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In this article we apply the volume-perturbation method to systems of particles interacting via discon-
tinuous potentials. We have found that an accurate Monte Carlo simulation protocol can be used in
order to study properties of very general non-spherical systems with discontinuous potentials, such
as chain molecules and spherocylinders with square-well interactions, and chain molecules with
square-well and square-shoulder interactions. From the simulation results obtained for these systems
we verify that: (1) the method reproduces the pressure as used in NPT simulations; (2) discontinu-
ous infinite repulsive interactions give asymmetric contributions to the pressure when compression
and expansion movements are used; however for finite interactions these contributions are symmet-
ric; and (3) the pressure contributions preserve the additivity of the potential interactions. Density
profiles and surface tension for subcritical conditions are accurately predicted. © 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4767375]

I. INTRODUCTION

The evaluation of the surface tension in fluids using com-
puter simulations has followed two routes, the mechanical
method based on the Clausius virial theorem1 and the thermo-
dynamic method based on the relationship between pressure
and the Helmholtz (or Gibbs) free energy.2, 3 Surface tension
is determined from the diagonal elements of the pressure ten-
sor, and the thermodynamic pressure p is given by one third
of the trace of this tensor. From elasticity theory we know that
for a homogeneous system in thermodynamic equilibrium, the
off-diagonal elements of the pressure tensor are null, whereas
the diagonal elements become identical; then the pressure p is
called the hydrostatic pressure.4

Both methods are neither independent nor they give al-
ternative definitions of the surface tension.5 From a funda-
mental point of view, pressure arises as a consequence of
the flux of momentum, a physical mechanism that can be
decomposed into the different ways in which this flux takes
place. There is a flux due to the momentum transported by the
molecules, and there is another flux due to elastic collision be-
tween molecules.6, 7 In this way, the Clausius virial theorem
takes into account both mechanisms, being the first one the
origin of the ideal gas contribution to the pressure. Collision
between particles is due to the intermolecular forces acting
between molecules, so the average of the virial r · F gives
the non-ideal contribution to the pressure. The analysis of the
flux of momentum can be done for homogeneous and inho-
mogeneous phases. In inhomogeneous systems, the diagonal
elements of the pressure tensor are not equal, and the surface
tension is due to this difference.

a)Electronic mail: gil@fisica.ugto.mx.

By using the theoretical framework developed by
Zwanzig for perturbation theory in Statistical Mechanics,8 as
well as previous computer simulation studies performed by
Eppenga and Frenkel,9 Harismiadis et al.10 and Vörtler and
Smith,11 Jackson and de Miguel derived novel approaches to
obtain the surface tension and the components of the pressure
tensor using the test-area (TA)12 and the volume-perturbation
(VP) methods,13 respectively. Both methods have been ex-
tended to model interfacial properties of non-spherical and
non-convex molecules14, 15 and solid-fluid interfacial tension
of spherical molecules adsorbed in slit-like pores.16 Other ap-
plications studied with these methodologies have been the
surface tension of different models of water,17, 18 vapor-liquid
interfacial properties of diatomic molecules19 and fully flex-
ible Lennard-Jones chain molecules.20 Alternative methods
to the TA and VP approaches have been proposed: the wan-
dering interface,21 the expanded ensemble method,22 and
more recently, the non-exponential method by Ghoufi and
Malfreyet.23

The temperature region of interest, potential range,
and computational requirements determines the simulation
method to obtain the surface tension. As examples, meth-
ods based on the finite-size scaling approach developed by
Binder24 are useful to model the critical region,25 while area-
perturbation based methods are difficult to implement in that
region due to the stabilization of the liquid slab.26 In the finite-
size formalism, the surface tension is obtained for an infinite
system size; finite size effects have been observed in other
methods for simulations boxes with small cross sectional ar-
eas, A = Lx × Ly < (10σ )2, being σ the molecular diam-
eter. An oscillatory behavior for surface tension that decays
with the surface area of the interface, has been reported for
Lennard-Jones and square-well systems. This effect could be
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present even in bulk systems for non-cubic simulation boxes,
resulting in a non-isotropic pressure tensor.25–30

Also, some problems have been identified in VP and TA
methods, when applying forward and reverse perturbations
for systems with discontinuous potentials.9, 11, 12, 15, 26 In this
article we present a methodology to apply the VP method
for non-spherical systems interacting via discontinuous po-
tentials, extending previous results found by Jackson and co-
workers,14, 15 and trying to obtain a criteria to select the simu-
lation parameters. The theoretical framework is developed in
Sec. II, where a general expression to calculate the pressure
for the systems of interest is given. Details of Monte Carlo
simulations performed for several systems in order to test our
approach are given in Sec. III, and results are presented in
Sec. IV. Conclusions are given in Sec. V.

II. METHOD

A general methodology will be described now, imple-
mented for the computer simulation of several systems with
discontinuous potentials:

(A) For the sake of simplicity, we will show through the
virial route that for a discontinuous potential the pres-
sure can be written as a sum of terms related to each
discontinuity. As virial and thermodynamic expressions
for pressure are formally equivalent,5 this additivity
feature is also valid for the pressure calculated from
the thermodynamic route. We will detail the case of the
square-well potential, where the pressure will have an
ideal contribution and two excess terms, one from each
discontinuity: at the hard-body (HB) distance and at the
square-well (SW) width.

(B) We will use the results from Brumby et al.15 for hard-
body non-convex molecules, and identify this as the
contribution to the pressure from the HB discontinuity.

(C) In analogy to the cited methodology, we will obtain the
contribution to the pressure from the SW width discon-
tinuity.

(D) Then, a final expression for the pressure is given in
a more practical way, using some identities that were
found in the simulation tests.

(E) From the previous results we will infer the generaliza-
tion to m-discontinuities.

(F) Finally, we give the expression for the surface tension,
which will be used to test our methodology.

A. Additivity in pressure for discontinuous potentials

The mechanical method based on the Clausius virial
theorem1, 2 allow us to evaluate the pressure in a molecular
simulation. Assuming a system with pairwise interactions in
the absence of external fields, the usual virial form for pres-
sure is

p = 〈ρkBT 〉 +
〈

1

3V

∑
i

∑
i<j

rij · fij

〉
, (1)

where the angular brackets indicate the statistical average in
the appropriate ensemble, ρ = N/V is the number density,
kB is the Boltzmann constant, T is the temperature, rij is the
intermolecular vector between a molecular pair, and fij is the
corresponding intermolecular force.

For a central potential u(r), Eq. (1) can be written in terms
of the distribution function g(r), as

βp

ρ
= 1 − 2πβρ

3

∫
r3 du(r)

dr
g(r)dr

= 1 + 2πρ

3

∫
r3 de−βu(r)

dr
y(r)dr, (2)

where we have used the cavity function y(r) = g(r)eβu(r) and
β = 1/kBT. In the case of potentials with m discontinuities,

u(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε1 if 0 ≤ r ≤ λ1σ

ε2 if λ1σ < r ≤ λ2σ
...

εm if λm−1σ < r ≤ λmσ

0 if r > λmσ

, (3)

where σ is the hard-spheres diameter.
For this potential, we can write

de−βu(r)

dr
=

m∑
α=1

Cαδ(r − λασ ), (4)

that can be substituted in Eq. (2),

βp

ρ
= 1 + 2πρ

3

m∑
α

Cα(λασ )3y(λασ ). (5)

The coefficients Cα can be obtained by integrating
Eq. (4) in the vicinity of each discontinuity,

Cα =
∫ λασ+

λασ−

de−βu(r)

dr
dr = e−βu(λασ+) − e−βu(λασ−), (6)

where the + and − signs indicate the evaluation of the func-
tion’s discontinuity from the right and left sides, respectively.
Since the cavity function is continuous, then the following re-
lation holds

Cαy(λασ ) = g(λασ+) − g(λασ−), (7)

and Eq. (5) can be written as

p = NkBT

V
+ 2πkBT

3

(
N

V

)2 m∑
α

(λασ )3

× [g(λασ+) − g(λασ−)]

= pideal + pexcess

= pideal + p(1)
exc + p(2)

exc + · · · + p(m)
exc, (8)

where we have identified an ideal and excess contribution to
pressure and, in the last line, we have labeled each excess
contribution term as the discontinuity to which is related.

Up to here, for the sake of simplicity, we have used the
virial expression for the pressure, to show the relation be-
tween the additivity in pressure and the potential discontinu-
ities. However, we are interested in the thermodynamic route,
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since it is easier to implement in Monte Carlo simulations at
constant volume for discontinuous systems. Taking advantage
of the equivalence between both routes,5 we will take the ad-
ditivity feature of Eq. (8) for the second case, in order to eval-
uate the pressure using the volume perturbation method.

Now, we will focus on a discontinuous potential of the
form of a square-well interaction,

u(d) =

⎧⎪⎨
⎪⎩

∞ if 0 ≤ d ≤ σ

ε if σ < d ≤ λσ

0 if d > λσ

, (9)

where d denotes the atom-atom distance for simple fluids,
site-site distance for chain molecules, or minimal distance for
convex geometries, such as spherocylinders. It is necessary
to decompose the pair potential into its repulsive and attrac-
tive contributions; we selected the Weeks-Chandler-Andersen
criteria,31 u(d) = uHB(d) + uSW (d), where

uHB(d) =
{

∞ if d ≤ σ

0 if d > σ ,
(10)

uSW (d) =
{

ε if d ≤ λσ

0 if d > λσ .
(11)

The corresponding expression for the pressure is given
by

p = pideal + p(HB)
exc + p(SW )

exc . (12)

B. Hard-body discontinuity contribution

The HB term was calculated by Brumby et al.,15 show-
ing that for non-spherical particles, increments of volume of
the simulation cell could cause overlaps. These overlaps pro-
duce a contribution to the pressure that was not considered
before.9 For an isothermal-isobaric ensemble (NPT), the en-
thalpy changes arising from variation in the volume are re-
lated to the transition probability between states, and the de-
tailed balance condition implies that〈

exp

(
−
Ui→j−

kBT

)〉
eq

= exp

(
−p
Vi→j+

kBT

)

×
〈
exp

(
−
Ui→j+ − NkBT ln[1 + (
Vi→j+/Vi)]

kBT

)〉
eq

,

(13)

where i denotes the initial state at volume Vi , j the final state
after a volume change 
V , 
U the energy change, and the
subscripts + and − indicate if the volume change is positive
(expansion) or negative (compression).

The previous equation is valid for simulations in the
canonical ensemble (NVT) if volume changes are treated as
virtual perturbations, and the following expression for p(HB)

can be obtained,

p(HB) = NkBT

Vi

+ lim

Vi→j+→0

kBT


Vi→j+
ln

〈
exp

(
−
U

(HB)
i→j+

kBT

)〉
eq

+ lim

Vi→j−→0

kBT


Vi→j−
ln

〈
exp

(
−
U

(HB)
i→j−

kBT

)〉
eq

,

(14)

where we have labeled the pressure and energy as HB, i.e.,
the hard-body contribution. Using the same notation as in
Eq. (12) we can express p(HB)

exc as the sum of compression and
expansion contributions,

p(HB)
exc = p

(HB)
+ + p

(HB)
− , (15)

where

p
(HB)
+ = lim


Vi→j+→0

kBT


Vi→j+
ln

〈
exp

(
−
U

(HB)
i→j+

kBT

)〉
eq

,

(16)
and an analogous expression states for the compression con-
tribution p

(HB)
− .

C. Square-well discontinuity contribution

Following Brumby et al.,15 we will consider now the at-
tractive contribution to the pressure. The transition probability
from state i to state j, Pi→j in a Monte Carlo computer simula-
tion in the isothermal-isobaric ensemble, for an infinitesimal
volume change 
Vi→j = Vj − Vi , is given by

Pi→j = exp

(
−
Hi→j

kBT

)
, (17)

where 
Hi→j is the enthalpy change,


Hi→j = 
Ui→j + p
Vi→j − NkBT ln

(
Vj

Vi

)
. (18)

At equilibrium, the detailed balance condition for random
changes in the volume is given by∑

n+

Vi→j+Pi→j+ = −

∑
n−


Vi→j−Pi→j−, (19)

where n+ and n− are the number of volume changes for ex-
pansion and compression, respectively. Since for an infinite
number of volume changes n+ = n−, then

〈
Vi→j+Pi→j+〉eq = −〈
Vi→j−Pi→j−〉eq . (20)

Assuming infinitesimal volume changes, 
Vi→j /Vi is
small, then ln[1 + (
Vi→j /Vi)] ≈ 
Vi→j /Vi , and Eq. (18)
transforms into the following expression:


Hi→j = 
Ui→j + 
Vi→j

(
p − NkBT

Vi

)
. (21)

If we consider the attractive potential given by Eq. (11),
i.e., we do not take into account overlaps due to a hard-body
restriction, then we need to derive expressions for enthalpy
changes for compression and expansions.
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Considering an expansion, 
Vi→j+ > 0, the change on
enthalpy is given by


Hi→j+ = 
Ui→j+ + 
Vi→j+

(
p − NkBT

Vi

)
. (22)

The sign on the second term depends on the relation between
p and the ideal pressure. For a SW system we know that such
quantity could be positive or negative depending on the ther-
modynamic conditions, and we cannot say anything a priori
about the sign of 
Hi→j +, an important difference with re-
spect to repulsive HB interactions. The transition probability
is given by

Pi→j+ = exp

[
−


Ui→j+ + 
Vi→j+
(
p − NkBT

Vi

)
kBT

]
.

(23)

For the case of a compression, i.e., 
Vi→j− < 0, the
change on enthalpy is


Hi→j− = 
Ui→j− + 
Vi→j−

(
p − NkBT

Vi

)
. (24)

The second term in this equation has a negative contribution
from the 
Vi→j− factor, but the difference between p and the
ideal pressure can be positive or negative. Then, we cannot
say anything a priori about the sign of 
Hi→j −. The transi-
tion probability is given by

Pi→j− = exp

[
−


Ui→j− + 
Vi→j−
(
p − NkBT

Vi

)
kBT

]
.

(25)

Using in Eq. (20) both expressions for the transition prob-
abilities, Eqs. (23) and (25), we obtain

〈

Vi→j+ exp

[
−


Ui→j+ + 
Vi→j+
(
p − NkBT

Vi

)
kBT

]〉
eq

=−
〈

Vi→j− exp

[
−


Ui→j− + 
Vi→j−
(
p − NkBT

Vi

)
kBT

]〉
eq

,

(26)

Considering that volume changes are constant, i.e.,

Vi→j+ = −
Vi→j−, then

exp

(
−p
Vi→j+

kBT

) 〈
exp

(
N
Vi→j+

Vi

)
exp

(
−
Ui→j+

kBT

)〉
eq

= exp

(
p
Vi→j+

kBT

) 〈
exp

(
−N
Vi→j+

Vi

)

× exp

(
−
Ui→j−

kBT

)〉
eq

, (27)

and we can solve for the pressure by taking logarithms at both
sides of this equation,

−2p
Vi→j+
kBT

=− ln

〈
exp

(
N
Vi→j+

Vi

)
exp

(
−
Ui→j+

kBT

)〉
eq

+ ln

〈
exp

(
−N
Vi→j+

Vi

)
exp

(
−
Ui→j−

kBT

)〉
eq

.

(28)

This expression is valid for infinitesimal volume changes
in the NPT ensemble, but in analogy to the HB contribution
calculation,15 we will use this result to obtain the pressure
in a NVT ensemble, using a volume perturbation method. In
the NVT ensemble, Vi is constant so the infinitesimal volume
change corresponds to a virtual perturbation that is not in-
cluded in the Markov simulation chain, and Eq. (28) can be
rewritten as

−2p
Vi→j+
kBT

= −2N
Vi→j+
Vi

− ln

〈
exp

(
−
Ui→j+

kBT

)〉
eq

+ ln

〈
exp

(
−
Ui→j−

kBT

)〉
eq

. (29)

Multiplying both sides by −kBT /2
Vi→j+, remember-
ing that this is valid in the limit 
Vi→j+ → 0, and using

Vi→j+ = −
Vi→j−, a symmetric expression for the pres-
sure is obtained

p(SW ) = NkBT

Vi

+ 1

2
lim


Vi→j+→0

kBT


Vi→j+
ln

〈
exp

(
−
U

(SW )
i→j+

kBT

)〉
eq

+ 1

2
lim


Vi→j−→0

kBT


Vi→j−
ln

〈
exp

(
−
U

(SW )
i→j−

kBT

)〉
eq

,

(30)

where, in analogy to Eq. (14), we have labeled the pressure
and energy by a superscript SW, i.e., the attractive contribu-
tion to the potential. In Eq. (30) we can identify the excess
pressure contributions arising from expansions and compres-
sions,

p(SW )
exc = 1

2
[p(SW )

+ + p
(SW )
− ], (31)

where

p
(SW )
+ = lim


Vi→j+→0

kBT


Vi→j+
ln

〈
exp

(
−
U

(SW )
i→j+

kBT

)〉
eq

,

(32)
and an equivalent expression holds for the compression con-
tribution p

(SW )
− .

D. HB + SW pressure and some identities

We can now obtain the expression for the total pres-
sure considering the hard-body and square-well contributions
derived previously. By substituting Eqs. (15) and (31) in
Eq. (12), we obtain

p = pideal + p
(HB)
+ + p

(HB)
− + 1

2
[p(SW )

+ + p
(SW )
− ]. (33)
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As we report in Sec. IV, from the computer simulations
performed in our study we also found that,

p
(SW )
+ = p

(SW )
− , (34)

p
(HB+SW )
− = p

(HB)
− + p

(SW )
− , (35)

where the label HB + SW indicates that both interactions are
taken into account at the same time. The first relation can be
understood due to the symmetry between two events: those
particles that cross the potential discontinuity in one direc-
tion when the volume is increased, and those that cross in
the opposite direction when volume decreases. So the mag-
nitude of the changes in energy in one and another cases
should be the same. Applying the exponential function (see
Eq. (32)), its ensemble average and then the logarithm func-
tion, should give very similar numbers but with opposite sign.
This sign is canceled by the factor 
Vi→j that is opposite
in each case. This symmetry does not appear in the HB dis-
continuity, since overlaps in expansions are less likely to
happen.

The second relation can be seen as a particular case of
the additivity properties of the pressure. The contribution to
pressure, given by a test volume compression in the case of
a square-well system, should be the sum of the contribution
from the HB and the attractive SW discontinuities calculated
from compressions.

These relations allow us to reformulate the expression for
the total pressure. Substitution of relations (34) and (35) in
Eq. (33) gives

p = pideal + p
(HB+SW )
− + p

(HB)
+ , (36)

which is a more practical expression from the point of view
of a computer simulation calculation. The second term means
that for compressions the complete potential contributes,
while for expansions only the HB contribution should be
taken into account. An alternative form of Eq. (36) is

p = pideal + p
(HB)
− + p

(HB+SW )
+ , (37)

which is obtained from Eq. (33) using the relation (34) and
the expansion version of relation (35): p

(HB+SW )
+ = p

(HB)
+

+ p
(SW )
+ .
To evaluate the components of the pressure tensor using

the test volume method, an anisotropic virtual change in vol-
ume is required. If the component is pxx, the length of the
simulation box changes from Lx, Ly, Lz to Lx + 
Lx, Ly, Lz.
We can define a volume perturbation parameter given by

ξ = 
V/V, (38)

i.e., for the case considered here, the length of the x axis is
increased by a factor (1 + ξ ) while the other two sides are
kept constant. For this particular case, ξ = 
Lx/Lx.

E. Generalization to m discontinuities

For a discontinuous potential with m discontinuities
(where m = 1 corresponds to the HB repulsion), we can ex-
tend the result obtained for a SW fluid in Eq. (36), and then

the pressure is

p(m) = pideal + p
(HB,m)
− + p

(HB)
+ , (39)

where p
(HB,m)
− is now the pressure contribution from com-

pression taking into account all the potential discontinuities.
This equation is obtained by assuming the generalization of
Eqs. (34) and (35), since the same arguments used for the SW
potential are valid for arbitrary attractive or repulsive disconti-
nuities. Eppenga and Frenkel9 suggested that for a hard-body
fluid only compressions must be taken into account. How-
ever, as demonstrated by Brumby et al.,15 for non-spherical
molecules there is an unexpected contribution coming from
overlaps when the volume of the system is increased, and
Eq. (39) is consistent with this result.

F. Surface tension

The volume perturbation method can be applied perform-
ing anisotropic volume changes in order to calculate the pres-
sure tensor, pij, where i, j = x, y, z. For a fluid in hydro-
static conditions, all the non-diagonal elements are null and
the pressure p is given by one third of the trace of pij, i.e., p
= (pxx + pyy + pzz)/3. The pressure tensor also can be used to
calculate the surface tension γ for systems with interfaces.

Assuming a planar interface lying in the x-y plane, the
components of the pressure tensor depend on the distance z to
the interface,1, 3

γ =
∫ ∞

−∞
dz[pN (z) − pT (z)], (40)

where pN(z) is the local pressure normal to the surface, pN(z)
= pzz(z) in our case, and pT(z) is the local pressure tangential
to the surface, defined by pT(z) = (pxx(z) + pyy(z))/2. Since we
are considering an interface that is isotropic in the x and y di-
rections, then pxx(z) = pyy(z). For planar interfaces, the mean-
value theorem allows to write the last expression in terms of
the macroscopic normal and tangential components, PN and
PT,13, 15, 22

γ = 1

2
Lz[PN − PT ], (41)

where the factor 2 takes into account the two interfaces of the
simulated system.

III. MONTE CARLO SIMULATIONS

We applied the virtual volume perturbation method to
several systems in MC-NVT simulations (MC-NVT + VP).
Results are given for: (a) tests of the method for flexible
SW chain molecules, (b) extension to other flexible discrete-
potentials chain molecules and spherocylinders, and (c) cal-
culation of the surface tension. Variables are reported in
reduced units: temperature T∗ = kBT/ε, density ρ∗ = ρσ 3

= (N/V )σ 3 being N the number of molecules, pressure P∗

= pσ 3/kBT, and surface tension γ ∗ = γ σ 2/kBT. According
to these reduced variables, the ideal contribution to pressure
is given by p∗

ideal = ρ∗. The simulation cell dimensions are
scaled as L∗

i = Li/Lx for i = x, y, z.
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A. Tests for flexible SW chain molecules

The first group of simulations was used to test the volume
perturbation method as a tool to calculate the pressure tensor
for a discontinuous-potential primitive model, a 3-mer SW
flexible molecule. This model allows us to test the method
with non-convex molecules with internal flexibility, which
we consider very general. SW chain-like models are interest-
ing since they can model polymers and surfactant molecules.
SW parameters are the hard-spheres diameter σ , the attractive
range λ = 1.5σ and the energy depth ε = −1.0; intramolecu-
lar attractions account for monomers separated for more than
one junction.

Two simulation boxes were used to check the indepen-
dence of the method respect to the cell shape. The first,
labeled as “Box 1,” is a cubic cell, L∗

x = L∗
y = L∗

z , while
the second, labeled as “Box 2,” is an elongated cell with
L∗

x × L∗
y × L∗

z = 1 × 1 × 8. The cell contains N = 1024 par-
ticles at temperature T∗ = 2.5, which is supercritical.32 A se-
ries of Monte Carlo simulations in the isothermal-isobaric en-
semble (MC-NPT) were performed with a fcc lattice as initial
configuration. Every molecule movement is comprised of a
displacement, rigid body rotation and internal torsion, chosen
in a random way. A complete cycle is given by one move-
ment per particle on average and a volume change; around
1–2 × 106 cycles were required for equilibration and a similar
number of cycles were used for averaging. For a fixed P∗, the
equilibrium density was obtained and the output configuration
was used as the input for the next state at a higher pressure.
These simulations give the density for a specified value of the
pressure, information that is useful in order to test the volume
perturbation-method runs.

Some states from the MC-NPT simulations were se-
lected and the average density in equilibrium, ρ∗, was used as
an input for MC-NVT simulations. First, a short simulation
(5 × 105 cycles) was carried out to disorder the fcc initial
configuration for a purely hard system. Using the final con-
figuration, we switched-on the SW potential and performed
a MC-NVT simulation of 106 cycles to equilibrate. Finally,
with an equilibrated system, the MC-NVT + VP simulation
was performed in order to obtain the diagonal pressure com-
ponents, p∗

xx , p∗
yy , and p∗

zz. One configuration every cycle was
taken to apply the virtual volume change and 3–5 × 106 cy-
cles were used for these averages.

B. Other systems

To apply the method to other molecular models and dif-
ferent discontinuous potentials, two systems were studied.
The first one is a system of hard spherocylinders with an
additional attractive contribution (SWSC) with aspect ratio
L∗ = L/σ , where L is the length of the hard cylinder and
σ is the diameter of the hemispherical hard caps. With this
model we study the performance of the VP method with con-
vex molecules, and since spherocylinders are a basic primitive
model to study liquid crystalline phases, this system allows us
to test the VP method in orientational and positional ordered
systems.

Particles interact via a SWSC potential defined by

uSWSC(d) =

⎧⎪⎨
⎪⎩

∞ if d(r,) ≤ σ

−1 if σ ≤ d(r,) < 1.5σ

0 if d(r,) > 1.5σ

, (42)

where d(r, ) is the minimum distance between the molecu-
lar axis of a pair of particles whose centers are separated by
a distance r for a relative orientation .33–35 A cubic simula-
tion cell was used with N = 1020 particles and temperature
T∗ = 5.0.

The second system also was a 3-mer flexible chain, where
now monomers interact via a hard sphere plus a combination
of repulsive shoulder and attractive square-well (SS + SW)
potentials:

u(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞ if 0 ≤ r ≤ σ

0.5 if σ < r ≤ 1.4σ

−1.0 if 1.4σ < r ≤ 1.7σ

0 if r > 1.7σ

, (43)

where r is the site-site distance. This model allows to verify
our generalization to potentials with several discontinuities.
The simulation cell for this system was a cubic box with N
= 1024 chains and temperature T∗ = 3.0.

For both systems, MC-NPT simulations were carried out
with ∼2 × 106 cycles to equilibrate and 1–2 × 106 cycles to
average properties. For a fixed P∗, the equilibrium density was
obtained and the output configuration was used as the input
for the next state at a higher pressure. These simulations give
the density for a specified value of the pressure, information
that is useful in order to test the volume perturbation-method
runs.

The resulting density of some states was used as the fixed
value to perform MC-NVT simulations. First, to disorder the
initial fcc lattice configuration, a short simulation (5 × 105

cycles) was performed for a purely HB system. Then, us-
ing the respective potential for each system at the temper-
atures of interest, equilibration simulations were performed
with 1–3 × 106 cycles. In the case of nematic and smec-
tic phases for the SWSC system, the order parameters were
in concordance with the MC-NPT averages. Finally, having
equilibrated configurations, the MC-NVT + VP simulations
were obtained with 8 × 106 cycles. The virtual volume change
was implemented each 10 cycles and 4 groups of independent
simulations were averaged for each state, in order to improve
the statistics.

C. Surface tension

Surface tension values were obtained for the flexible 3-
mer SW chain molecules with the same model parameters
given in Sec. III A. Direct coexistence simulations were per-
formed in an elongated simulation cell “Box 2,” with dimen-
sions L∗

x × L∗
y × L∗

z = 1 × 1 × 8, with Lx ∼ 12σ , and using
N = 1152 particles. This cell has a cross sectional area greater
than (10σ )2 to avoid size-system effects, following previous
studies by several authors.25, 26, 28–30

The initial configuration consisted of an array of compact
slabs of molecules, where particles in every slab are arranged
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FIG. 1. (a)–(d) Equilibrated configurations for MC-NVT + VP simulations.
The system consisted of 3-mer SW chains in the simulation cell “Box 2” us-
ing 1152 molecules. The fixed density was ρ∗ = 0.0738 and each snapshot
corresponds to temperatures T∗ = 1.1, T∗ = 1.2, T∗ = 1.3, and T∗ = 1.4.
(e) Density profile as a function of the major axis of the simulation cell in
reduced units, z∗ = z/Lx. For each monomer, the density profile was calcu-
lated from simulation, averaging over equilibrium configurations. The pro-
files given in the graphic correspond to the average over the three monomers
profiles. The states are the same as those in (a)–(d).

as in a simple cubic lattice. The slabs were centered respect
to the long z side of the box, so that free space was left at
both sides of the initial array. MC-NVT simulations were per-
formed with a fixed density ρ∗ = 0.0738 and at a subcritical
temperature T∗ = 1.3,32 obtaining a liquid slab located in the
middle of a large simulation box. The reported density does
not correspond to the density within the liquid slab but rather
the overall density of the system including the large vapor re-
gion surrounding the liquid slab. Around 2 × 106 cycles were
required for equilibration and the output was used to simu-
late higher and lower temperatures, Figs. 1(a)–1(d). The equi-
librated states were used to run MC-NVT + VP simulations
with a virtual volume change every cycle. The averages for the
pressure were calculated over 8 groups of independent simu-
lations, performing a virtual volume change every cycle and
using 8 × 106 cycles for each simulation.

The normal component to the interface of the pressure
tensor, p∗

zz, should correspond to the vapor pressure of the
system. To evaluate this, we obtained the vapor density ρ∗

V

from the density profile, which was calculated from the aver-
age of configurations for each state. Then, independent MC-
NPT simulations at very low pressure were performed in a
cubic box for N = 256 molecules, in order to obtain average
density values ρ∗ for each pressure P∗. From a linear fit of
these data, a relation between the ρ∗

V and its corresponding
vapor pressure, p∗

V , was obtained.

TABLE I. Pressure tensor, p∗
αα = pαασ 3/kBT with α = x, y, z, calcu-

lated by MC-NVT + VP simulations for different values of the volume
perturbation parameter |ξ | = |
V |/V . Results are given for a system of N
= 1024 3-mer SW chains, at a density of ρ∗ = 0.2215 and at a supercrit-
ical temperature T∗ = 2.5. The pressure corresponding to this state is P∗
= 1.0, according to MC-NPT simulations. VP method was applied, using
Eq. (36), to configurations taken every cycle and results correspond to av-
erages over 3–5 × 106 configurations. Two simulation cells with different
shape were used, labeled as “Box 1” and “Box 2.”

|ξ | Simulation box p∗
xx p∗

yy p∗
zz No overlap (%)

0.00001 Box 1 0.98(3) 1.01(1) 0.98(3) 91
Box 2 0.99(3) 1.00(3) 1.00(3) 91

0.00005 Box 1 0.993(8) 0.993(9) 1.00(1) 62
Box 2 0.993(6) 0.995(6) 0.988(5) 62

0.00010 Box 1 0.997(8) 0.993(5) 0.997(6) 39
Box 2 0.997(6) 0.994(7) 0.989(7) 39

0.00020 Box 1 0.998(7) 0.996(5) 0.996(5) 15
Box 2 0.996(7) 0.998(4) 0.99(1) 15

0.00030 Box 1 0.995(9) 0.995(3) 0.994(4) 6
Box 2 0.993(6) 1.001(4) 1.00(1) 6

0.00040 Box 1 1.00(1) 0.997(5) 1.006(5) 2
Box 2 0.996(8) 1.00(1) 0.993(8) 2

The density profiles for each studied temperature are
shown in Figure 1(e), as functions of the long axis of the box
in reduced units, z∗ = z/Lx .

IV. RESULTS AND DISCUSSION

A. Tests for flexible SW chain molecules

Formally, the limits of Eqs. (14) and (30) imply that the
thermodynamic pressure P∗ can be obtained by considering
pressures for several values of the volume perturbation pa-
rameter, |ξ | = |
V |/V , in order to extrapolate P∗ when |ξ |
→ 0. For the case of continuous potentials P∗ has a linear be-
havior respect to |ξ |. For such cases, de Miguel and Jackson13

have shown that the pressure calculated from compression (ξ
< 0) is symmetric to the pressure calculated from expansion
(ξ > 0), both given as functions of |ξ |. The actual value of P∗

is given by the limit |ξ | → 0 or from the arithmetic average of
the pressure values at compression and expansion for a single
value of |ξ |.

For discontinuous potential systems the situation is more
complex and is not possible to follow the extrapolation proce-
dure. In Table I we present the pressure tensor calculated from
Eq. (36) for several values of |ξ |, the equivalence between
Eqs. (33) and (36) will be shown later. A third of the trace
of the pressure tensor, P ∗ = (p∗

xx + p∗
yy + p∗

zz)/3 is given in
Fig. 2(a) as a function of |ξ |. Similar results for each contri-
bution are sketched in Fig. 2(b) for compression, p

∗(HB+SW )
− ,

and in Fig. 2(c) for expansion, p
∗(HB)
+ . Taking into account

that the slope of the results presented in Fig. 2 is quite small
(in fact is almost a horizontal line) and considering that the
statistical uncertainty increases considerably for small values
of |ξ |, it seems reasonable to take a single value of |ξ | to esti-
mate P∗ if a criterion is found for doing this.

In Fig. 3 we present the simulated pressure for different
values of |ξ | and as a function of the number of test volume
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FIG. 2. Pressure, P∗ = pσ 3/kBT, as a function of the volume perturbation
value |ξ | = |
V |/V . Graphics correspond to: (a) complete pressure P∗, cal-
culated from Eq. (36); (b) compression contribution to pressure p

∗(HB+SW )
− ,

calculated for the total potential HB+SW; (c) expansion contribution to pres-
sure p

∗(HB)
+ , which takes into account only HB interactions. Simulations were

carried out with N = 1024 3-mer SW chains, at a density ρ∗ = 0.2215 and
at a supercritical temperature T∗ = 2.5. The pressure corresponding to this
state is P∗ = 1.0, according to MC-NPT simulations. The volume perturba-
tion was applied to configurations taken every cycle and results correspond
to averages over 3–5 × 106 configurations. In all the cases, pressure tensor
components were calculated directly from the simulation, and the pressure
is given by P ∗ = (p∗

xx + p∗
yy + p∗

zz)/3. Two simulation cells with different
shape were used, labeled as “Box 1” and “Box 2.”

trials. We considered |ξ | = 1 × 10−5, 20 × 10−5, and 40
× 10−5. In the simulation, smaller values of |ξ | imply lower
percentage of HB overlapping configurations when compress-
ing; then small |ξ | values are not adequate to determine the
pressure. For the system studied here, a compression with |ξ |
= 1 × 10−5 generates 2% of HB overlapping configurations
in a 3 × 106 sample (see also Table I). This case is presented
as the curve with more noisy behavior in Fig. 3; it is also the
most dissimilar case between Boxes 1 and 2, as seen in Fig.
2. For larger |ξ | values these effects are less noticeable. The
results given in Fig. 3 are the worst correspondence between
curves in the studied cases.

For an adequate selection of |ξ | we propose to check the
percentage of HB overlapping configurations for several |ξ |

0 1e+06 2e+06 3e+06 4e+06 5e+06

Number of test volume trials

0.98

1

1.02

1.04

P*

|ξ|=0.00001
|ξ|=0.00020
|ξ|=0.00040

FIG. 3. Pressure, P∗ = pσ 3/kBT, as a function of the number of configu-
rations used for its calculation, taking a configuration every simulation cy-
cle. We performed simulations with N = 1024 3-mer SW chains, at a den-
sity ρ∗ = 0.2215 and at a supercritical temperature T∗ = 2.5. These re-
sults were obtained from MC-NVT + VP simulations for the system in
an elongated simulation cell, “Box 2,” and the corresponding pressure is
P∗ = 1.0, according to MC-NPT simulations. The VP method was applied
using Eq. (33) for the pressure components and then pressure is given by
P ∗ = (p∗

xx + p∗
yy + p∗

zz)/3, for different values of the volume perturbation

parameter, |ξ | = |
V |/V . The curves correspond to |ξ | = 1 × 10−5, |ξ | = 20
× 10−5, and |ξ | = 40 × 10−5. Such virtual volume changes cause non-
overlapping configurations in 91%, 15%, and 2% of the attempts, respec-
tively. Other cases studied and not shown, |ξ | = 5 × 10−5, |ξ | = 10 × 10−5,
and |ξ | = 30 × 10−5, behave similar to the |ξ | = 20 × 10−5 curve.

values in short proofs. In this study we used as criteria |ξ |
values associated to ∼50% HB overlapping configurations.

Another aspect to test is the similarity between pressure
components when the system is homogeneous and isotropic.
In Fig. 4(a) we present the comparison between the three com-
ponents, p∗

xx , p∗
yy , and p∗

zz at a supercritical temperature. It is
clearly seen that as the number of configurations for averages
increases, the three components of the pressure tend to agree
each other. This behavior gives us information about the in-
trinsic precision of the volume perturbation method, since the
deviation between components for a large number of config-
urations is related to the size of the system. In this way is
possible to determine how many configurations are required
for a good estimation of P∗. In Fig. 4(b) we present the aver-
aged pressure over the three curves of Fig. 4(a) and we com-
pare it with the pressure calculated with an isotropic volume
change, P ∗

xyz. Taking the average in this case is equivalent
to improve the statistics of the method, since the calculation
for the three components is independent. The isotropic vol-
ume change produces an oscillating behavior, and we are pre-
senting here the worst case. Similar results were found for
an elongated simulation cell, “Box 2,” for supercritical tem-
peratures. In the following results, we performed anisotropic
volume changes to calculate the pressure tensor, and then the
pressure from the trace, as explained in Sec. II F.

In the simulations we verified the symmetry and additiv-
ity identities, expressed in Eqs. (34) and (35). The symmetry
in the compression and expansion contributions for the SW
interactions can be seen in Table II for several pressure values.
The first column indicates the pressure to test. This pressure
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FIG. 4. (a) Pressure tensor, p∗
αα = pαασ 3/kBT where α = x, y, z, as a func-

tion of the number of test volume trials, taking a configuration every simula-
tion cycle. The volume perturbation method was applied using Eq. (36) and
|ξ | = 20 × 10−5 to calculate the pressure components. (b) Comparison be-
tween the pressure values obtained using the pressure tensor components,
P ∗ = (p∗

xx + p∗
yy + p∗

zz)/3, and the pressure calculated with an isotropic
volume change, P ∗

xyz, as a function of the test volume trials. In the second
case, the volume perturbation parameter was |ξ | = 20 × 10−5, but the virtual
volume change was applied to the three box dimensions at the same time.
Similar behavior was observed for other cases, we show the worst corre-
spondence between curves in the studied cases. All simulation results with N
= 1024 3-mer SW chains, at a density ρ∗ = 0.2215 and at a supercritical
temperature T∗ = 2.5. These results were obtained in a cubic simulation cell,
“Box 1,” and the corresponding pressure is P∗ = 1.0, according to MC-NPT
simulations.

was used to run a MC-NPT simulation to obtain the density
average ρ∗ for the system at equilibrium. The contributions
from each perturbation and potential discontinuity were cal-
culated from MC-NVT + VP simulations with Eqs. (16) and
(32). These contributions and the weighted sum, Eq. (33), are
also given in the same table. As can be seen, the comparison
between p

∗(SW )
− and p

∗(SW )
+ supports the symmetry identity

given in Eq. (34). Accurate predictions also can be observed
for a wide range of pressures. In the last column, the sum of

TABLE III. Pressure values for several thermodynamic states obtained from
MC-NVT + VP simulations using Eq. (36) for a 3-mer SW chains system.
The first column is the pressure to test, which was used to run a MC-NPT
simulation to obtain the average density in equilibrium, ρ∗, given in column
2. This value was the fixed density for MC-NVT + VP simulations and also
corresponds to the ideal contribution to pressure. The third column gives the
results for pressure contributions calculated by compression, which includes
the complete potential, p

∗(HB+SW )
− . The fourth column gives the results for

pressure contributions calculated by expansion, where only HB discontinuity
accounts, p

∗(HB)
+ . Finally, last column shows the pressure calculated from

Eq. (36). Simulation conditions were the same as in Table II.

P∗ (NPT) ρ∗ p
∗(HB+SW )
− p

∗(HB)
+ P∗ [Eq. (36)]

0.1 0.0992 0.013(2) − 0.0139(2) 0.098(2)
0.5 0.1911 0.373(3) − 0.0656(8) 0.499(4)
1.0 0.2215 0.881(5) − 0.1061(6) 0.996(6)
1.5 0.2390 1.414(9) − 0.142(2) 1.51(1)

the compression contributions are given, which will be used
to verify Eq. (35).

Similar to Table II, the results for the same system and
thermodynamic states using Eq. (36) are reported in Table III.
The first two columns are the same as in Table II. The third
column gives the compression contribution taking into ac-
count the complete interaction, p∗(HB+SW ), and the fourth col-
umn gives the expansion contribution, which includes only
HB interactions, p∗(HB). The third column of Table III and the
last column of Table II are in very good agreement, indicating
that the compression contribution also follows the additivity
of the pressure as a consequence of the additivity of the po-
tential. This supports the identity given in Eq. (35).

B. Other systems

Once the criteria to select the parameters method have
been established, it is possible to study other systems. In
Table IV we present the results for spherocylinders interact-
ing via a SW potential (SWSC), with λ = 1.5σ and ε = −1.0.
The expected pressure, P∗ = pσ 3/kBT, and its correspond-
ing equilibrium density, ρ∗, are given in the first and second
columns.34, 35 The pressure contributions from compression
and expansion, p

∗(HB+SW )
− and p

∗(SW )
+ , respectively, corre-

spond to the third and fourth columns. The total pressure cal-
culated from Eq. (36) is given in the last column. The results
are in good agreement with the expected values for isotropic
(I) and nematic (N) phases, as in the case of pressure P∗

TABLE II. Pressure values for several thermodynamic states obtained from MC-NVT + VP simulations using Eq. (33) for a 3-mer SW chains system. The
first column is the pressure to test, which was used to run a MC-NPT simulation to obtain the average density in equilibrium, ρ∗, given in column 2. This value
was the fixed density for MC-NVT + VP simulations and also corresponds to the ideal contribution to pressure. The columns 3 to 6 give the results for pressure
contributions from compression and expansion calculated for each potential discontinuity, using Eqs. (16) and (32). Column 7 gives the pressure calculated
from Eq. (33) and the last column shows the sum of the compression contributions. We performed simulations with N = 1024 molecules in a cubic simulation
cell, “Box 1,” at a supercritical temperature of T∗ = 2.5. The VP method was applied using 3–5 × 106 configurations for averages, taking a configuration every
cycle. The value of the volume perturbation parameter, |ξ |, was chosen to get around 30%–50% of non-overlapping configurations for each case.

P∗ (NPT) ρ∗ p
∗(HB)
− p

∗(HB)
+ p

∗(SW )
− p

∗(SW )
+ P∗ [Eq. (33)] p

(HB)
− + p

(SW )
−

0.1 0.0992 0.272(2) − 0.0139(2) − 0.2585(6) − 0.2587(5) 0.098(2) 0.013(2)
0.5 0.1911 1.276(2) − 0.0657(8) − 0.903(1) − 0.902(2) 0.498(4) 0.373(3)
1.0 0.2215 2.043(7) − 0.1067(7) − 1.164(4) − 1.161(2) 0.99(1) 0.88(1)
1.5 0.2390 2.71(1) − 0.142(1) − 1.296(2) − 1.297(2) 1.51(2) 1.41(1)
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TABLE IV. Pressure values for several thermodynamic states obtained from
MC-NVT + VP simulations using Eq. (36) for a SW spherocylinders system
(SWSC). We performed simulations with N = 1020 molecules in a cubic
simulation cell, at reduced temperature T∗ = 5.0. The VP method was applied
to 4 groups of independent simulations, each one with 8 × 105 configurations
for averages, taking a configuration every 10 simulation cycles. The value of
the volume perturbation parameter, |ξ |, was chosen to get around 30%–50%
of non-overlapping configurations for each case. The meaning of the columns
is the same as in Table III.

P∗ (NPT) ρ∗ p
∗(HB+SW )
− p

∗(HB)
+ P∗ [Eq. (36)]

0.1 0.0359 0.0761(2) − 0.0113(1) 0.1008(3)
0.5 0.0698 0.499(1) − 0.0691(4) 0.500(2)
1.0 0.0876 1.043(2) − 0.1358(9) 0.995(3)
1.5 0.1041 1.56(1) − 0.17(1) 1.49(2)
1.75 0.1187 1.714(8) − 0.103(3) 1.73(1)

= 1.5, but the prediction deteriorates for smectic (SmA)
phases, as can be seen for pressure P∗ = 1.75. The pressure
tensors for I, N, and SmA phases are given in Table V. The
contributions from compression and expansion seem to be
sensitive to the anisotropy of the system, as reported in the
same table.

Another interesting case occurs when we add another dis-
continuity to the potential. In Table VI we show the results for
3-mer chains interacting via a square-shoulder plus a square-
well potential (SS + SW). The parameters used were λ1

= 1.4σ , ε1 = 0.5 for the shoulder and λ2 = 1.7σ and ε2

= −1.0 for the attractive segment. MC-NVT simulations with
the volume perturbation method were carried out with N
= 1024 spherocylinders at T∗ = 3.0 and fixed ρ∗ values in
a cubic cell. In this case, the compression contribution in-
cludes the complete potential, p

∗(HB+SS+SW )
− , while only HB

TABLE V. Pressure tensor for several thermodynamic states obtained from
MC-NVT + VP simulations using Eq. (36) for a system of N = 1020 SW
spherocylinders. The simulation details are the same as described in the Ta-
ble IV and the first two columns have the same meaning. At the right side
of the table, we show the results for compression (with HB+SW interac-
tions), expansion (only HB interactions), and total pressure, obtained from
anisotropic virtual volume changes. We compare the behavior of the compo-
nents for the system at different phases, using the order parameter S, defined
as the average of the second order Legendre polynomial of the angle between
two particles. For pressures P∗ = 1.0, P∗ = 1.5, and P∗ = 1.75 the phases
are isotropic (I, S = 0.05), nematic (N, S = 0.71), and smectic A (SmA, S
= 0.93), respectively. For the N and SmA phases the average director is
(nx, ny, nz) = (−0.0537, 0.2224, 0.9735) and (nx, ny, nz) = (0.3221, 0.3063,
0.8958), respectively.

P∗ (NPT) ρ∗ Phase p∗−
xx p∗−

yy p∗−
zz

1.0 0.0876 I 1.043(2) 1.042(3) 1.044(2)
1.5 0.1041 N 1.498(8) 1.53(1) 1.656(9)
1.75 0.1187 SmA 1.696(6) 1.694(9) 1.753(8)

p∗+
xx p∗+

yy p∗+
zz

1.0 0.0876 I −0.1358(9) −0.136(1) −0.1354(8)
1.5 0.1041 N −0.107(7) −0.14(1) −0.26(1)
1.75 0.1187 SmA −0.082(3) −0.083(3) −0.143(2)

P ∗
xx P ∗

yy P ∗
zz

1.0 0.0876 I 0.995(3) 0.993(4) 0.996(3)
1.5 0.1041 N 1.49(1) 1.49(3) 1.50(2)
1.75 0.1187 SmA 1.732(9) 1.73(1) 1.73(1)

TABLE VI. Pressure values for several thermodynamic states obtained from
MC-NVT + volume perturbation simulations using Eq. (36) for a 3-mer SS
+ SW chains system. The system consisted of 3-mer chains with a hard
core and a square-shoulder repulsive interaction plus a square-well attrac-
tive potential (HB + SS + SW). We performed simulations with N = 1020
molecules in a cubic simulation cell, at reduced temperature T∗ = 3.0. The
volume perturbation method was applied to 4 groups of independent sim-
ulations, each one with 1 × 106 configurations for average, taking a con-
figuration every 10 simulation cycles. The value of the volume perturbation
parameter, |ξ |, was chosen to get around 30%–50% of non-overlapping con-
figurations for each case. The meaning of the columns is the same as in
Tables III and IV.

P∗ (NPT) ρ∗ p
∗(HB+SS+SW )
− p

∗(HB)
+ P∗ [Eq. (36)]

0.1 0.0702 0.0329(4) − 0.00307(5) 0.1000(5)
0.5 0.1436 0.379(2) − 0.0211(2) 0.502(2)
1.0 0.1752 0.868(2) − 0.0434(4) 1.000(3)
1.5 0.1952 1.379(5) − 0.0676(7) 1.507(6)

discontinuity accounts for expansion calculation, p
∗(HB)
+ . The

total pressure was calculated as proposed in Eq. (39). As can
be seen, the results are in good agreement with the expected
values.

In all the systems studied in this work (SW trimer,
SWSC, and SS + SW trimer) it was observed that the pressure
value is overestimated by around 10%–13% when only com-
pression is included in the virtual volume perturbation. This
was also observed by Brumby et al. in convex HB systems.15

C. Surface tension

Finally, we present results for the calculation of the sur-
face tension using the volume perturbation method for discon-
tinuous potentials. We used the system of 3-mer SW chains in
an elongated box (“Box 2”) that required a larger number of
configurations than in the homogeneous cases, as described in
Sec. III C. In Figure 5 we present the pressure components for
this system at temperature T∗ = 1.1, and a similar qualitative
behavior was observed for other temperatures.

FIG. 5. Pressure tensor, p∗
αα = pαασ 3/kBT where α = x, y, z, as a function

of the number of test volume trials. We performed direct coexistence sim-
ulations with N = 1024 3-mer SW chains in an elongated simulation cell,
“Box 2,” at subcritical temperatures. The volume perturbation method was
applied to 8 groups of independent simulations, each one with 8 × 106 con-
figurations for averages, taking a configuration every cycle. The graphic cor-
responds to T∗ = 1.1 and similar qualitative behavior was presented by the
results for other temperatures.
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TABLE VII. Pressure tensor and surface tension, γ ∗ = γ σ 2/kBT, obtained from MC-NVT + VP simulations using Eq. (36) for a 3-mer SW chains system.
The first column is the reduced temperature, which corresponds to subcritical values. The second to fourth columns give the reduced pressure tensor. Column
5 corresponds to the vapor pressure calculated from a fit to MC-NPT simulations data, as described in Sec. III C. Column 6 shows the surface tension results
that were obtained using as the normal component p∗

N , the pressure component p∗
zz, which was calculated directly from the MC-NVT + VP simulations. The

last column shows the surface tension results that were obtained using as the normal component, p∗
N , the vapor pressure calculated independently (column

5). We performed direct coexistence simulations with N = 1024 molecules in an elongated simulation cell, “Box 2,” at subcritical temperatures. The volume
perturbation method was applied to 8 groups of independent simulations, each one with 8 × 106 configurations for averages, taking a configuration every cycle.

T∗ p∗
xx p∗

yy p∗
zz p∗

V γ ∗ (p∗
N = p∗

zz) γ ∗ (p∗
N = p∗

V )

1.1 −1.17(7) × 10−2 −1.08(6) × 10−2 4(6) × 10−4 1.5(6) × 10−4 0.58(6) 0.57(4)
1.2 −8.0(7) × 10−3 −6.4(7) × 10−3 1.3(8) × 10−3 6.5(7) × 10−4 0.42(7) 0.40(4)
1.3 −5.0(4) × 10−3 −4.2(7) × 10−3 1.2(5) × 10−3 1.7(1) × 10−3 0.29(5) 0.32(3)
1.4 −7(6) × 10−4 −2(4) × 10−4 3.0(4) × 10−3 3.5(1) × 10−3 0.17(4) 0.20(3)

As can be seen in Figures 1(a) and 1(e), the T∗ = 1.1
state has few molecules in the gas phase, which causes a
very low normal pressure. The numerical results for this and
other states are presented in Table VII. From second to fourth
columns, the calculated components are given. The fifth col-
umn corresponds to the vapor pressure calculated by inde-
pendent MC-NPT simulations. The last two columns give the
results for surface tension calculated with Eq. (41) for two
cases: (1) using as normal component the calculated from vol-
ume perturbation, p∗

N = p∗
zz; and (2) using as normal compo-

nent the calculated from the independent MC-NPT simulation
p∗

N = p∗
V .

By increasing the temperature, more molecules migrate
to the gas (see Figure 1) and then the prediction for the nor-
mal component p∗

zz improves in precision and accuracy. This
can be noticed because the relative error is lower for higher
temperatures, and this component is closer to the vapor pres-
sure value obtained from MC-NPT simulations. The tangen-
tial components, p∗

xx and p∗
yy , are lowered as the temperature

increases. When the values are of the order of 10−4, the results
are not reliable, since they are of the same order of magnitude
than the intrinsic error of the method. It appears that the final
value of the surface tension is not affected in the calculation,
and the results using p∗

N = p∗
zz and p∗

N = p∗
V are very simi-

lar. The surface tension values decrease when the temperature
increases, as expected.

V. CONCLUSIONS

An extension of the test volume perturbation method has
been developed in order to obtain the pressure and surface
tension of non-spherical molecules interacting via discontin-
uous potentials, in a single simulation. We studied specific
models such as total flexible chain molecules formed by tan-
gent spheres interacting via SW and SS + SW potentials, and
SW spherocylinders. According to the theoretical modeling,
the pressure contribution arising from the repulsive interac-
tion is asymmetric for the infinite energy case, whereas for
finite attractive and repulsive interactions there is a symme-
try with respect to expansion or contraction of the simulation
cell. Pressure contributions keep the additivity of the potential
interactions. These two properties allow us to give a simpli-
fied expression for the pressure of the non-spherical systems.
We found that, in order to reduce significantly the uncertainty

of the surface tension, longer runs are required. In summary,
to evaluate a certain component of the pressure tensor for a
molecular system having both hard and finite discontinuous
(attractive and/or repulsive) contributions, all what is needed
is: (1) to perform a test volume where one of the lengths of the
simulation box is reduced, (2) to compute the energy change
of this contraction using the original total intermolecular po-
tential, and (3) to add the hard body contribution that arises
on expansion. If this procedure is applied, the correct result
is obtained, regardless of whether atomic or molecular fluids
are used.

Our results agree with NPT simulations for bulk pres-
sure values; some problems due to temperature are observed
when the pressure tensor is obtained in coexisting phases.
Even when we took care in avoiding size-system effects using
a cross sectional area of around (12σ )2, a more detailed study
is required for complex molecules, such as spherocylinders or
long-chain molecules.
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