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a b s t r a c t

Here we provide FORTRAN source code to facilitate the calculation of the ‘‘Noya–Vega–McBride’’ (NVM)
rotational propagator for asymmetric tops [E.G. Noya, C. Vega, C. McBride, J. Chem. Phys. 134 (2011)
054117] for a given value of PT and A, B and C , where P is the number of beads, T is the temperature,
and A, B and C are the rotational constants for the system in question. The resulting NVM propagator
calculated by the code provided can then be used to obtain the quantum rotational energy during a path
integral Monte Carlo simulation of rigid bodies.

Program summary

Program title: NVM
Catalogue identifier: AEOA_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEOA_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 624734
No. of bytes in distributed program, including test data, etc.: 9890026
Distribution format: tar.gz
Programming language: Fortran.
Computer: Any.
Operating system: Any.
RAM:<2 Mbytes
Classification: 16.13.
External routines: Lapack routine, dsyev (code included in the distribution package).
Nature of problem: Calculation of the NVM rotational propagator
Solution method: Fortran implementation of the NVM propagator equation.
Additional comments: Example and test calculations are provided.
Running time: 2–200 hours. Two examples are provided. The PT_1497 example will take approximately
11 hours to run. The quick_test should only take a few minutes.
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✩ This paper and its associated computer program are available via the Computer
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1. Introduction

Nuclear quantum effects are important for low atomic masses
and at low temperatures, and in those cases they should be
explicitly included in the description of the system. The path
integral formalism proposed by Feynman and Hibbs [1] allows
one to incorporate such quantum effects in simulations by
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representing molecules as ring polymers consisting of P ‘‘beads’’.
The appropriate value of P depends on the temperature and on
the mass of the atoms. Thanks to this the basic scheme used for
classical simulations can be relatively easily adapted to perform
quantum simulations [2,3].

Since many condensed matter properties depend mainly on
the intermolecular rather than intramolecular vibrations, several
schemes have been proposed to perform path integral simulations
treating molecules as rigid tops, either approximately or exactly
(in the limit of infinite P) [4–9]. This permits a significant saving
in computational time since the high frequency intramolecular
vibrations require the use of ring polymers with a larger
number of beads, thus considerably increasing the computational
cost.

Müser and Berne derived a path integral formalism for
rigid rotors [6], in which the translational degrees of freedom
(coordinates of centre of mass) are treated using the usual
path integral formalism, and where the orientational degrees of
freedom (Euler angles) are treated using a rotational propagator,
which is exact for spherical and symmetric tops. Recently we
extended this formalism to the more general case of asymmetric
tops [8], and used it to study many properties of water,
using a rigid non-polarizable model, namely TIP4PQ/2005 [10].
This facilitated the study of isotopic effects on the melting
temperature and the temperature of maximum density [11] as
well as the phase diagram of water including many of its solid
phases [12].

In this contribution we provide FORTRAN source code which
calculates the rotational propagator for asymmetric tops [8] for a
given value of PT and A, B and C , where P is the number of beads, T
is the temperature, and A, B and C are the rotational constants for
the system in question. The computational cost of evaluating the
propagator is quite high, so it is convenient to calculate it over a
grid of Euler angles (θ, φ, χ) and store it in a file which can be read
by theMonte Carlo code. Note that this propagator depends on the
temperature, on the rotational constants of the molecule, in other
words the magnitude and distribution of mass, and on the number
of beads to be used in the simulations. The number of beads
needs to be chosen specifically for each system and temperature,
the number of beads being larger the more quantum the system
is. In what follows we provide the equations that are needed to
evaluate the rotational propagator for asymmetric tops and also
provide ways to save time calculating the propagator. More details
about the derivation of the propagator as well as examples of its
application to study quantum effects in water can be found in
Refs. [8,11–13].

2. The equations

The density matrix for an individual free rotor can be evaluated
using the following expression [7,13]:

ρ
t,t+1
rot (β/P) =


ωt
exp−

β

P
T̂rot

ωt+1


(1)

where β = 1/kBT , T̂rot is the rotational kinetic energy operator
and P is the number of beads. The eigenfunctions of the angular
position |ωt+1

⟩ can be expanded in a basis set of the eigenfunctions
of the top in question, in this case the asymmetric top |JMK̂⟩:

|ωt+1
⟩ =


JMK̂

⟨JMK̂ |ωt+1
⟩|JMK̂⟩. (2)

Note that the integer K̂ is not a true quantum number (i.e., it does
not quantise any observable) it is simply a number used to label
the (2J + 1) possible values of the energy available for each value
of J andM . This leads to [8]
ωt
exp−

β

P
T̂ rot

ωt+1
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JMK̂


ωt

|JMK̂

exp


−

β

P
E(JM)

K̂

 
JMK̂ |ωt+1


. (3)

The location of the laboratory frame used to define the Euler angles
is arbitrary, and so we can choose a laboratory frame such that the
Euler angles of bead t are zero (i.e., Ω t

= (θ t , φt , χ t) = (0, 0, 0)).
This leads to:

|ωt
⟩ = δ(Ω − Ω t) = δ(Ω). (4)

A tilde is added to Ω (i.e., Ω̃) in order to remind ourselves that the
Euler angles are defined in a laboratory frame in which the Euler
angles of bead t are zero. Thus Ω̃ t+1 are the Euler angles of bead
t + 1 in this arbitrary frame, i.e.

|ωt+1
⟩ = δ(Ω̃ − Ω̃ t+1). (5)

This expression can be further simplified by expanding the eigen-
functions of the asymmetric top |JMK̂⟩ in a basis set formed by the
eigenfunctions of the symmetric top (|JMK⟩):

|JMK̂⟩ =


K

AJM
K̂K

|JMK⟩ (6)

where the eigenvectors AJM
K̂K

can be calculated solving a secular de-
terminant for each value of J and M whose expression is given in
Section 2.2.

The eigenfunctions of the symmetric top are given by [14]

ΨJMK (θ, φ, χ) =


2J + 1
8π2

1/2

exp(iMφ)dJMK (θ) exp(iKχ) (7)

where dJMK (θ) represents Wigner’s reduced d-matrix, which is
given by [15–17]:

dJMK (θ) = [(J + M)!(J − M)!(J + K)!(J − K)!]1/2

×


χ

(−1)χ

(J − M − χ)!(J + K − χ)!(χ)!(χ + M − K)!

× [cos(θ/2)](2J−2χ+K−M)
[− sin(θ/2)](2χ+M−K) (8)

where the sum over χ is restricted to those values that do not lead
to negative factorials. The d-matrix is calculated in the subroutine
wignerCalc.f90.

Using Eq. (6), together with Eq. (2) and the properties of the
Wigner function (Eqs. (7) and (8)), the exact rotational propagator
for rigid asymmetric tops, as a function of the number of beads (P),
and the temperature (T ), can be written:

ρ
t,t+1
rot (β/P, θ̃ , φ̃, χ̃) =

∞
J=0

J
M=−J

J
K̂=−J


2J + 1
8π2


A(JM)

K̂M

× exp


−
β

P
E(JM)

K̂

 J
K=−J

A(JM)

K̂K
dJMK (θ̃)

× cos(Mφ̃ + K χ̃) (9)

where β = 1/kBT . ρ
t,t+1
rot is calculated in the main section of the

code provided; NVM_propagator.f90.
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Fig. 1. Plot of the (φ, χ) plane for the normalised PT = 120 K propagator for
A = 100 cm−1, B = 10 cm−1, C = 1 cm−1 at θ = 30°. One can clearly see two
mirror planes (φ = χ) and (φ + χ = 2π).

2.1. The energy

The contribution to the rotational energy of the interactions
between beads t and t + 1 is given by:

et,t+1
rot (β/P, θ̃ , φ̃, χ̃) =

1

ρ
t,t+1
rot


JMK̂


2J + 1
8π2


A(JM)

K̂M
E(JM)

K̂

× exp


−
β

P
E(JM)

K̂


K

A(JM)

K̂K
dJMK (θ̃)

× cos(Mφ̃ + K χ̃) (10)

where (θ̃ , φ̃, χ̃ ) are the Euler angles of bead t + 1 expressed in
the body frame of bead t (see Appendix 3 of [13] for a complete
description). et,t+1

rot is also calculated in themain section of the code
provided (NVM_propagator.f90).

2.2. The secular determinant

In the subroutine secular_determinant.f90 we calculate
the secular determinant. Using the so-called bca convention, i.e. the
x axis is associated with the b axis of inertia, the y axis is associated
with the c and the z axis is associated with the a axis of inertia,
the energies E(JM)

K̂
of the asymmetric top and the coefficients A(JM)

K̂K

(i.e., the eigenvectors A(JM)

K̂
) can be obtained solving the following

secular determinant (see Refs. [18,19]) for each value of J and M:

HKK =
1
2
(B + C)[J(J + 1) − K 2

] + AK 2 (11)

HKK±2 =
1
4
(B − C)[J(J + 1) − K(K ± 1)]1/2

× [J(J + 1) − (K ± 1)(K ± 2)]1/2 (12)

where K ranges from −J to +J . The remaining elements of the
determinant are zero. A, B and C are the rotational constants (in
cm−1), where A =

h̄
4πcIa

, B =
h̄

4πcIb
and C =

h̄
4πcIc

. Note that
since Ia ≤ Ib ≤ Ic , it follows that A ≥ B ≥ C . This determinant
has dimensions of (2 × J + 1). Therefore, (2 × J + 1) eigenvalues
are obtained for each value of J and M , which are, in general, all
different. These (2 × J + 1) energy levels are labelled with the K̂
index. However, asM does not appear in the determinant, there is
a (2 × J + 1) degeneracy in the energy associated withM .

We evaluate the secular determinant using the LAPACK
routine dsyev (alongwith its corresponding dependencies) which
computes all eigenvalues, and optionally, eigenvectors of a real,
symmetric matrix [20]. The reliability of the LAPACK (Linear
Algebra PACKage) is well established and it is freely-available
software based upon work supported by the National Science
Foundation.
Fig. 2. Same plot as Fig. 1. Here one can see the mirror plane (χ = π + φ).

Fig. 3. Same plot as Fig. 1. Here one can see the mirror plane (χ = π − φ).

2.3. The mass factor λ

The ‘‘mass factor’’ (λ) is a numerical value that scales themasses
of the atoms of the molecule by a factor λ, thus scaling A, B and C
by A/λ, B/λ and C/λ. This has been implemented to facilitate the
mass integration which is used if one wishes to calculate the free
energy (see Section 2.2 of [12] for a detailed explanation).

3. Time saving tricks

Calculating the whole propagator (θ(0 < π), φ(0 < 2π) and
χ(0 < 2π)) is time consuming. Calculation over a 1° grid results
in over 23 million angles that would each need to be evaluated. To
reduce this we make use of the following ‘‘time-saving tricks’’:

3.1. Symmetry

Visual inspection of the (φ, χ) plane the propagator (Fig. 1)
indicates the following four mirror planes: (1) (φ = χ) (2) (φ +

χ = 2π) along with (3) (χ = π + φ) (see Fig. 2) and finally (4)
(χ = π − φ) (see Fig. 3).

The use of symmetry reduces the number of points to be
initially calculated to 1/8 of the original number. One only needs
to calculate one ‘‘triangle’’ from Fig. 2 along with one from Fig. 3.
Of the 16 possible combinations we have chosen the two triangles
shown in Fig. 4 due to the simplicity of the DO LOOPS required to
cover them.

We only write the reduced area to disk to save space.
One can then ‘‘unfold’’ the propagator using the sample code
QuantumMatrixRead.f, following the scheme drawn in Fig. 5,
into an array for use within a path integral Monte Carlo code.
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Fig. 4. The irreducible area the (φ, χ) plane to be calculated for each value of θ ,
covering 1/8 th of the total area.

Fig. 5. The four operations that we used to ‘‘unfold’’ the irreducible area to produce
the whole propagator, implemented in the subroutine QuantumMatrixRead.f.

3.2. Sparse

We have observed that for a typical propagator for water, for
PT > 1000 K, around 95% of the propagator is almost zero (less
than 1 part in 10,000 when compared to the maximum at
ρ(0, 0, 0)), i.e. the propagator is sparse. Also, we assume without
proof that:
• The propagator for a given PT and mass has a global maximum

at ρ(0, 0, 0).
• One can see from Eq. (9) that as the value of PT increases, the

propagator can only be ≤ to a lower PT . Thus the peaks in the
propagator shrink and becomenarrower. i.e. as the temperature
increases, the propagator becomes less quantum and more
classical; in the classical limit the propagator is zero for all
angles, with a Dirac delta function at ρ(0, 0, 0). For example,
in Fig. 6 we see that on going from PT = 1000 K to PT = 2000 K
the peaks become narrower, the significant data-points are in
the same area, and their number becomes reduced. This allows
us to use a lower PT angle set to ‘‘seed’’ a higher PT calculation.

• As the mass of the molecule increases, the peaks in the
propagator shrink and become narrower, i.e. as the mass
increases, the propagator becomes less quantum and more
classical, again in the classical limit the propagator is zero for
all angles, with a Dirac delta function at ρ(0, 0, 0). For example,
in Fig. 7 we see that on going from λ = 1–1.2 to λ = 2 at
PT = 1500 K the peaks become narrower, the significant data-
points are in the same area, and their number becomes reduced.
Fig. 6. Comparison of PT = 1000 K (black), 1500 K (blue), 1750 K (red) and 2000 K
(green) for TIP4PQ/2005 water (for ρ(0, 0, 0) normalised to 1) at θ = 30° and
viewed along the (φ+χ = 2π)mirror plane. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Comparison of λ = 1 (blue), 1.2 (green) and λ = 2 (red) for PT = 1500 K for
TIP4PQ/2005water (for ρ(0, 0, 0) normalised to 1) at θ = 30° and viewed along the
(φ = χ) mirror plane. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

This allows us to use the set of angles from a lower mass to
‘‘seed’’ a higher mass calculation.

• The energy, erot, mimics these trends found for ρ.

To make use of this we first, say, calculate the propagator for
all of the data points at a modest PT and mass (say PT = 1400 K
and having a mass ‘‘factor’’ of λ = 1). This is time consuming,
but necessary to provide a starting point (for example, the PT
= 1400 K λ = 1 propagator for TIP4PQ/2005 water takes about
207 h to calculate1). Once calculated we only write out the angles
for which the values of the propagator are significant. If one now
wishes to calculate a new propagator at, say, PT = 1497 K, we read
in the set of significant angles found for PT = 1400 K and only re-
calculate this reduced set of angles, reducing the calculation time
to 2–3 h.

To arrive at a particular value of PT and mass factor one could
first calculate the new value of PT then subsequently calculate the
new value of the mass factor, or vice versa. In our experience the
PT -mass route takes about the same time as the mass-PT route,
leading to the same propagator.

3.3. Convergence

The main summation loop in Eqs. (9) and (10) range from J = 0
to J = ∞. However, the sum converges for a finite number of J ,
so the calculation is only performed up to a certain J(Jmax). Each
successive J the following equation is evaluated

cebolla =
1

Nangles


angles


ρJ(θ, φ, χ)

ρJ(0, 0, 0)
−

ρJ−1(θ, φ, χ)

ρJ−1(0, 0, 0)

2

(13)

when cebolla is less than a given cut-off (here we have used
1 × 10−12) the loop over J is stopped. In Eq. (13) ρJ represents
the propagator evaluated when adding all terms up to J . Given that
the value cebolla is a function of the grid used, we have plotted
an example of the convergence of ρ(0, 0, 0) with respect to J in
Fig. 8. Negative values of the propagator are unphysical, however,

1 Calculations were performed on an Intel R⃝ Xeon R⃝ CPU X5680 running at
3.33 GHz.
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Fig. 8. Convergence plot of ρ(0, 0, 0) with respect to J . Red line-points: A =

100 cm−1, B = 10 cm−1 and C = 1 cm−1 , green line-points TIP4PQ/2005 water
(PT = 1500 K). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 9. Convergence plot of the most negative value with respect to J . Red line-
points: A = 100 cm−1, B = 10 cm−1 and C = 1 cm−1 , green line-points
TIP4PQ/2005water (PT = 1500K). Points calculated on a 3° grid. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 10. Convergence plot of the sum of all of the negative values with respect to J .
Red line-points: A = 100 cm−1, B = 10 cm−1 and C = 1 cm−1 , green line-points
TIP4PQ/2005water (PT = 1500K). Points calculated on a 3° grid. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

until the propagator has converged negative values do arise. For
example, in Figs. 8–10 we plot the convergence of ρ(0, 0, 0) with
respect to J , themost negative value, and the global sumof negative
values with respect to J for two systems. Convergence information
is written to the file convergence. It is interesting to note an
odd–even effect with respect to J in the plot of the sum of the
negative values (Fig. 10).

4. Source code and compilation

The .tar file contains the main program, NVM_propagator.
f90 which uses the MODULEs wigner and secular. It also
makes use of the LAPACK driver routine DSYEV, which computes
all eigenvalues and, optionally, eigenvectors of a real symmetric
matrix. DSYEV and all of its dependencies are included in the
file dsyev_source.f. A sample Makefile is included, which
uses the ifort compiler in conjunction with Intel’s Math Kernel
Library. In general the program is compiled with the −r8 flag,
however, theMODULEwigner is compiledwith−r16. The function
factorial within the MODULE wigner is a REAL function rather
than INTEGER because as an integer it would be limited to a
maximum factorial of 20! on a 64-bit machine. wignerDmatrix
should be compiled in quadruple precision (−r16) to allow
factorials greater than 170! (which is the limit imposed if one
compiles with −r8) and so permit us to go beyond J = 85 if
necessary. If one compiles this subroutine with −r16 one can
arrive at 1754! which corresponds to a Jmax of 876 which, in our
experience, is more than enough for any propagator of practical
interest. A version of the source code suitable for compilation using
the GNU gfortran compiler is also included.

5. Input

The following is an example input_file:
#PT
2205.
# mass factor
1.
# A (cm-1)
15.39
# B (cm-1)
7.36
# C (cm-1)
4.98
The second line is the value of P × T . The fourth line is
the mass factor (λ), followed by the values of A, B and C in
units of inverse centimetres. If no NVM_propagator_old file
is present, the propagator will be calculated from scratch. If a
NVM_propagator_old is present, then the propagator will be
evaluated only for the angles supplied in the old propagator file.

6. Output

A finished run produces the following files: of principal interest
is the propagator, consisting of ρt,t+1

rot and et,t+1
rot (in units of cm−1),

which is written to the file NVM_propagator_new. During a run
the progress of the calculation is written to the file convergence,
and a dump of the current J value of the propagator is written to
NVM_propagator_Jdump (which is not normalized).

The NVM_propagator_new file only contains the 1/8th of the
propagator, i.e. the region shown in Fig. 4. A sample subroutine,
QuantumMatrixRead.f is provided to ‘‘unfold’’ the propagator
for use in subsequent simulations. Note, QuantumMatrixRead.f
has been extracted from our own in-house simulation code, and
will need to be adapted for the individual user, and is only included
as a guide. The value of the propagator for any particular θ̂ , φ̂ and
χ̂ can then estimated using an interpolation algorithm.

A sample file of the PT = 1497 K propagator for λ = 1 for
water is provided, which was calculated from the PT = 1400 K
propagator, also provided.

7. Monte Carlo simulations

Moves in a typical path integral Monte Carlo simulation algo-
rithm consists of the following steps: (1) a bead s of a molecule
i is chosen randomly (the old configuration is represented by o),
(2) this bead s ofmolecule i is either translated or rotated randomly
(the newconfiguration is represented byn), (3) the following quan-
tity is evaluated
W = Wrot,i × Wtras,i × Wpot (14)
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where the subindex i indicates that the propagator is evaluated for
molecule i, and

Wrot,i =

P
t=1

ρ
t,t+1
rot,i (n)

P
t=1

ρ
t,t+1
rot,i (o)

, (15)

Wtras,i = exp


−β

MP
2β2 h̄2


P

t=1

(rti (n) − rt+1
i (n))2

−

P
t=1

(rti (o) − rt+1
i (o))2


(16)

where M is the mass of the molecule and

Wpot = exp (−β (U(n) − U(o)) /P) (17)

and finally (4) the movement is accepted with probability:

accept(o → n) = min(1,W ). (18)

In Eq. (16) rti (o) and rti (n) represent the Cartesian coordinates
of the centre of mass of bead t of molecule i in the configuration
before and after the movement respectively. It is also possible to
introduce additional movement attempts, such as the translation
or the rotation of a whole ring, so that the configurational space
is sampled more quickly (see Refs. [10,13]). When simulations
are performed in the NpT ensemble, trial moves that attempt to
change the volume are also incorporated (for more details see
Ref. [10]). The FORTRAN code presented here provides the values
of the rotational propagator ρ

t,t+1
rot,i for a grid of values of (θ, φ, χ)

which can be read in at the beginning of the Monte Carlo code
and used to rapidly evaluate Eq. (15) when needed in the Monte
Carlo simulation by way of an interpolation routine. The rotational
energy of the system can also be evaluated in a Monte Carlo
simulation by averaging the estimator of the energy, given by
Eq. (10), and also obtained in tabulated form as a function of the
angles as an output in the code provided here. Note that for each
temperature T and number of beads P a new propagator has to
be generated with the executable NVM.x. For a more detailed
description about the path integral Monte Carlo simulations using
the rotational propagator see Refs. [10,13].
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