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Thermodynamic Properties of Nonpolar Molecular Fluids of Different Geometries from
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Carlos Vega, Santiago Lago,* and Paz Padilla
Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense, 28040 Madrid,

Spain (Received: June 28, 1991)

A perturbation theory for molecular nonpolar fluids is proposed. Intermolecular interactions are modeled by the Kihara
potential. The potential parameters are obtained by fitting the theoretical vapor pressure and bubble density at a given
temperature to the corresponding experimental values. We have studied several fluids involving different geometries as ethane,
2-butyne, propane, ozone, cyclopropane, isobutane, and benzene. The calculations have been performed with a personal
computer and good results were found for vapor pressures, bubble densities, enthalpy of vaporization, and equation of state
for all the substances studied. The theory is, therefore, suitable for practical applications.

I. Introduction

Advances in statistical mechanics during the 1960s and 1970s
allow us to determine with great accuracy thermodynamic
properties of simple liquids.!2 Thus, for noble gases, Malijevsky
et al.? have shown that it is possible to determine their thermo-
dynamic behavior from theoretical grounds. The high accuracy
of the results makes them useful for practical applications. For
molecular liquids, important progress has been made during the
last decade, especially on integral equations and perturbation
theories although the quality of the results is not comparable to
that of simple liquids yet.* Perturbation theory** appears as
the best candidate for practical applications since it is both ac-
curate and fast from a computational point of view. Accurate
perturbation theories are now available for several kinds of mo-
lecular fluids such as spherical or quasi-spherical polar fluids*$
and for anisotropic nonpolar fluids interacting through a site—site
potential model.”® The site-site potential model presents,
however, the important disadvantage of a quadratic increase of
the number of interactions between a pair of molecules as the
number of sites per molecule grows. Therefore, the computational
time required for calculations increases quadratically with the
molecular complexity and that prevents an easy extension of the
theories to complex molecules.

In 1951, Kihara! proposed a pair potential which only depends
on the shortest distance p between the molecular cores. The cores
are chosen to reproduce the molecular shape. Thus, in this model
the pair interaction is described by only one interaction regardless
of the molecular complexity. Although the time required for the
evaluation of p increases slightly with the molecular complexity
this increase is far from being quadratic. Hence, the interest of
using Kihara potential as an effective pair potential for complex
molecules. The simulation studies performed for the Kihara model
in our laboratory,!!"!? either by Monte Carlo (MC) or by mo-
lecular dynamics (MD), have shown that it is easy to carry out
simulations of these models and that Kihara potential constitutes
a good effective pair potential for the liquid phase. The obtained
results were not worse than those obtained with the more popular
site-site model. Simulation studies yield exact results for the
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studied model but they are computationally expensive. Therefore,
for practical applications, it is important to develop less demanding
theoretical approaches. Thus, we have recently extended the
perturbation theory proposed by Fischer for the site-site model,
first to Kihara linear models'* and then to Kihara angular
models.!> Moreover, the extended theory has already provided
excellent results for the vapor-liquid equilibrium of propane.'
The goal of this work is to show that good results can be also
obtained for the equation of state and the vapor-liquid equilibrium
of nonpolar fluids of any molecular geometry by using the per-
turbation theory for the Kihara model. The advantage of our
method when compared to empirical or semiempirical methods
of studying the liquid state is that it is well defined on theoretical
grounds, allowing systematic improvement. On the other hand,
although the programming effort is still considerable, calculations
can be carried out in a personal computer. The perturbation theory
we shall present is limited to nonpolar (without important dipole
or quadrupole moment) and nonflexible fluids. For polar and
flexible fluids an additional theoretical effort within statistical
thermodynamics is still necessary. The theory, however, can be
still applied to a wide variety of fluids. We shall apply it to ethane,
propane, cyclopropane, 2-butyne, isobutane, and benzene.

The scheme of the paper is as follows. In section II we shall
describe the perturbation theory we shall use. Section III is
devoted to the obtained results and section IV gives the conclusions
of the work.

II. Theory

The perturbation theory we shall use is quite close to that
formulated in the ref 15. We shall give here the main features
of the theory and how it can be extended to any geometry and
refer to the reader to ref 15 for a more detailed discussion. The
interaction potential is assumed pairwise additive and the pair
interaction as proposed by Kihara'? is given by

u(p) = 4el(a/p)'2 - (a/p)"] (1)

where ¢ is the well depth of the potential, ¢ is a size parameter,
and p is the shortest distance between the cores. The molecular
cores are represented by a set of rods arranged to reproduce
approximately the molecular shape. Then p will be obtained as

p = minimum {p} (2)

where {p;} stands for the set of shortest distances between the rod
labeled as i of molecule 1 and rod labeled as j of molecule 2.
Efficient algorithms for the evaluation of p; are given else-
where.!c!®  We shall split the full potential into a reference system
u, and a perturbation part u; according to the Weeks—Chan-
dler-Andersen theory!® (WCA), that is, by including all the
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repulsive forces into the reference system. The reference system
is thus defined as'4%

Ug = u(rlz,wl,(l)z) + ¢ p < 21/60' (3)
p > 2l/6g (4)

The perturbation term u, is obtained as u; = u — u,. By
expanding the residual part of the Helmholtz free energy of the

Kihara system about that of the reference system one gets up to
second order

u0=0

a0 AT A A 5
~kT = wkr T ner Tt )
Now the following approximations are made:
1. The structure of the reference system, given by the pair
correlation function gy(1,2), is approximated by?!

8o(r12,w1,w7) = exp(=Buig(r12,w1,w2))Yram(”12) (6)

where yram(7) is the background function of the spherical RAM
system. The potential of the RAM system & 4\(7) is defined
by

exp(—BPram(r12)) = (exp(=Bug(ri2,w;,w))) ), M

where the subscript g stands for unweighted orientational average.
At every temperature and density ygam(7) is obtained by solving
the Ornstein—Zernike equation (OZ) with the Percus-Yevick?
(PY) closure for the potential ®gan (7).

2. The residual free energy of the reference system is obtained
by equating to that of a hard equivalent system. The equivalent
hard system is a hard body obtained by keeping constant the
lengths of all the rods of the core and with a hard diameter given
by

n/2 [ (exp(-Bug) = exp(-Bun(dw)) ) yram(ri dr =0 (8)

where » is the number density. By choosing the diameter of the
hard body dy according to eq 8 the first term of the BLIP ex-
pansion of the reference system about the hard system vanishes.!"5

if is evaluated from thermodynamic integration of the equation
of state of hard bodies proposed by Boublik. AJ* can be then
written as'®2

Al /NKT = 1)(6‘_1+02_77) +cIn(l-19) )
(1-mn)?
where the constants ¢,—c; are given by
¢ = 6a? - 2a (10)
¢; = (-15a% + 9a) /2 1)
€3 =60-5a~1 (12)

The nonsphericity parameter?* o and the packing fraction 7 are
defined by

By/Vy = (1 + 3a) (13)
n=nVy (14)

where B,y and Vy are the second virial coefficient and the volume
of the hard body, respectively.

3. With the approximation to gy(1,2) given by eq 6 the first
order perturbation term A, is written as

A /N=2 mrjr(ul exp(=Bug) ) gyram(ri2)r1y* dry, (15)

4. The second-order perturbation term A, is obtained from an
extension to molecular systems of the macroscopic compressibility
approximation proposed by Barker and Henderson. A, is then
given by!52*
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A,/ NKT =
-wn{ dn =
T » . J; (u,? exp(=Bug) ) gyram(r12)r12? dryy (16)
where (9n/dp), stands for the variation of density with pressure
at constant temperature of the reference system. (dn/dp), can
be easily obtained from the equation of state of hard bodies of
Boublik.
Steps 14 constitute the perturbation scheme of this work. The
value of 4™ is then obtained for any wished temperature or
density. The pressure can be calculated from the thermodynamic

relation
8(A™ /Nk
Z=1+((__L_n) n* (17)

on*
T

where n* = ng’,

Liquid-vapor equilibrium can be studied by treating the liquid
with perturbation theory and the gas with the second virial
coefficient B,. It is a good approximation to describe the gas
behavior with B, provided that T/T, < 0.8, where T is the critical
temperature of the fluid studied. The bubble density » and the
density of the gas n, at coexistence at a given temperature can
be calculated by solving the nonlinear system of equations:

mZ, = (1 + Byny)n, (18)
Af*/NkT + Z, + In (n) = Byng + (1 + Byng) + In (n) (19)

Once the densities of liquid and gas at coexistence are known,
the enthalpy of vaporization H, can be evaluated from the relations

1 1
H, = Hy- H = (Us - U +pv(”—g - E) (20)
dB
Us = - nzm( d’(TD) (1)

The residual internal energy of the liquid U™ can be estimated
by assuming that the structure of the reference system is very close
to that of the full potential (a good approximation at high densities)
from the relation:!%!3

U /N = 2an { (u exp(-Bu) yram(ridris? dri (22)

All the orientational averages ({ ),) of the theory are evaluated
using Conroy?¢ multidimensional integration method with 3022
orientations for every value of 7. The evaluation of these averages
typically requires between 4 and 9 h depending on the molecular
complexity in a personal computer IBM PS/2 80041 with an
INTEL 80387 mathematical coprocessor. In this time the ori-
entational averages can be evaluated at eight different tempera-
tures. The resolution of the OZ equation is performed with the
efficient algorithm proposed by Labik et al.?’ and requires about
15 s at a given temperature and density in the same computer.
The evaluation of the vapor-liquid equilibrium consumes only a
few seconds. Therefore, the speed of the computation of the
equilibrium properties depends mainly on the speed of evaluation
of the orientational averages.

An appropriate description of the molecular shape is very im-
portant to achieve good results for vapor-liquid equilibrium and
for the equation of state (EOS). Consequently, the choice of the
molecular core must be done with care. In this work, ethane,
2-butyne, ozone, propane, cyclopropane, isobutane, and benzene
are studied. The used cores are shown in Figure 1. So, to
reproduce correctly the linear geometry of ethane and 2-butyne
their cores are taken as a rod (Figure 1a). Two fused rods forming
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Figure 1. Molecular cores used in this work. The values of the length
of the rods L* and of the internal angles A for each substance are shown
in Table I. (a) Core for ethane and 2-butyne. (b) Core of propane and
ozone. (¢) Core of cyclopropane. (d) Core of isobutane. (¢) Core of
benzene.

an angle equal to the experimental O—O-O angle and C-C-C
angle are taken for ozone and propane, respectively (Figure 1b).
An equilateral triangle corresponding to the geometry of the three
atoms of carbon is taken for cyclopropane (Figure 1c) and a
triangular pyramid for isobutane (Figure 1d). Finally, for benzene
we shall take three unconnected rods arranged in such a way that
the extremes of the rods form a regular hexagon (see Figure le).

Once we have explained the theory and the choice has been
made for the molecular cores it is necessary to specify the potential
parameters we shall use for every compound. In principle, the
problem of the determination of the potential parameters is ex-
clusively a quantum-mechanics problem.%? Unfortunately, there
is not at the moment accurate ab initio pair potentials for the
molecules we study in this work. Moreover, to determine with
high precision the thermodynamic properties in the liquid state
it is necessary not only to know the pair potential but the
three-body potential too. Malijevsky et al. have shown that in
the case of noble gases the contribution of three-body forces to
the internal energy is of about 5% and much higher to the
pressure.’ The usage of ab initio two and three-body potentials
for molecular systems is at the moment a dream. A way of
avoiding partially this problem is to conceive the pair potential
as an effective pair potential rather than the true pair potential.
The effective pair potential will include in an averaged fashion
the three-body effects. Within this perspective it seems legitimate
to determine the potential parameters by fitting a calculated
property to its experimental value in the liquid range. To that
purpose we shall follow the procedure already used in refs 9 and
30. We shall fix from the beginning the molecular geometry.
That means that all the angles of the model and the value of L*
= |/q, where [ is the length of the rods of the core, will be fixed.
In the case of benzene / stands for the length of the outer rods.
Once the molecular geometry is fixed (L*, and angles), the values
of ¢ and ¢ should be determined. At that point, the knowledge
of the experimental bubble density and of the vapor pressure at
a given temperature T, is needed. We shall proceed then in the
following way:

(a) The vapor-liquid equilibrium is studied at several reduced
temperatures T* = T/(¢/k). The reduced bubble density n* and
the reduced vapor pressure p* = p/(kT/q%) for every value of
T* are then obtained.

(b) A trial value of ¢ is chosen and the corresponding 1™, is
obtained.

(c) n* and p* are evaluated at T™,,, with the data of step a.

(d) Bringing together n* to the experimental bubble density
and p* to the experimental vapor pressure, two values of ¢ are
obtained, one arising from the density correspondence and another
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TABLE I: Potential Parameters Used in This Work

substance L* A/deg o/A (¢/k)/K
ethane 0.4123 3.5679 305.75
2-butyne 1.10 3.3465 653.57
propane 0.4123 109.5 3.5587 427
ozone 0.38 116 2.838 328.41
cyclopropane 0.50 60 3.2939 452.65
isobutane 0.4123 109.5 3.5881 506.82
benzene 0.58 2.926 887.64
TABLE II: Vapor-Liquid Equilibrium of Ethane’
Vapor Pressures
T/K p*°/MPa PFT/MPa
90.348 1.13 X 107 222 X107
100 1.1 X107 1.87 X 1078
120 3.5x 10 5.12 x 107
150 9.7 X 1073 1.07 X 1072
180 0.079 0.077
210 0.334 0.319
230 0.700 0.650
240 0.967 0.888
Bubble Densities
T/K n**P/(mol/L) nFT/(mol/L)
90.348 21.68 21.82
100 21.34 21.44
120 20.60 20.63
150 19.47 19.45
180 18.28 18.29
210 16.97 17.11
230 16.04 16.25
240 15.46 15.80
Dew Densities
90.348 1.51 x 10 2,96 X 107
100 1.33 X 10°° 2.25 X 1075
120 3.56 x 107 5.13 x 107
150 7.84 X 1073 8.70 X 107
180 5.45 x 1072 5.17 X 1072
210 0.209 0.196
230 0.425 0.382
240 0.585 0.516

aPT = perturbation theory with the potential parameters of Table I.
Experimental data from ref 32.

from the pressure correspondence.

(e) If these two values of ¢ are identical then ¢ and ¢ are taken
as the potential parameters. If the two values of ¢ are different
then we return to the step b with a different trial .

In the next section the results obtained with the perturbation
theory presented here for different fluids are shown.

III. Results

The parameters obtained from the procedure described in the
previous section are shown in Table I for ethane, 2-butyne, ozone,
propane, cyclopropane, isobutane, and benzene. For ethane,
propane, and isobutane we have chosen L* = 0.4123 which is the
optimum value of L* for propane as obtained from MD studies.'?
As the chemical bonds are similar for these three substances, the
same value of L* is taken for all of them. Furthermore, the values
of o obtained for these three hydrocarbons are also similar as in
the previous assumption. The final value of the length of the rod
| = L*¢ is about 1.47 A which is close to the experimental C-C
bond length of 1.54 A. The values of L* assumed for ozone,
benzene, and 2-butyne were estimated from the molecular ge-
ometry considering the experimental bond length and the ap-
proximate sizes of the constituting groups. In the most of cases
the length of the rods is close to the experimental bond lengths.?!

Table II contains the results for the vapor-liquid equilibrium
of ethane obtained from the theory of this work along with ex-
perimental data.’> The studied range of temperatures runs from

(31) Handbook of Chemistry and Physics; Weast, Robert C., Ed.; CRC
Press: Boca Ratdn, FL, 1986.
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TABLE III: Second Virial Coefficient B, of Ethane As Obtained
from Experiment® and As Given by the Kihara Potential with the
Potential Parameters of Table I

T/K B,***/(cm? /mol) B,/(cm?*/mol)
210 =370 5 -343
240 -283 %3 -267

TABLE IV: Vaporization Enthalpy of Ethane Determined from
Perturbation Theory (PT) and from Experiment’ (Ref 32)

T/K H™/(kJ/mol) H?T/(kJ/mol)
100 17.66 16.61
120 16.92 16.00
140 16.26 15.39
160 15.58 14.79
180 14.86 14.17
200 14.05 13.57
220 13.09 12.67
240 11.90 12.13

4The potential parameters used are shown in Table I.

TABLE V: As Table II but for Cyclopropane’
Vapor Pressures

T/K P/ MPa Pp**/MPa
193.15 7.42 X 1073 8.92 x 107
213.15 2.64 X 1072 2.91 X 1072
233.15 4,52 X 1072 7.77 X 1072
243.15 0.114 0.118
273.15 0.345
293.15 0.631 0.621
313.15 1.065 1.04
333.15 1.682 1.63

Bubble Densities

T/K n*®/(mol/L) nFT/(mol/L)
193.15 17.47 17.56
213.15 16.92 17.08
233.15 16.36 16.55
243.15 16.09 16.27
273.15 15.48
293.15 14.87 1491
313.15 14.15 14.31
333.15 13.31 13.67

Dew Densities
193.15 5.58 x 1072
213.15 1.66 X 1072
233.15 4,10 X 1072
243.15 6.05 X 1072
273.15 0.163
293.15 0.314 0.283
313.15 0.484 0.464
333.15 0.775 0.736

?Experimental data from refs 38-40.

the triple point (T, = 90.348 K) to T = 240 K (the critical
temperature is 305.42 K). The results for the vapor pressure can
be considered as satisfactory taking into account that the vapor
pressure runs over six orders of magnitude in the studied range
of temperatures. The calculated liquid and gas coexistence
densities agree also well with the experimental data.

In Table III the calculated values of B,(T) along with the
experimental values®® are shown. The calculated values of B, are
larger than the experimental ones. This also holds for the rest
of the fluids studied in this work. The explanation of this dis-
crepancy is that when the pair potential parameters are determined
from liquid side properties (as we are indeed doing) we get an
effective pair potential rather than the authentic pair potential.
The net contribution of three-body forces to the internal energy
is positive and therefore the values of ¢ of the effective pair po-

(32) Younglove, B. A.; Ely, J. F. J. Phys. Chem. Ref. Data 1987, 16, 577.
(33) Dymond, J. H.; Cholinski, J. A.; Szafranski, A.; Wyrzykowska-
Stankiewicz, D. Fluid Phase Equilib. 1986, 27, .
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TABLE VI: As Table II but for 2-Butyne®
Vapor Pressures

T/K p™/MPa PT/MPa
240.90 6.12 X 1073 7.55 X 1072
260 1.78 X 1072 1.97 X 1072
280 4.55 X 1072 4,57 X 1072
290 6.88 x 1072 6.56 X 1072
300 0.101 0.093
320 0.200 0.172
340 0.367 0.295
390 1.187 0.892

Bubble Densities

T/K n**/(mol/L) nPT/(mol/L)
240.90 13.74 13.83
260 13.40 13.43
280 13.03 13.03
290 12.84 12.83
300 12.64 12.63
320 12.24 12.23
340 11.83 11.82
390 10.76 10.78

2Experimental vapor pressures are from ref 41 and experimental
bubble densities from ref 42.

TABLE VII: As Table I but for Ozone®
Bubble Densities

T/K nFT/(mol/L) n**P/(mol/L)
77.75 33.78 33.62*
90.15 32.92 32.73*

110 31.57

130 30.27

161.25 28.29 28.29

180 27.11

190 26.47

200 25.84

“Experimental data from ref 31 of the main text. The experimental
densities with asterisk correspond to the given temperature and to the
pressure of 0.1013 MPa.
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Figure 2. Bubble and dew densities at coexistence for ethane, propane,

isobutane, and benzene as obtained from the perturbation theory of this
work (solid line) and from experiment (dots).

tential are usually smaller than those of the true pair potential.
Thus, the reduced temperature obtained with this ¢ is larger than
the reduced temperature obtained with the true well depth and,
therefore, B, is also larger. In Table IV the enthalpy of vapor-
ization as obtained from theory and from experiment is shown.
The agreement is now slightly worse here although it is still
reasonable.

The vapor-liquid equilibrium of cyclopropane is illustrated in
Table V. Again the results can be considered as satisfactory.
The quality of the results is very good given the high anisotropy
of this molecule and comparable to that obtained by Lustig® with
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TABLE VIII: As Table II but for Benzene®
Vapor Pressures

T/K p™*/MPa pFT/MPa
295 1.10 X 1072 1.15 x 102
315 2.63 X 1072 2.82 X 1072
335 5.57 X 1072 5.74 X 1072
355 0.107 0.106
375 0.189 0.183
395 0.313 0.298
415 0.491 0.461
450 1.07 0.908
Bubble Densities
T/K n°*®/(mol/L) nPT/(mol/L)
295 11.23 11.19
315 10.95 10.92
335 10.67 10.66
355 10.39 10.40
375 10.10 10.13
395 9.79 9.87
415 9.47 9.59
450 8.87 9.11
Dew Densities
295 4.50 x 1073 473 X 107
315 1.02 X 1072 1.09 X 1072
335 2.05 X 1072 2.12 X 102
355 3.75 x 1072 3.75 X 1072
375 6.41 X 1072 6.23 X 1072
395 0.103 0.099
415 0.159 0.150
450 0.311 0.297

9Experimental data from ref 43.

the site-site model. In Table VI the results obtained for 2-butyne
are presented. Table VII contains the bubble densities of ozone
from theory and experiment. We have also evaluated its second
virial coefficient for three temperatures, T = 90.15, 161, and 200
K yielding the values B, = —=1652, -388, -250 cm?/mol, respec-
tively. To our knowledge there is no reported values of B, for
ozone. In Table VIII the vapor-liquid equilibrium data for
benzene are presented. In spite of the larger complexity of this
molecule when compared to the previously studied substances,
the agreement remains again satisfactory.

In Figure 2 the coexistence densities for ethane, propane, iso-
butane, and benzene from theory and from experiment are dis-
played. This figure summarizes the picture of the vapor-liquid
equilibria obtained from the perturbation theory of this work. It
can be concluded that perturbation theory provides a correct
prediction of vapor-liquid equilibrium of nonpolar anisotropic
fluids.

The results presented above prove the predictive power of the
theory for determining coexisting properties. The only required
information, involved in the determination of the potential pa-
rameters is the knowledge of vapor pressure and bubble density
at a given temperature. Once the parameters are determined, the
quality of the results holds in a wide range of temperatures,
provided that the molecular shape is correctly taken into account
within the model. Now the quality of the results can be globally
analyzed. To that purpose we shall define the average deviation
A as

L

Ld IX‘ lc—x-:x I
PR S (23)
n =1 Xlexpt

In Table IX the values of A for the different studied substances
and for several properties are listed. The bubble densities have
an average accuracy of about 0.5%. Vapor pressures and va-
porization enthalpy are determined within an accuracy of about
5%. The second virial coefficient shows a typical error of about
8% due to the impossibility of describing simultaneously liquid
and gas phases with effective pair potentials. The errors of the
theory presented here are comparable to those obtained from
empirical or semiempirical equations of state. Thus, Peng-
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TABLE IX: Values of A (See Eq 23) for the Second Virial
Coefficient B,, Enthalpy of Vaporization Hy, the Logarithm of the
Vapor Pressure in MPa In (p,), and the Bubble Density n*

AB, AH, Aln(p) An AT/K
propane 4.0 5.5 1.7 1.0 22§
ethane 6.5 4.4 6.1 0.7 150
ozone * * * 0.3 90
cyclopropane 11.0 1.3 38 1.1 140
isobutane 7.8 5.3 5.6 0.5 175
benzene 15 5.6 2.8 0.7 155
2-butyne 1.1 8.9 6.2 0.2 150
average 7.6 5.2 4.4 0.6 155

9AT is the range of temperature in which the substance has been
studied. An asterisk means that experimental data are not available.

100
— Experiment
ETHANE o ° Theory L*:0.41
o 4 Theory L*=050
80 A
o -]
a
E SOL °
a
E -]
e Wk a
o
o" T:=120K
20+
a)
0 1 I i
20 22 24
100

Experiment
80F © Theory L*=04!

PROPANE

QC_’ 60 -
>3
S~
a L0 A
T:280 K
20+
0 L
1 12 13 14 17
— Experiment &
70+ © Theory L*:=058
a Theory *2068
BENZENE ‘
£ S0 T
=
~ o
& 30t A T:395K 72295 K
10 r c)
i 1 a | L
9.6 10.0 10.4 10.8 11.2 ne 120

Density /{mol /1)

Figure 3. Pressure as a function of the density for two selected isotherms.
Experimental data (solid line) and perturbation theory (circles). (a)
Ethane; (b) propane; (c) benzene.

Robinson3* equation of state yields errors of about 2% in vapor
pressure and of about 8% in bubble densities.> The average
accuracy of Soave-Redlich-Kwong?¢ equation of state is of about
2% for vapor pressure and of 15% for bubble densities.3* Taking
into account these results the quality of the results summarized
in Table IX is very good. In the case of ethane, 2-butyne, and
benzene we believe that the inclusion of a molecular quadrupole
in the potential model would lead to an improvement of the results.
Unfortunately, there are not at the moment good perturbation
theories for polar nonspherical fluids which enable one to evaluate

(34) Peng, D. Y,; Robinson, D. B. Ind. Eng. Chem. Fundam. 1976, 15, 59.
(35) Trebble, M. A.; Bishnoi, P. R. Fluid Phase Equilib. 1986, 29, 465.
(36) Soave, G. Chem. Eng. Sci. 1972, 27, 1197.
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Figure 4. Residual enthalpy H of propane as a function of the density
for two selected temperatures as obtained from theory (solid line) and
from experiment (dots) (a) 7 = 234.11 K; (b) 7 = 323.78 K.

correctly the contribution of the quadrupole to thermodynamic
properties.

The perturbation theory proposed in the present work not only
allows the determination of vapor-liquid equilibrium but also of
the equation of state and of the rest of thermodynamic properties.
Figure 3 shows the pressure as a function of the density for two
different isotherms. The results correspond to ethane, propane
and benzene. The description of the equation of state for these
three substances is very good even at high pressures. The slope
of the isotherms of Figure 3 is very sensitive to the molecular
anisotropy. The nonsphericity parameter « defined in eq 13 gives
an idea of the molecular anisotropy. The inclusion of the molecular
shape appears then as necessary for an accurate evaluation of
pressure in a wide range of temperatures and densities. In the
theory of this work the molecular geometry is included in the model
from the beginning because we choose the core as close as possible
to the real shape of the molecule. In semiempirical cubic EOS
the anisotropy is commonly introduced through the acentric
factor.” The reduction of the shape of the molecule to a simple

The Journal of Physical Chemistry, Vol. 96, No. 4, 1992 1905

factor, although useful because of its simplicity leads necessarily
to errors in semiempirical theories when wide regions of the phase
diagram are considered.

Perturbation theory provides residual Helmholtz free energy
A as a primary property. Entropy, enthalpy, internal energy, Gibbs
free energy, and EOS can be easily evaluated from A4 by using
well-known thermodynamic relations. As an example we show
in Figure 4 the residual enthalpy H of propane as a function of
the density for two isotherms. At every temperature the smallest
density corresponds to the bubble density. As we can see, the
results for H also are good.

IV. Conclusions

The theory presented in this paper for molecules interacting
through Kihara potential yields a satisfactory description of va-
por-liquid equilibrium, equation of state, and thermodynamic
properties of molecular liquids. The theory can be applied without
restrictions of geometry and the only condition is that the molecule
is basically nonpolar. For the studied substances, ethane, 2-butyne,
propane, ozone, cyclopropane, isobutane, and benzene, good results
in a wide range of temperatures for all the cases are found. The
only required experimental information is the bubble density and
vapor pressure at a given temperature as well as the molecular
geometry.

The calculations can be performed with a personal computer.
The quality of the results is comparable to or even better than
those from empirical equations of state commonly used in chemical
engineering. The theory of this work presents the advantage when
compared to these empirical treatments that it is based on
well-defined grounds and it allows its systematic improvement.

For molecules with important dipole or quadrupole moment
it is still necessary to develop new theoretical approaches, and this
problem is receiving at present much attention within statistical
mechanics.

The development of perturbation theories for pure fluids is of
great interest by itself. Nevertheless, the most of technical ap-
plications deals with mixtures and, therefore, the evaluation of
their thermodynamic properties is a very challenging task. The
extension of the present theory to mixtures will be shown in a later
paper.*
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