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A perturbation theory for mixtures of molecules interacting through the Kihara potential is proposed. We show that the
Kihara potential with the Lorentz—Berthelot combination rule to describe the crossed interaction is able to give very good
results for the excess properties of different mixtures. The results obtained by using the Kihara model are comparable to
or even better than those obtained with the more popular site-site model. We have applied the theory to several mixtures
of hydrocarbons involving different geometries, such as methane + ethane, methane + propane, ethane + propane, methane
+ isobutane, ethane + isobutane, and propane + benzene. In all the cases the calculated excess properties agree very well
with the experimental values. The theory can be applied to any nonpolar mixture without restriction of geometry and the
calculations can be performed in a personal computer which make the theory well suited for practical applications.

L. Introduction

During the past years important advances have been made in
the understanding of the thermodynamic behavior of molecular
fluids from the basic principles of statistical thermodynamics.!-
Among the different developed methods in statistical thermody-
namics to the study of molecular liquids, perturbation theories
appear as a very successful approach since they are accurate and
simple to use. Perturbation theories have been applied during the
past decade to the study of nonpolar molecular fluids.** The
molecular interaction has been generally modeled by the site-site
potential, the Gaussian model, or the Kihara potential. The
accuracy of the proposed perturbation theories has been tested
by comparing the theoretical to the simulation results for the
studied potential model. Their possibilities for practical appli-
cations have been verified by applying the theory to real nonpolar
molecules. In our laboratory we have recently developed a per-
turbation theory for molecules interacting through the Kihara
potential model.”'® We have recently applied with success this
theory to molecules such as nitrogen, ethane, propane, isobutane,
cyclopropane, ozone, and benzene. Vapor pressures, orthobaric
densities, second virial coefficient, and equation of state (EOS)
have been determined with great accuracy for these fluids.!

The next natural step is, therefore, to extend this theory to
mixtures. This extension is important from a practical point of
view since perturbation theories constitute an alternative way (with
respect to semiempirical equations of state) of characterizing
vapor-liquid equilibria at high pressures. The theory that we shall
develop in this paper can be regarded as an extension to Kihara
mixtures of the theory previously proposed for site-site mixtures
by Fischer and Lago.!? The first goal of this paper is to establish
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such an extension and to show that the Kihara potential is not
worse than the more popular site-site potential in the determi-
nation of excess properties of real mixtures. The second goal of
the work is to compare the results of the proposed theory with
those obtained by Boublik using his perturbation theory for Kihara
mixtures.!* Since both theories use the same potential model,
any discrepancy between the results of the theories will be due
to the approximations used. To decide which of these two theories
is superior to the other it would be necessary to compare the results
with simulation results of the model. Unfortunately, there is no
such simulation yet. The third goal of the paper is to show how
the theory can be applied with success to the determination of
excess properties of hydrocarbons mixtures. The mixtures we shall
study have different geometries and, therefore, constitute a severe
test of the real possibilities of the theory for practical purposes.

II. Theory

The theory we shall present is very similar to that introduced
by Fischer and Lago!? for the site-site model. We shall extend
it to molecular systems interacting through the Kihara potential
model. In a few words we can consider both theories as extensions
to molecular systems of the well-known perturbation theory
proposed by Weeks, Chandler, and Andersen!4 (WCA) for simple
liquids. We shall formulate the theory for binary mixtures, al-
though the extension to a multicomponent mixture is straight-
forward. The Kihara potential between a molecule of type ¥ and
another of type A, where v and X stand for any of the two com-
ponents of the mixture, either A or B, is given by!’

u™(p™) = 4N (a™/p™)12 = (a7 /p ™)) 1

where ¢ is the well depth of the potential, ¢ is a size parameter,
and p(r,w;,w,) is the shortest distance between the molecular cores.
The shortest distance depends on the distance between the centers
of mass r and on the orientation of molecules 1, w;, and 2, w,.
For convenience we shall suppose that the orientational coordinates
of molecule i, w;, are normalized to unit and we shall denote
p(r.w,w,) simply as p. The molecular cores are chosen to re-
produce the molecular shape. Within our formalism the molecular
cores may or not be convex bodies. The full intermolecular po-
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tential is divided into a reference w, and a perturbation part u,
= u — uy according to the prescription of Mo and Gubbins.!¢ This
prescription incorporates all the repulsive forces into the reference
system and treats all the attractive forces as the perturbation.
Therefore, the Mo and Gubbins division when applied to the
Kihara potential model yields for uy:

ur =y + p™ < 267 2)
=0 g™ > 2 3)

The Helmholtz free energy of the full Kihara system is ex-
panded about that of the reference system as in eq 5 of ref 11
but the expansion is now truncated at the first order term.

The structure of the anisotropic reference system as given by
the pair correlation function gy(r,w,,w,) is obtained by using
zero-order RAM theory!” for the background correlation function
yolrwy,w,) so that we get

g8 (r1pw1,w)) = exp(-Bug(riw,w))y¥am(riz)  (4)
The back%round correlation function of the spherical RAM
mixture yEhn(7) is obtained by solving the Ornstein-Zernike (OZ)
equation and using the Percus—Yevick closure relation (PY). The

RAM potential ®},(R) for which the OZ equation is solved is
given by

exp(-BERAM(r12)) = (exp(-Budt(riw;,w2)))g 5

The Helmholtz free energy of the reference system is ap-

proximated to that of a hard bodies mixture. The diameters of

the corresponding hard bodies to molecules A and B is obtained

by setting to zero the BLIP integrals Bya(dss) and Bpp(dgp),
respectively. The BLIP integrals B,,(d,,) are defined as

B, =

f(eXP(‘ﬁuﬁ}‘) = exp(-Bu"))y3M(rizwy,w)) dry; dw; dw, (6)
where u}f* = u}(1,2,d,,) represents the interaction between a
pair of hard molecules whose diameter is d.,. By setting B,,(daa)
and Byg(dgp) to zero we obtain d, , and dpp, respectively.!? The

crossed diameter d,p is obtained assuming additive hard body
diameters according to the expression:

dap = (daa + dpp) /2 Q)
In this way, according to the approximations contained in egs
4-7 the residual Helmholtz free energy can be written as
A /NKT = A /NKT + nxpxgBap(dap) + 2nm/kT X
g%x‘yx)\f (UPM(r1p01,0) exp(=BuMN(r 2w 1,w2)) ) YEAM(r)P dr
(®)

where n is the number density and x,, xg the mole fractions of
the components A and B, respectively. Only the way to obtain
Ay is left to complete the perturbation scheme. We shall get Ay
from thermodynamic integration of the EOS of a hard body
mixture according to the well-known expression

A/ (KD) = ] (Zy - 1)/n’ dn’ ©)

where Z, stands for the compressibility factor of the hard mixture.
The way to obtain the equation of state of a hard body mixture
should now be clarified. A possibility is to use an EOS for mixtures
of hard convex bodies as for instance that proposed by Boublik'?

Zy=[14+@Bay =21+ By~ 3a; + N> +
(Sa; = 6a2)n*1 /(1 = 1)* (10)
n= ngxxVH,x (11)
a = (;xxRH,x)(zA:xASH,A)/(3§x)\VH,>\) (12)

a; = (;xxRH,xl)(§x>\Sﬂ,A)2/(9(§XXVH,)\)2) (13)
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where Ry, Sy and ¥y, stand for the mean radius or curvature,
the surface and the volume of the hard body of molecule A,
respectively. The mean radius of curvature Ry, is defined only
for convex bodies. For nonconvex bodies it is usual to take Ry,
as that of a closely related convex body.'

Another possibility to obtain Zy which does not require the
knowledge of Ry, and Sy, but that of the nonsphericity parameter
a and the volume ¥ has been recently proposed by Boublik,2%?!
The EOS has the form given by eq 10 but «; and «, are now given
by

a = Z;x-,xxqu/zx:xxVH,x (14)
Y
E‘y)\ = 0'5[(a‘yVH“y)l/a(a)‘VH,)\)z/z + (a)\VH,)\)I/J(a‘yVH“y)N!]
(15)
a; = [%xx(axVH,x)z/a]3/(§XAVH.A)2 (16)

where the nonsphericity parameter of molecule A, «), is related
to the second virial coefficient of the hard body By , according
to the expression proposed by Rigby?? and used in eq 13 or ref
1.

Equations 1-16 constitute the perturbation scheme of this work.
The orientational averages needed to use the theory can be easily
performed by using the multidimensional integration method
proposed by Conroy.* We typically use 4822 different orien-
tations to obtain an orientational average at every distance between
the centers of mass r. The solution of the OZ equation for the
RAM potential is performed with the efficient algorithm proposed
by Labik et al.2* to solve integral equations. To give an idea of
the computer time needed to get excess properties we shall indicate
that, for a binary mixture at a given temperature, for five different
compositions and 50 densities at every composition it takes about
24 h of CPU time in a personal computer, IBM PS/2 80-041.

Thermodynamic properties of liquids depend only very mildly
on pressure at typical conditions of the low-pressure vapor-liquid
equilibrium. It is usual then in statistical thermodynamic to
evaluate the excess properties at zero pressure. Excess volume
VE, excess Gibbs free energy GF, and excess free enthalpy are
given by

VE(xAvavTvp=0) =
V(xAvasTsp=0) - xAV(I,O,T,P=0) - xBV(OvlvT’p::o) (17)

HE(xAivaT’p=0) =
Us(x x5, T,p=0) — x ,U™(1,0,T,p=0) ~ xgU™(0,1,T,p=0)
(18)

G E(x,xp,T,p=0) = A(x,,x5,T,p=0) - x,47(1,0,T,p=0) -

xpA (0,1, T,p=0) + In (n(xA,xB,T,p=0)) _
Xa In (n(1,0,7,p=0)) - x5 In (n(0,1,7,p=0)) (19)

To determine the properties of a given mixture it is necessary
not only to know the pair potential of the pure molecules u,, and
upp but also the crossed interaction u,p. In this work we shall
use the Lorentz-Berthelot rules (LB) which are given by the
relations

0B = (o” + oBB) /2 (20)
eAB = E(EAAEBB)I/Z (21)

when the parameter ¢ takes the value unity.
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Figure 1. Geometry of the cores used in this work. Cores reduce to a
point for Ar and methane and were not drawn. (a) Core for ethane,
0,,N,; (b) core of propane; (¢) core of isobutane; (d) core of benzene.

TABLE I: Potential Parameters of the Kihara Potential Proposed by
Boublik® for Ar, N;, and 0,°

molecule o/A (¢/k)/K L*
Ar 3.400 116.80 0
0, 2.954 141.04 0.3486
N, 3.216 113.94 0.2892
aL* = I/
III. Results

In this work we shall apply the theory described in section II
to several mixtures interacting through the Kihara potential. The
core has to be previously defined for every molecule. For spherical
molecules like Ar we take a point as the core so that the Kihara
potential reduces to a spherical Lennard-Jones potential. For linear
molecules like nitrogen or oxygen we take a linear rod as the core.
For the different hydrocarbons we take the core as a set of rigid
rods given by the carbon to carbon C—C bonds. Thus, for methane
the core would be a point, for ethane a rod, for propane two
connected rods in an angular geometry, and for isobutane three
rods in a triangular pyramid configuration. For benzene we shall
take three rods imitating a Dewar resonant electronic structure.
All these cores are drawn in Figure 1.

The only previously proposed theories for Kihara mixtures have
been developed by Boublik et al.!%25 These theories are based
on the formalism of convex bodies and can only be applied to
molecules whose core is convex. In Table I we show the potential
parameters proposed by Boubliké for argon, nitrogen, and oxygen.
In Table II the excess properties for the mixtures Ar + N,, Ar

+ 0,, and N, + O, are presented as evaluated from Boublik’s.

perturbation theory and from the theory of this work. The results
of both theories agree with each other. To decide which of these
two theories is superior to the other it would be necessary to
compare the theoretical results with excess properties evaluated
from simulation from the same potential model. Unfortunately,
there is no such simulation data yet. The theory of this work
presents the advantage with respect to that proposed by Boublik
that it gives a detailed information of the structure of the fluid
as provided by the pair correlation function. Moreover, it lies on
well-defined approximations allowing thus a systematic im-
provement and may be applied to convex and nonconvex models.
Boublik’s theory yields structural information through the average
surface to surface correlation function which contains less in-
formation than g(1,2). This average surface-to-surface correlation
function is obtained in a semiempirical way and the use of that
function restricts the application of the theory only to convex
bodies. In spite of these drawbacks Boublik’s theory presents the
important advantage of numerical simplicity and speed when
compared to the theory proposed in this work. In any case, the
results of Table II look promising and seem to confirm the pos-

(25) Lago, S.; Boublik, T. Collect. Czech. Chem. Commun. 1980, 45, 3051.
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TABLE II: Excess Properties of Several Equimolar Binary Mixtures
As Evaluated from Perturbation Theories Using Potential Parameters
from Table I*

VE HE GE
Ar + N, (84 K)
Boublik® -0.13 26 31
this work -0.22 41 30
experiment® -0.18 51 34
Ar + 0, (84 K)
Boublik® -0.03 -2 -3
this work -0.02 -14 =7
experiment® 0.14 60 37
N, + 0, (78 K)
Boublik® -0.24 55 50
this work -0.21 54 40
experiment® -0.25 60 40

4 VE in em®/mol, HE in J/mol, and GE in J/mol. Lorentz-Berthelot
rule has been used in all the cases. ?Reference 13. “Reference 32.

sibilities of both theories to determine excess properties of Kihara
fluids.

Kihara potential, however, is less popular than other potential
models as, for instance, the site-site model. It is a generalized
belief that site—site model yields better results than the Kihara
one as effective pair potential to describe the thermodynamic
properties of pure liquids and their mixtures. In the past years,
we have carried out several studies to show that this belief is at
least questionable.26?” To gain more evidence on this point we
shall compare the results obtained with the theory of section II
and the Kihara potential model to those obtained by using a
site-site potential and a perturbation theory?$2° very similar to
that described in section II. Since the theories used for the Kihara
and the site-site potential are very similar the discrepancies with
experimental data would arise fundamentally from deficiencies
in the used potential as an effective pair potential. Such a com-
parison is shown in Table ITI. The Kihara potential yields results
comparable to those obtained with the site—site model. In the case
of the mixtures Ar + N, or N, + O, the results obtained with
Kihara potential are slightly better than those from the site-site
model. We conclude that Kihara potential model is not worse
than the site—site one as an effective pair potential for mixtures.

The mixtures studied until now present in general simple ge-
ometries of the type spherical + linear, linear + linear. The only
previously studied model of non linear mixtures by perturbation
theory is that of spherical + tetrahedral made by Bohn et al.*
for the site-site model. In this work we shall study by the first
time mixtures involving more complicated geometries using
perturbation theory with a nonspherical reference system. Thus,
we shall study the mixtures methane + propane, ethane + propane,
methane + isobutane, ethane + isobutane, and propane + benzene
corresponding to the geometries spherical + angular, linear +
angular, spherical + pyramidal, linear + pyramidal, and angular
+ hexagonal, respectively. We shall study all these mixtures using
the Kihara potential and the cores shown in Figure 1. To describe
the pair interaction between molecules of different type we shall
use in all the cases the Lorentz—Berthelot combination rules (eqs
20 and 21 with £ = 1). The used potential parameters are shown
in Table IV. These parameters were obtained by fixing the value
of L* = I/¢ and the different angles between the rods of the core
and selecting ¢ and o in such a way that for a given temperature
T the vapor pressure and orthobaric density evaluated from
perturbation theories reproduce their corresponding experimental
values.!! The calculated excess properties along with the ex-
perimental values where available are shown in Table V. The
agreement between theoretical and experimental values is very
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TABLE III: Excess Properties of Several Equimolar Binary Mixtures As Evaluated in This Work for the Kihara Potential, and from a Similar

Theory? for the Site-Site Model*

site-site this work experiment®
mixture T/K VE HE GE VE HE GE VE HE Gt
Ar + N, 84 -0.19 19 26 ~0.22 41 30 -0.18 51 34
Ar+ 0O, 84 -0.05 -14 -10 -0.02 -14 -7 0.14 60 37
N, + O, 78 -0.22 54 52 ~0.21 54 40 -0.25 60 40

aUnits as in Table II. ®Reference 32.

TABLE IV: Potential Parameters of Pure Substances As Obtained
from the Counterpart for Pure Liquids of the Perturbation Theory of
This Work!!

L* (e/k)/K a/A
methane 0 149.92 3.7327
ethane 0.4123 305.75 3.5679
propane 0.4123 427.00 3.5587
isobutane 0.4123 506.82 3.5881
benzene 0.58 887.635 2.926

4L* = [/o where [ is the C-C distance. The C-C-C angle was
taken as 109.5° for propane and isobutane and 120° for benzene.

good in all the cases taking into account the diversity of studies
geometries. Boublik!? has recently pointed out that Lorentz~
Berthelot rules when applied to the Kihara potential yield better
results of excess properties that when applied to the site—site model.
The results of Table IV reinforce the idea that Lorentz-Berthelot
combination rules works very well when applied to the Kihara
potential, at least for the studied hydrocarbon mixtures, which
have similar chemical constituting groups. It is also interesting
to study the effect of the mixing parameter £ of the Berthelot
combination rule on the excess properties. In Table VI we show
the results for the excess properties of three equimolecular mixtures
at zero pressure, when £ = 1 (LB) and when £ = 0.99. A decrease
of & of 1% causes noticeable changes in the excess properties. All
the studied excess properties undergo an important increase when
the parameter £ decreases. We can then conclude that
dGE OHE dvE
3 <0 3% <0 3% <0 (22)

£ lying near to 1.

This condition is fulfilled for the three studied mixtures which
have different geometries. Thus, the conclusion supported by eq
22 seems to be independent of the geometry of the molecules of
the mixture. Moreover, the behavior defined by eq 22 has been
found for spherical Lennard-Jones mixtures®! and for molecular
site-site mixtures, t00.*® Therefore, eq 22 is satisfied for different
potential models and for different geometries and seems to be a
general conclusion for molecular systems without polar interac-
tions. From the results of Table VI we can conclude that a
decrease of £ of about 1% causes an increase ranging from 60 to
90 J/mol for GE, from 70 to 120 J/mol for HE, and from 0.01
to 0.20 cm?*/mol for VE,

The theory in this work allows the determination of excess
properties at different compositions. Thus, the behavior of the
excess properties as a function of the composition for a given
pressure and temperature can be studied. In Table VII some
results for the excess properties of the mixtures methane + ethane,
methane + propane, and ethane + propane for the compositions
x; =0.25,0.5, and 0.75 are shown. In general, a nonsymmetric
behavior with respect to x; = 0.5 is found especially for HE and
GE. VE is more symmetric for these mixtures.

An interesting function which can be easily calculated from
the theory of section II and is difficult to obtain from experiments
is the radial distribution function between the centers of mass of

(31) Singer, J. V. L.; Singer, K. Mol. Phys. 1972, 24, 357.

(32) Rowlinson, J. S.; Swinton, F. L. Liquids and Liquid Mixtures, 3rd
ed.; Butterworth: London, 1982,

(33) Hiza, M. J.; Haynes, W. M_; Parrish, W. R. J. Chem. Thermodyn.
1977, 9, 873.
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Figure 2. Radial distribution function as given by the theory of this work
at T= 112K, p = 0, x, = 0.5 for the mixtures: (a) methane + ethane;
(b) methane + propane; (c) ethane + propane. Solid line, g,,(r); dashed
line, g,,(r); dot-dashed line g,,(r). @y, is the size parameter (see text)
of the first component of the mixture.

the molecules of the mixture. The radial distribution function
measures the conditional probability of finding the center of mass
of a molecule at a distance » from the center of mass of another
molecule placed at the origin. In Figure 2 we show the radial
distribution functions for the equimolecular mixtures of methane
+ ethane, methane + propane, and ethane + propane at zero
pressure and 7 = 112 K.

In section II, two alternative ways to determine A4y (see eqs
9 and 10) differing in their definitions of «; and a, were intro-
duced. The first option given by eqs 12 and 13 is convenient when
the shape of the molecules of the mixture is close to that of a
convex body and it is then a good approximation to take Ry of
the nonconvex molecule as that f a similar convex model. When
any of the molecules of the mixture has a nonconvex shape it may
be more convenient to use eqs 14-16 to define a, and «,. In Table
VIII, the excess properties for two equimolecular mixtures con-
taining a typical nonconvex angular molecule like propane are
shown. The excess properties are very similar for these two routes
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TABLE V: Excess Properties of Several Binary Mixtures As Evaluated from the Perturbation Theory of Kihara Fluids of This Work and

Potential Parameters from Table IV

this work experiment

mixture X T/K VE HE GE VE HE GE
methane + ethane 0.5 103.99 -0.38 67 104 -0.45% 74% 120.5%
methane + ethane 0.5 112 -0.49 71 112 -0.58¢ 68.6°
methane + propane 0.5 90.68 -0.55 63 176 -0.51% 187%
methane + propane 0.5 112 -0.59 73 166 -0.84% 129.2¢
ethane + propane 0.5 105 0.19 61 8 -0.04¢
ethane + propane 0.5 125 0.09 18 1.6 -0.04¢
methane + isobutane 0.486 110 -0.63 -4 145 -0.80¢
ethane + isobutane 0.689 115 0.05 -19 -10 0.012¢
propane + benzene 0.50 310 =217 142 298

4 Units as in Table II. ®Reference 32. <Reference 33.

TABLE VI: Excess Properties of Equimolecular Binary Mixtures
and Different Crossed Interaction Parameter (Eqs 20 and 21)¢

(=1 £=099
mixture x T/K VE HE GE V¢ HE GF

methane + ethane 0.5 103.99 -0.38 67 104 -0.34 137 163
methane + propane 0.5 90.68 -0.55 63 176 -0.37 180 244
ethane + propane 0.5 105 0.19 6t 8 025 178 102

2Units as in Table II.

TABLE VII: As in Table V, for Three Different Compositions x, =
0.25, 0.5, and 0.75

this work
mixture X T/K 14 HE  GE

methane + ethane 025 10399 032 22 72
methane + ethane 0.5 10399 -0.38 67 104
methane + ethane 075 10399 -0.32 60 85
methane + propane  0.25 90.68 038 21 114
methane + propane 0.5 90.68 -0.55 63 176
methane + propane  0.75 9068 048 74 153

ethane + propane 0.25 105 012 35 2
ethane + propane 0.5 105 0.19 61 8
ethane + propane 075 105 015 52 8

TABLE VIII: Excess Properties of Equimolecular Binary Mixtures Using
the Two Different Treatments for the Equation of State (EOS) of the
Reference System Defined in the Main Text

EOS mixtures® EOS one fluid®

mixture x T/K V& HE GE VE HE GE

methane + propane 0.5 90.68 -0.55 63 176 -0.54 73 182
ethane + propane 0.5 10§ 0.19 61 78 0.18 63 7.5

¢ Equations 12 and 13. ®Equations 14-16.

to get Ay. Equations 14-16 present, however, the advantage that
they may be applied to nonconvex bodies since V3 and « are
uniquely defined (see eq 13 of ref 11 for « definition) even for
nonconvex models. However, eqs 12 and 13 need the arbitrary
assignment of a convex body to the studied molecule so that Ry
can be determined.

IV. Conclusions

In this work we have extended to mixtures the previously de-
veloped perturbation theory of Kihara fluids. We have shown
that the excess properties determined from this theory and those
obtained from Boublik’s perturbation theory of Kihara mixtures
are very close. This suggests that the accuracy of both theories
is rather similar. A definitive test of the accuracy of both theories
requires the comparison against simulation data, which were
unavailable up to now. The calculated excess properties with the
theory of this work, Kihara potential to model the pair interaction,
and Lorentz—Berthelot combining rules agree very well with ex-
perimental results, provided that the interaction parameters of
the pure fluids are obtained by fitting the calculated values of vapor
pressure and orthobaric density coming from the counterpart of
the theory for pure fluids!! to experimental results. The agreement
with experimental excess properties obtained from the perturbation
theory of Kihara mixtures of this work is comparable to or even
better than that obtained from a similar perturbation theory of
site-site mixtures. This confirms, also for mixtures, our previous
suggestion that the Kihara model is not worse than the site-site
model as an effective pair potential to describe the thermodynamic
behavior of pure fluids and their mixtures.

The presented theory can be easily be applied to mixtures of
different geometries and we have got good results for the excess
properties for several mixtures of hydrocarbons. The analysis of
the change undergone by the excess properties due to a change
in £ (eq 21) leads us to the conclusion that a decrease of about
1% in £ provokes an important increase of all the excess properties
of Kihara mixtures.

The theory of this work can be applied to the determination
of excess properties of molecular nonpolar mixtures at any value
of T and p. This undoubtedly constitutes an important advantage
over those semiempirical treatments which generally give only good
results at low pressures close to the vapor-liquid saturation curve
of the mixtures studied.
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