic media.40,41

Whereas an ordinary dielectric has vanishing polar moment at
zero field, the subtraction of the squared average polarization
of the simulation could remedy for bad sampling. Alternatively,
one could assume this result as a generalization to ferroelectric
materials. The electric response of ferroelectric materials is
highly nonlinear and known to exhibit a characteristic hysteresis
loop.34 However, we expect that eq 14 may be employed in
order to describe the linear response of the material after
attainment of the remanent polarization. On the other hand,
application of eq 14 with an assumed zero polarity could account
for the dielectric response of a multidomain crystal with zero
net polarization. Nevertheless, we stress that the result of eq 14
is consistent with the modified constitutive relation, eq 7.
Obviously, this equation is fully consistent with the more usual
P ) � ·E for the case of vanishing average polarization at zero
field.

Simulations

Monte Carlo simulations were carried out in the NpT
ensemble.40 Typically, we employed an arrangement of 5 × 3
× 3 orthorhombic unit cells with a total of 360 molecules,
though some simulations were carried out with N ) 128
molecules. Box deformations were dealt with using the
Parrinello-Rahman method.46 Coulombic interactions were
calculated using the Ewald summation technique.37 Conducting
boundary conditions were employed in all simulations. Both

E ) Ee + Tm ·P0 + Tm ·∆P (5)

∆E ) Ee + Tm ·∆P (6)

∆P ) � ·∆E (7)

[�-1 - Tm] ·∆P ) Ee (8)

{�
V

[�-1 - Tm] · [〈MM〉0 - 〈M〉0〈M〉0] - I} ·Ee ) 0

(9)

�[Tm + V
�

F-1] ) I (10)

F ) 〈MM〉0 - 〈M〉0〈M〉0 (11)

Tm ) - 4π
2εs + 1

δR� (12)

� ) �
V

F (13)

εR� - 1

4π
δR� )

〈MRM�〉0 - 〈MR〉0〈M�〉0

kBTV
δR� (14)

Dielectric Constant of Ice Ih and Ice V J. Phys. Chem. B, Vol. 114, No. 18, 2010 6091



dispersive and screened-Coulombic interactions up to the cutoff
distance were calculated by means of an efficient link cell list.47

Usual long-range corrections for the Lennard-Jones interactions
were added and the pair potential was truncated at 8.5 Å for all
models.40

It is well-known that a standard Metropolis algorithm
incorporating only displacement and rotation attempts cannot
properly sample ice. These movements will sample small
amplitude vibrations and librations but are unable to modify
the assumed hydrogen-bond arrangements within a reasonable
amount of CPU time. An algorithm for exploring hydrogen-
bond arrangements was proposed by Rahman and Stillinger for
a simple tetrahedral lattice model.48 This algorithm was also
exploited later on to study the order/disorder transition of ice
on a lattice,17,18 and was extended recently for off lattice water
models.19 The method requires one first to search for a closed
loop of hydrogen bonds. Molecules belonging to the loop have
one proton that is a bond donor inside the loop (inner bond)
and another that is not (outer bond). The attempted move
consists of successive rotation of the molecules about their outer
bond by 120° until a full hydrogen-bond arrangement with
opposite sense has been established along the loop. The
attempted move is accepted or rejected according to the usual
Monte Carlo lottery. Whereas this algorithm works well for
tetrahedral lattices, the acceptance may become too low in off
lattice systems. Rick and Haymet have argued that a greater
acceptance is achieved rotating the molecule by the dihedral
angle formed between planes H0-Ol-Ol-1 and H0-Ol-Ol+1

(see Figure 2). In this way, the angle of rotation is accom-
modated to the instantaneous distorted geometry of the lattice.
The algorithm is further sped up by creating a list of hydrogen-
bond donors and acceptors for each molecule at the beginning
of the simulation. The list is then used to avoid calculating
nearest neighbors and bond donors/acceptors during the loop
search and updated each time a loop rotation is accepted.

The topology of loops in a crystal was studied by Rahman
and Stillinger.48 They found that rings could be classified into
three classes: (i) true closed loops with six molecules, (ii) true
closed loops with more than six molecules, and (iii) percolating
loops, which span one full linear dimension of the simulation
box and are closed by virtue of the periodic boundary conditions.
By performing a Markov chain over loop rotations, all of the
hydrogen-bond arrangements may be sampled in principle.

However, acceptance of loop rotations is highly dependent on
loop size, and this may become a problem. For ice Ih, with full
proton disorder, Rahman and Stillinger observed that the
overwhelming majority of rings have six bonds. Such rings have
a small but significant acceptance rate, so that a good sampling
may be achieved for the disordered phase. Unfortunately, the
transition between ordered and disordered phases will usually
require sampling large percolating rings, which have a very low
acceptance. For this reason, the algorithm runs into trouble close
to phase transitions, and more so for large system sizes which
require rotation of large percolating rings. That the sampling
of order/disorder transitions may become difficult may be easily
illustrated by considering a perfect tetrahedral lattice. In such
cases, it is easy to show that full rotation of a closed loop leaves
the total dipole moment unchanged.17 However, the disordered
Ih phase of ice has no net dipole moment on average, while the
ordered Cmc21 phase of ice is ferroelectric. Hence, transition
from one to the other requires rotation of a percolating loop.

The simulations were organized in batches. First, a series of
simulations were started from the low temperature ordered phase
at either 5 or 10 K, and heated gradually along a heating batch.
Each production stage along the batch consisted of 200 thousand
cycles following a previous equilibration stage of 50-100
thousand cycles. Subsequent cooling batches starting from high
temperature configurations were also performed in order to study
hysteresis effects. Ordered phases beyond the disordering
transition were studied by means of frustrated heating batches
consisting of MC simulations with loop moves switched off
(with translation and rotation in the ratio 50:50). The simulations
within a batch consisted of several hundred thousand cycles
each. A cycle comprises N trial translation, rotation or loop
moves in the ratio 40:40:20, followed by one box deformation
attempt. All simulations are performed at a pressure of 1 bar
unless so stated.

Results

Test of Loop Moves. In order to obtain reliable dielectric
constants, we first need to show that the loop rotation algorithm
samples efficiently the hydrogen-bond network. This was tested
by heating low temperature ordered configurations until full
disorder was achieved.

To asses the extent of disordering, we first need to find an
appropriate order parameter. Figure 3 shows a schematic
representation of water molecules within the F/Cmc21 and
A/Pna21 crystal structures. The Greek letters next to nonequiva-
lent hydrogen sites denote the site occupancies. These are either
1 or 0 for the fully ordered phase and become 1/2 for the proton
disordered ice Ih. Monitoring each of the three hydrogen site
occupancies is awkward, so we devise an order parameter as a
linear combination of R, �, and γ. For the F/Cmc21 phase, we
define a ferroelectric order parameter as

In the fully ordered phase, we have R ) � ) 0 and γ ) 1, so
that OF ) 1. In the disordered phase, R ) � ) γ ) 1/2 so that
OF vanishes. For the antiferroelectric Pna21 phase, we define
an antiferroelectric order parameter as

Figure 2. Schematic representation of the loop rotation algorithm by
Rick and Haymet.19 Hi which is a proton donor in the loop containing
oxygens l - 1, l, and l + 1 is rotated about vector k by an amount
equal to the dihedral angle between planes H0-Ol-Ol-1 and
H0-Ol-Ol+1 (see text). In this way, the bond Ol-Hi, initially lying
close to the plane H0-Ol-Ol-1, now lies close to the H0-Ol-Ol+1

plane.

OF ) 2
3

(2 + γ - R - �) - 1 (15)

OA ) 2
3

(3 - R - � - γ) - 1 (16)

6092 J. Phys. Chem. B, Vol. 114, No. 18, 2010 MacDowell and Vega

http://pubs.acs.org/action/showImage?doi=10.1021/jp100167y&iName=master.img-001.jpg&w=119&h=145


Here, R ) � ) γ ) 0 in the ordered phase, so that OA ) 1. For
the disordered phase, R ) � ) γ ) 1/2 and the order parameter
becomes zero.

Figure 4 shows the order parameters of the TIP4P/Ice model
obtained during the heating batch from 5 to 100 K for either
the ferroelectric or antiferroelectric ordered phases as initial
configurations. In both cases, the low temperature phases rapidly
disorder as reflected by the vanishing value of the corresponding
order parameter. Clearly, the loop rotation algorithm is able to
efficiently disorder the initially ordered configurations even at
temperatures as low as 10-20 K. This occurs despite the fact
that, as mentioned earlier, the disordering requires rotation of
large percolating loops of at least 10 (for the antiferroelectric
phase) or 12 molecules (for the ferroelectric phase). Similar
results were obtained for TIP4P/2005 and TIP4P models. The
SPC/E model behaved quite differently, since neither of the
ordered phases could disorder until about 200 K. This is most
likely a problem of ergodicity, revealing large activation energies
between different hydrogen-bond networks, since previous

calculations suggest that the order/disorder transition of the
SPC/E model lies between 43 and 84 K.20,49

Once the system is disordered, most of the loops are of
hexagonal shape and comprise only six molecules.48 Since the
algorithm is able to rotate loops of at least 10 molecules at very
low temperature, we expect it will properly sample 6 molecule
loops at high temperature and hence properly explore the full
hydrogen-bond network.

We note that the order parameters defined above only show
the departure from the corresponding ordered phase but are not
able to discriminate between different ordered phases; i.e., the
A/Pna21 phase described within the F/Cmc21 space group will
provide OF ) 0, just as the disordered phase. Similarly, the
F/Cmc21 phase described within the A/Pna21 space group will
yield OA ) 0. In order to discriminate between the ferroelectric,
antiferroelectric, or disordered phases in terms of occupation
numbers would require describing the system with the common
space group Pc of lower symmetry. This implies monitoring
eight different occupation parameters, and was not attempted.

However, we can show further evidence that the initial
configurations have disordered by looking at the (unweighted
angle average of the) dielectric constants obtained during the
heating batches, which we define as

Figure 5 shows the results for TPT4P/Ice, where we find a λ-like
curve typical of disordering transitions. Clearly, the dielectric
constants from the two heating batches become equal at about
75 K, showing that the system has completely lost memory of
the initial configurations (note that at low temperature the
ordered phases have very low dielectric constants of little more
than unity and also look equal within the scale of the figure).
Together with the heating batches, Figure 5 shows results for a
cooling batch starting from the high temperature phase. It is
interesting to note that the results also resemble a λ curve and
suggest a moderately reversible transition. However, Figure 4
reveals that the phase transition, if any, has a strong hysteresis
and the system is unable to rearrange during cooling. The state
obtained while quenching is very much like a rotational glass.

Dielectric Constant. The previous tests give us confidence
in the results obtained for the dielectric constant of the high
temperature phase (Ice Ih) above about 100 K. As a further

Figure 4. Ferroelectric (OF) and antiferroelectric (OA) order parameters during heating and cooling for the TIP4P/Ice model at 1 bar. Left, results
for simulations starting from F/Cmc21. Right, results for simulations starting from A/Pna21. Triangles to the right indicate heating, while triangles
to the left indicate cooling. The lines are a guide to the eye.

Figure 3. Local environment of the nonequivalent water molecules
in ice XI. The large circles denote oxygen atoms, while the small circles
denote possible hydrogen sites. The numbers indicate nonequivalent
crystallographic sites, and the Greek letters stand for the corresponding
hydrogen site occupancies.

ε ) 1
3

Tr(ε) (17)
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check, our results for the TIP4P model yield very good
agreement with previous results by Rick and Haymet,19 and lie
a few percent below those obtained by Lindberg and Wang.21

Considering the scatter that is found in calculations of the
dielectric constant of liquid water, these differences seem
acceptable. Table 1 collects our results for ice Ih above T )
150 K.

Figure 6 shows results obtained for the dielectric constant of
ice Ih as a function of temperature for five different water
models. Three models of the TIP4P family, namely, TIP4P/
Ice, TIP4P/2005, and TIP4P, the SPC/E model, and the TIP5P
model (as reported in ref 20). Results are compared with
experimental results from Johari and Whalley for polycrystalline
ice.2 As noted previously for the TIP4P and SPC/E models,19,21

the TIP4P/Ice and TIP4P/2005 models perform also very poorly
as regards the dielectric constant of ice, yielding estimates that
are about 40% lower than the experimental result. Furthermore,
the dielectric constants that we find at T ) 273 K are actually
smaller than those obtained for the corresponding model in liquid
water, a result at odds with experimental findings.1 This trend
is even more striking for the TIP5P model, which provides the
dielectric constant of liquid water at ambient temperature in
very good agreement with experiment but yields predictions that
are far too small by a factor of 3 for ice at T ) 240 K.

Despite the apparently smooth trend of the dielectric constant
for these models, the angular correlations displayed differ
considerably between the TIP4P and SPC/E models. This can
be shown by studying the polarization tensor, which, consistent
with eq 14, we define here as40

where µ0 is the dipole moment of an individual water molecule
in the medium. GR� is a measure of the angular correlations
due to molecular interactions. For an ideal gas, it takes the value
of unity, and usually increases in disordered condensed phases.
Note that G depends on the boundary conditions, so that, for εs

equal to the dielectric constant of the sample, the trace of G
becomes equal to Kirkwood’s g factor.40,51 Figure 7 shows the
trace of the polarization tensor, G ) Tr(gR�), for the models

studied. All of the TIP4P models yield very similar results, with
G ≈ 2.5 almost constant from T ) 100 K to beyond the melting
temperature, while G is about 1.8 for the SPC/E model. We
note that ice II is actually the stable phase of SPC/E water at
normal pressure, with ice Ih being only metastable under these
conditions.15 We can nevertheless obtain an estimate for the
dielectric constant because ice Ih is at least mechanically stable
and can be simulated beyond its region of thermodynamic
stability.50 Clearly, the results point to weaker correlations in
the SPC/E model. Experimentally, the product Gµ0

2 may be
calculated from Curie-Weiss plots of the dielectric constant.2

Johari and Whalley found Gµ0
2 almost constant above T ) 133

K and about 26.4 D2. Note that Johari and Whalley actually

Figure 5. Dielectric constant for TIP4P/Ice at 1 bar. The circles
correspond to a heating batch starting from F/Cmc21, while the squares
are a similar heating batch from the A/Pna21 configuration. The
diamonds are a cooling batch starting from the high temperature
disordered phase.

GR� )
〈MRM�〉 - 〈MR〉〈M�〉

Nµ0
2

(18)

TABLE 1: Dielectric Constant of Ice Ih above T ) 150 K
and P ) 1 bar for Several Water Models

temperature

model 150 200 240 273

TIP4P/Ice 90(2) 70(1) 57(4) 51(1)
TIP4P/2005 83(2) 62(1) 53(1) 46(1)
TIP4P 75(2) 58(1) 47(1) 40(1)
TIP4Pa 78(4) 57(3) 48(1)
TIP4Pb 84(1) 60(1) 51(1)
SPC/E 49(5) 41(2)
experimentalc 174 130 108 95

a Results from Rick and Haymet. b Results from Lindberg and
Wang. c Experimental results from Johari and Whalley.

Figure 6. Dielectric constant at 1 bar for several water models
(symbols) compared with a correlation (full line) of experimental
results.2 Results for TIP5P from ref 20.

Figure 7. Polarization factor for several water models as obtained from
heating batches.
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report Kirkwood’s g-factor, gk ) 17.6, which for high dielectric
constants obeys G/gk ) 3/2.51 Our results also predict Gµ0

2 is
close to constant but underestimate the experimental value
considerably, as we obtain roughly 15, 13, 12, and 10 D2 for
the TIP4P/Ice, TIP4P/2005, TIP4P, and SPC/E models, respec-
tively. This is not surprising, in view of estimates for the dipole
of H2O molecules in ice Ih, which is much higher than that of
the models investigated here. Batista et al. used an induction
model and estimated µ0 ) 3.09 D.52 More recently, Sharma et
al. estimated with their quantum density functional calculations
an effective net dipole moment at the melting temperature of
about µ0 ) 3.32 D.53 In order to recover the experimental
dielectric constant, ε ≈ 96.5, this requires G ≈ 2.55, in good
agreement with predictions obtained from the TIP4P family.

The results obtained for ε correlate with the ratio of dipole
to quadrupole moment, a property which was found previously
to be important in describing the phase diagram of water
models.54,55 On the contrary, the dipole moment, which would
appear to be the most relevant property determining the dielectric
constant, does not quite correlate as good, since the moments
of the models studied follow the trend TIP4P/Ice > SPC/E >
TIP4/2005 > TIP4P. The reason is that, as noted previously,
the quadrupole moment, QT, plays an important role too.56 Large
dipole moments do not always lead to a large increase of the
dielectric constant, because orientation fluctuations may be
strongly affected. Actually, large quadrupole moments strongly
inhibit such fluctuations. From eqs 14 and 18, it would seem
that the dependence of the angle averaged dielectric constant
on µ0 and QT may be written as

Hence, models with similar µ0/QT ratio show a linear depen-
dence with the squared dipole, while the dipole fluctuations
depend nontrivially on µ0/QT and may upset the otherwise simple
dependency on µ0.

We are tempted to conclude that commonly employed rigid
water models are unable to produce reliable dielectric constants
for ice unless an artificial charge distribution is employed. Most
likely, the results can only be improved by considering both
polarizability and quantum effects. Some models incorporating
polarizability provide fairly good dielectric constants for ice.19

Furthermore, including quantum corrections to simple point
charge models is known to soften the strength of interactions,
changing the properties of the classical model to the equivalent
of a shift of about 20-30 K.57-59 As a result, a reparametrized
model allows for a considerable increase of point charges to
cope for the quantum effect,58 and hence should also contribute
to an increase of the dipole moment.

Anisotropy of the Dielectric Constant. Hexagonal crystals
such as ice Ih are optically uniaxial, having one distinct direction
parallel to the hexagonal axis and two equivalent directions
chosen arbitrarily on the basal plane. Since the simulations are
prepared in an orthorhombic arrangement with the z direction
along the hexagonal axis, this implies that the dipole moment
fluctuation tensor should become diagonal. The solution of eq
14 should yield two identical eigenvalues εxx ) εyy ) ε⊥
corresponding to in plane fluctuations and one distinct eigen-
value εzz ) ε| corresponding to fluctuations along the hexagonal
axis.

In practice, we found the anisotropy of the dielectric response
very difficult to calculate. Already, we expect beforehand that

the variance of individual components should be about 3 times
larger than that of the dielectric tensor’s trace. Not surprisingly,
in our simulations, we find that the xx and yy components may
differ among them as much as between the zz component, and
there seems to be no systematic trend in that difference with
temperature. We conclude that the anisotropy of the dielectric
tensor of these models in ice Ih is small, and, at any rate, smaller
than the statistical uncertainty of our results. These results are
in line with the previous simulation results of Rick and
Haymet;19 i.e., the diagonal components exhibit some differences
within a simulation but do not show a clear temperature trend.

We note that Barkema and de Boer performed simulations
for a related model on a lattice.17 That model predicts in
accordance with the TIP4P models a A/Pna21 low temperature
phase, with a transition at a temperature of 36 K and a
polarization factor at 273 K of about G ) 2.5. In such models,
the sampling is made easier by discretization and the authors
found negligible anisotropy of the polarization factor.

It should be pointed out that the experimental situation is
also not very clear. Kawada reported a significant anisotropy
for ice, with the difference increasing at low temperature.60 Other
authors, however, have not observed any measurable differences
down to 133 K.2,61

Although the anisotropy of ice Ih was difficult to calculate,
other phases of ice do become highly anisotropic. In order to
test the possibility of calculating dielectric anisotropies, we
performed additional simulations of ice V using the TIP4P/Ice
model. Ice V was chosen because it is the phase of ice with
lower symmetry and should therefore facilitate the task. Ice V
has monoclinic symmetry and is therefore an optically biaxial
crystal, with three different dielectric constants, and one of the
principal dielectric axes along the binary symmetry axis.

As with the case of ice Ih, off diagonal elements survive that
are a few percent of the diagonal elements. We have checked
that principal dielectric constants obtained by diagonalization
of the dipole fluctuation tensor differ only by a few percent
from the diagonal elements of the dipole fluctuation tensor
obtained directly from the simulations. Within the error bars,
the results obtained using eq 14 are equal to those obtained
when the net dipole moment is assumed zero a priori. This gives
us confidence in the reliability of our results. We should further
note that, when using the standard Rahman-Parrinello NpT
simulations, one must make sure that the dipole fluctuation
tensor is collected from an orthogonal reference system that
rotates together with the crystal. Otherwise, all information
relevant to the anisotropy is washed away.

Table 2 collects a set of results obtained from 10 independent
simulations of 4 million cycles each at 180 K and 5000 bar for

ε ) 1 + 4πF
kBT

G( µ0

QT
)µ0

2 (19)

TABLE 2: Dielectric Anisotropy of Ice V at T ) 180 K and
p ) 5000 bar as Predicted by TIP4P/Icea

run εxx εyy εzz
1/3Tr(ε)

1 22 172 82 92
3 67 197 48 103
5 37 146 58 80
6 26 159 63 83
8 124 186 75 128
av 34(30) 164(16) 76(16) 94(13)
expt 157(4)

a Selection of five sets of results from an ensemble of 10
independent runs. The row labeled “av” gathers the average of the
10 sets, with the squared variance in parentheses. The last displays
an interpolation from experimental results for metastable samples of
polycrystaline ice V at p ≈ 6000 bar.62

Dielectric Constant of Ice Ih and Ice V J. Phys. Chem. B, Vol. 114, No. 18, 2010 6095



a system size of N ) 224 molecules. Whereas a large scatter in
the results is visible, we find clear indication of three distinct
dielectric constants εxx ) 43, εyy ) 164, and εzz ) 76, with
related variance of 30, 16, and 16. The trace of the tensor yields
ε ) 94 and a smaller variance of 13. Comparing with the
experimental result ε ≈ 157 obtained for the same temperature
and ≈6000 bar (ref 62) suggests again that the simulation result
is far too small. Adopting the standard representation of ice V
in the space group C2/c, with the binary axis along b, the
principal dielectric axes may be chosen such that two lie along
the b and c crystallographic axes, with the third one making an
angle of about 20° with a.

Although we are able to resolve the anisotropy in this case,
we should note that the results gathered here require 20 days
of simulation on 10 processors at 2.4 MHz. This shows explicitly
the difficulty of calculating dielectric anisotropies.

Order/Disorder Transition. Together with the results for
the heating batches, Figure 4 shows the order parameters
obtained during a cooling batch from the disordered high
temperature phase. Clearly, the system remains fully disordered
all the way from 100 to 5 K, since both OF and OA remain
essentially equal to 0. This finding is consistent with two
hypotheses. The first one is that the algorithm works well but
the disordered phase is more stable than either the F/Cmc21 or
A/Pna21 crystallographic structures. Note that, according to the
third law, this would imply that there must be some other more
stable low temperature phase for these models. The second one
is that one of these two phases is the low temperature phase,
but the order/disorder transition is irreversible due to poor
sampling (this being the situation for actual hexagonal ice). In
order to explore this issue further, we have calculated the
enthalpy of F/Cmc21 and A/Pna21 and disordered phases down
to very low temperatures. At constant pressure, the enthalpy
provides the thermodynamic stability criteria as absolute zero
is approached, so this test should allow us to find the most stable
of all three phases.

Figure 8 shows the molar enthalpy as a function of temper-
ature for TIP4P/Ice in the vicinity of absolute zero. The results
are bracketed from below by A/Pna21 and from above by
F/Cmc21. The equation of state for the ordered phases was
obtained with a frustrated heating batch, with loop moves

switched off. The results also include heating batches starting
from either F/Cmc21 or A/Pna21, with loop moves on. The
equation of state then follows the results for the corresponding
frustrated batches, gradually departing and converging to a high
temperature phase just below the results for the frustrated
F/Cmc21 branch. The results indicate that A/Pna21 is the most
stable of the three phases considered at low temperature. Cooling
batches starting from the high temperature phase down to 10 K
are also shown and appear to lie between the results for A/Pna21

and F/Cmc21. Thus, for the TIP4P/Ice model, the relative
stability is A/Pna21 > Ih > F/Cmc21. The enthalpy of A/Pna21

remains below that of the disordered phase up to 50 K, so that
entropy is indeed responsible for the transition. The results on
the relative stability of ordered and disordered phases of TIP4P
and SPC/E models agree with calculations reported previously
by Rick.20

The equation of state results show that the disordering of the
low temperature phase occurs at very low temperature. Those
results agree with findings by Rick for several water models.20

Although the equation of state results described above are far
more reliable, it is interesting to point out that the temperature
behavior of the dielectric constants obtained is also consistent
with such predictions. Figure 9 displays a plot of T against 1/(ε
- ε∞). According to the Curie-Weiss law, such a plot should
be linear, with an intercept on the Curie-Weiss temperature.
The results show that such linear dependence indeed holds up
to about 150 K, with intercepts on the temperature axis that are
below 15 K.

Similar results are obtained for the other TIP4P-like models
(not shown), with the enthalpy increasing in the order A/Pna21

< Ih < F/Cmc21. The qualitative behavior of SPC/E is again
somewhat different, as our results suggest that both A/Pna21

and F/Cmc21 are more stable than Ih at low temperature, with
A/Pna21 again somewhat more stable than F/Cmc21. These
observations are consistent with energy minimization results
obtained by Buch et al. for several rigid point charge models,
which systematically predicted the A/Pna21 phase as more stable
than F/Cmc21. For such rigid point charge models, it seems the
energy is an almost linear function of the cis-trans dimer
populations.63,64 Buch et al. suggested that the only way this
order can be inverted in simple empirical models is by including
a polarization center displaced from the oxygen along the HOH
bisector.63 However, it has been show that rigid point charge

Figure 8. Enthalpy versus temperature isobars (P ) 1 bar) close to
absolute zero. Dashed lines correspond to frustrated heating batches
starting from either A/Pna21 (violet) or F/Cmc21 (green) phases. Red
hatched symbols correspond to heating batches starting from A/Pna21

(squares) and F/Cmc21 (circles). Blue empty symbols correspond to
cooling batches starting from the high temperature branch of the
corresponding heating batches.

Figure 9. Curie-Weiss plot for several water models. The lines along
the symbols are a linear fit of data from 273 to 150 K. For the rigid
point charge models, ε∞ ) 1, while experimentally we assumed ε∞ )
3.2 as in ref 2.
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models such as the NvdE model of Nada and van der Eerden65

predict the F/Cmc21 phase as the minimum energy structure.20

Consistent with observations by Rick and Haymet, we note
here that the results for the energy at low temperature show
considerable system size dependence.20 The results reported here
refer to systems with size N ) 360 and Rc ) 8.5 Å. For smaller
systems (N ) 128), a smaller cutoff radius has to be employed
and the effect is as strong as to change the relative stability of
F/Cmc21 and A/Pna21. Moreover, for such systems, the algo-
rithm is more effective and the transition does become revers-
ible. Buch et al. also observed a considerable energy dependence
on the cutoff distance some time ago.63 Intriguingly, the system
size dependence reported by Buch et al. and Rick does not affect
ab initio density functional methods which suggest that calcula-
tions with about 12-16 molecules provide all of the information
that is needed to predict accurately the ground state energy.66,67

Be as it may, we have checked that this system size dependence
does not affect the high temperature results for the dielectric
constant.

Overall, the results indicate that all four models studied in
this work point to the antiferroelectric A/Pna21 phase as most
stable, with an entropy driven transition to ice Ih at very low
temperature. Whereas this result is at odds with the accepted
experimental situation, which favors the ferroelectric F/Cmc21

phase,12,13 it seems clear that theoretical prediction of the
transition is certainly a major challenge. As Figure 8 shows,
the enthalpy differences between different phases amount to
about 0.010 kcal/mol. Considering the role of polarization,
quantum effects, molecular vibrations, etc., that have been
completely ignored in this study, one can very well accept
discrepancies with experiment of such a small amount.

Buch et al. suggest that this problem can only be remedied
by somehow including polarization effects. They found that an
empirical model with a single polarization center predicts greater
stability of F/Cmc21. Also, ab initio calculations using the
empirical BLYP functional predict the F/Cmc21 phase as the
most stable phase and a phase transtion at about 98 K.66,67

However, this result must at this point be considered with some
care, since the BLYP functional predicts a melting point of ice
Ih of 411 K (140 above the experimental value).68 It is not
obvious why a functional that predicts incorrectly the experi-
mental melting point of ice Ih should be so accurate in the
prediction of other much more subbtle phase transitions involv-
ing also ice Ih.

Conclusions

In this paper, we have calculated the dielectric constant of
ice for several water models (TIP4P/Ice, TIP4P/2005, TIP4P,
and SPC/E). Consistent with previous findings for the TIP4P
and SPC/E models,19,21 we find that also TIP4P/Ice and TIP4P/
2005 highly underestimate the dielectric constant.

The results of this work show that the dielectric constants
correlate with the dipole to quadrupole ratio but surprisingly
not quite with the dipole moment. In order to fully understand
this observation, one needs to consider separately the depen-
dence of the dielectric constant on the dipole moment and the
polarization factor.

The polarization factor of ice Ih is fairly similar for the entire
TIP4P class of models, with G ≈ 2.5. For the three models
with a similar value of G, the dielectric constant varies smoothly
with the dipole moment. The SPC/E model predicts very
different angular correlations, with G ≈ 1.8 only. These
correlations seem to depend nontrivially on the dipole to
quadrupole ratio, with all of the TIP4P models exhibiting very

similar values of such a ratio. This large difference in G between
the TIP4P and SPC/E models is somewhat compensated by the
relatively large dipole moment of the latter.

We have attempted to calculate the anisotropy of the dielectric
response in ice Ih. Our results show that this is a very difficult
task that requires extremely lengthy simulations. We have been
unable to identify any anisotropy for the TIP4P/Ice model, which
was studied somewhat more extensively than the others. We
believe the anisotropy of this model is below the statistical
accuracy of our results for the diagonal elements of the dielectric
tensor, which is about 10%. We have been able to identify a
large anisotropy for ice V, however. For these optically biaxial
crystals, the principal dielectric constants are 34, 164, and 76
at a temperature of 180 K and 5000 bar.

As noted previously for the TIP4P and SPC/E models,20 the
TIP4P/Ice and TIP4P/2005 models undergo an order/disorder
transition at very low temperatures. All four models predict that
the antiferroelectric Pna21 phase conjectured by Davidson and
Morokuma8 is of lower energy than the ferroelectric Cmc21

phase favored by experiments.12,13 The TIP4P family actually
predicts the ferroelectric phase to be of higher energy than
samples with quenched disorder. In view of the large discrep-
ancies of the dielectric constants for ordinary ice, these
predictions might well be in error, however. Molecular polariza-
tion and quantum effects could play a significant role. This point
remains to be studied, but accounts of all of these effects will
certainly require a major computational effort.
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