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In this work the solid-fluid equilibrium for carbon dioxide (CO2) has been evaluated using Monte
Carlo simulations. In particular the melting curve of the solid phase denoted as I, or dry ice, was
computed for pressures up to 1000 MPa. Four different models, widely used in computer simulations
of CO2 were considered in the calculations. All of them are rigid non-polarizable models consist-
ing of three Lennard-Jones interaction sites located on the positions of the atoms of the molecule,
plus three partial charges. It will be shown that although these models predict similar vapor-liquid
equilibria their predictions for the fluid-solid equilibria are quite different. Thus the prediction of the
entire phase diagram is a severe test for any potential model. It has been found that the Transferable
Potentials for Phase Equilibria (TraPPE) model yields the best description of the triple point prop-
erties and melting curve of carbon dioxide. It is shown that the ability of a certain model to predict
the melting curve of carbon dioxide is related to the value of the quadrupole moment of the model.
Models with low quadrupole moment tend to yield melting temperatures too low, whereas the model
with the highest quadrupole moment yields the best predictions. That reinforces the idea that not
only is the quadrupole needed to provide a reasonable description of the properties in the fluid phase,
but also it is absolutely necessary to describe the properties of the solid phase. © 2013 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4792443]

I. INTRODUCTION

Carbon dioxide (CO2) is undoubtedly one of the most rel-
evant and widely studied molecules. It is a common solvent in
chemical engineering,1–3 widely used in the food industry and
also increasingly used in new processes, for instance, the syn-
thesis of ultra-hard materials in materials science.4 It plays a
key role in biological processes such as photosynthesis, res-
piration, and participates in the global carbon cycle. The time
evolution of its concentration in the atmosphere has become
a matter of primary interest worldwide. The environmental
concerns related to the control and management of anthro-
pogenic emissions of green house gases have set the focus
of society, industry, and scientists on this molecule as one of
the hottest global issues, due to the connection between its
atmospheric concentration and climate change. For this rea-
son, research on CO2 capture,5 reutilization, and long term
storage has increased continuously and is expected to con-
tinue, because feasible and efficient technical solutions for
these questions are still not available and represent an urgent
need. The interest in CO2 is not limited to the fluid phase and
their mixtures.6–12 In fact, in the last decade, our knowledge
of the solid phases of CO2 has increased significantly thanks
to a number of experimental and theoretical studies.13–26 To-
day it is believed that the solid phase of CO2 comprises of
seven different polymorphs. At temperatures and pressures
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lower than 800 K and 12 GPa, respectively, we can find the
solid phase I, usually named dry ice, belonging to the cubic
Pa3 space group.27, 28 Increasing pressure at moderate tem-
peratures (lower than 500 K), the phase III is reached which
is an orthorhombic structure28, 29 (space group Cmca). Both
phases are of molecular nature, i.e., the structure of the CO2

molecule in these solid phases is basically that of the molecule
in the gas phase.30 On increasing temperature, in the pressure
interval from 20 GPa to 40 GPa, approximately, two differ-
ent solid phases are formed, labelled as II and IV , whose
molecular17, 21, 31, 32 or non-molecular33–35 character is matter
of debate. At very high pressures, phases V ,4, 20, 22 V I,14 and
a-carbonia,15 three strictly non-molecular solids can be found
in which the intermolecular interactions are fully covalent. In
addition, a new molecular phase (phase V II 31) was obtained
at pressure close to 12 GPa and at temperatures around 800 K.
In summary even though CO2 is a simple molecule its phase
diagram is rather complex, and it seems an interesting test to
analyze whether simple molecular models can describe such
a complex behavior.

In molecular studies carbon dioxide is usually described
by using a linear rigid model with three interaction sites.
The three sites are located approximately on the positions of
the atoms of the molecule. Typically each of the sites con-
tains a Lennard-Jones (LJ) center and a partial charge. Obvi-
ously a rigid empirical model cannot describe the formation of
solids where the molecule of carbon dioxide dissociates into
its atoms (i.e., a non-molecular solid). In this case true elec-
tronic structure calculations such as density functional theory
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(DFT) are probably the only alternative. However, it seems of
interest to analyze whether these models can provide a rea-
sonable description of the phase diagram in the region of low
temperature and pressure where carbon dioxide remains as
a molecular solid. Before addressing this interesting issue, it
seems reasonable to study an even simpler question: can sim-
ple molecular models of CO2 reproduce the melting point of
its simplest solid phase I (dry ice)? Notice that potential pa-
rameters are usually obtained to reproduce the vapor-liquid
equilibria36–38 and their capacity to reproduce the experimen-
tal melting point of dry ice should not be taken for granted.
Also it seems obvious that a model that simultaneously de-
scribes the vapor-liquid and the liquid-solid equilibria seems
superior to one that only describes the fluid phase properly.
In this work we shall determine the melting point of the solid
phase I for four popular models of CO2. In particular we have
selected the MSM model39–41 (named after the initials of the
authors of the original paper), and some recent updates such
as EPM242 (a variation of the original EPM, standing for Ele-
mentary Physical Model), TraPPE43 (Transferable Potentials
for Phase Equilibria), and the recent model by Zhang and
Duan.44 The differences between these models are the val-
ues of the characteristic LJ interaction parameters and elec-
tric charges for each site, and the carbon-oxygen bond length.
It will be shown that the best results are obtained when using
the TraPPE,43 showing that there is at least a model describing
quite well the vapor-liquid and the liquid-solid equilibria.

It is of interest to connect the behavior of CO2 to that of
another simple molecule: water. Water also presents a com-
plex phase diagram and over the last few years it has been
shown that models that predict reasonably well the vapor-
liquid equilibria may fail completely when predicting the
phase diagram and/or the melting point. This observation has
been useful in the design of improved water potentials, and
also it has clarified the key role played by the quadrupole
moment when describing water properties.45–48 Carbon diox-
ide has no dipole moment, but has a significant quadrupole
moment. It will be shown here that the quadrupole moment
also plays a key role for understanding the melting point of a
molecular model.

II. METHODOLOGY

In this work some of the most popular CO2 molecular
models have been considered. The MSM model, the first in
chronological order, was defined by using experimental data
of gas phase, ab initio calculations, and lattice parameters of
the solid state. The rest of the models, EPM2, TraPPE, and
Zhang and Duan, are considered as descendants of the for-

mer. In these cases, however, experimental thermophysical
properties were used in their parameterizations. Thus, EPM2
was developed in order to accurately predict the vapor liquid
equilibria (VLE) of pure carbon dioxide, TraPPE was fitted to
VLE data of the mixture CO2 with propane, whereas Zhang
and Duan model tried to improve the previous predictions of
the VLE data of pure CO2. The interaction between molecule
i and j is given by

uij =
∑

a

∑
b

uab, (1)

uab = 4εab

((
σab

rab

)12

−
(

σab

rab

)6
)

+ qaqb

rab

, (2)

where uab and rab are the energy and the distance between
site a of molecule i and site b of molecule j, respectively, εab

and σ ab are the LJ parameters, and qa and qb are the partial
charges. The internal energy U for a system of N molecules
is determined from the intermolecular energy between the ith
and j th molecule uij,

U =
N∑

i=1

N∑
j>i

uij . (3)

The parameters of the potential for these four models
are presented in Table I. For each force field the LJ param-
eters and partial charges located on each atom are provided.
In addition, the resulting value of the quadrupole moment is
presented. Unlike interactions have been described using the
Lorentz-Berthelot combining rules. It is fair to say that in
spite of small differences the four models considered present
similar values for the CO bond length and σ (differences be-
ing typically below five percent). The most significant differ-
ence between the models is the value of the partial charge
located on the carbon atom (since the molecule is electroneu-
tral this is sufficient to determine the partial charge on the
oxygen atoms). Differences in the value of partial charge can
be of up to 20%–25% and this is reflected in the value of the
quadrupole moment. The values of ε are not so different, but
in general, the larger the charge located on the C atom, the
lower the value of the epsilon parameters. Since these models
provide relatively similar vaporization enthalpies, the key dif-
ference between them is the different weight of dispersive (as
given by ε) to Coulombic interactions (as given by the par-
tial charges and the quadrupole moment). The Zhang model
presents large dispersive interactions and small quadrupo-
lar interactions. The TraPPE model presents smaller disper-
sive interactions and higher quadrupolar interactions. It seems

TABLE I. Lennard-Jones parameters for each model used in this work. Parameters between different particles follows the Lorentz-Berthelot rules. lc−o is the
distance between carbon and oxygen particle in the CO2 molecule and Q is the molecular quadrupolar moment in D × Å, where 1D × Å = 3.336 × 10−40 C
× m2.

Models εc − c/k (K) σ c − c (Å) εo − o/k (K) σ o − o (Å) qc (e) lc − o (Å) Q (D × Å)

Zhang 28.845 2.792 82.656 3.000 0.5888 1.163 3.18
MSM 29.000 2.785 83.100 3.014 0.5957 1.160 3.20
EPM2 28.129 2.757 80.507 3.033 0.6512 1.149 3.44
TraPPE 27.000 2.800 79.000 3.050 0.7000 1.160 3.78
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interesting to study if the melting point would be sensitive
or not to such a different balance between dispersive and
Coulombic forces.

Let us describe briefly the procedure used to determine
the fluid-solid (I) coexistence line for each model. The pro-
cedure has been described elsewhere49–51 so we shall provide
here only a brief description. For a certain selected pressure/s,
the temperature at which the chemical potential of the two
phases (liquid and solid) becomes identical is determined.
This provides an initial coexistence point. The entire coex-
istence line can be obtained by using the Gibbs-Duhem (GD)
integration method proposed by Kofke.52–54 This method con-
sists in the numerical integration of the Clapeyron equation,

dp

dT
= sII − sI

vII − vI

= hII − hI

T (vII − vI )
, (4)

where I and II represent the two coexisting phases and we use
lower case for thermodynamic properties per molecule. The
integration of this equation can be achieved using different
methods. In the particular case where the slope in the p − T
plane is pronounced, an alternative calculation method is ad-
vised. In this work, the equations to be integrated have been
dT/dp = T�v/�h for the solid-fluid coexistence line, and d
ln p/dβ, where β = 1/(kT) for the case of fluid-vapor coex-
istence. In both cases the integration has been solved numer-
ically using a fourth order Runge-Kutta algorithm, and the
determination of the enthalpy and volume variations between
the coexisting phases was obtained performing isotropic NpT
simulations.

It remains to be explained how the initial coexistence
point where both phases have the same chemical potential is
located. First, the chemical potential is calculated for the de-
sired pressure at a certain reference temperature. The chemi-
cal potential is given by

μ/kT = G/(NkT ) = A/(NkT ) + pV/(NkT ). (5)

Once the chemical potential at the reference state is known,
we shall perform thermodynamic integration to determine the
chemical potential along the considered isobar. This is done
for both the fluid and solid phases. After this is done it is rather
simple to locate the temperature at which both phases have
the same chemical potential for the considered pressure. The
tricky aspect of the calculation is that although the pV/NkT

is easily evaluated for the reference state from NpT runs, the
evaluation the Helmholtz free energy A is more involved. For
the solid phase we shall use the Einstein molecule method
to determine Asol. In this methodology the solid of interest is
transformed into an ideal Einstein molecule for which the free
energy is known easily using analytical and simple numeri-
cal methods. The ideal Einstein molecule is a system where
no intermolecular interactions are present and each molecule
is connected through translational and orientational harmonic
springs to the solid lattice configuration except one molecule
whose translational move is forbidden. We refer the readers to
a previous review on the topic,50 and to our previous work on
methanol for further details.55, 56 The expression for Asol from

the Einstein molecule method is given by

Asol = AEin−mol−id + �A∗
1 + �A∗

2 = A∗
0 + �A∗

1 + �A∗
2,

(6)
where AEin−mol−id (or A∗

0) is the free energy of the ideal Ein-
stein molecule, �A∗

1 is the free energy change between the
ideal Einstein molecule with intermolecular interactions and
the ideal Einstein molecule, both with molecule 1 fixed (i.e.,
fixing its center of mass) and, �A∗

2 is the free energy change
between the solid with molecule 1 fixed and the interacting
ideal Einstein molecule with molecule 1 fixed. The system
energy due to the harmonic springs follows the next expres-
sions:

UEin−mol−id,t =
N∑

i=2

�E(�ri)
2, (7)

UEin−mol−id,r =
N∑

i=1

�Eb sin2(ψb,i), (8)

where �E and �Eb are the spring constants, �ri is the vec-
tor connecting the position of an atom of molecule i (i.e., the
carbon atom) in the current position to that of this atom in
the ideal solid reference lattice and ψb, i is the angle formed
between the C–O vector of molecule i in the current configu-
ration and that of the C–O vector in the ideal solid reference
lattice. The Einstein molecule method cannot be used for the
fluid phase. In this case Aliq was determined by using thermo-
dynamic integration and assuming ideal gas behavior for the
gas phase at 800 K and 0.1 MPa.

Finally let us provide some further details about the NpT
and NV T simulations performed in this work. The initial con-
figuration for the solid was a Pa3 structure unit cell,28 com-
posed by four molecules whose disposition and orientation
have been represented in Figure 1. The Pa3 space group is
a cubic crystalline structure, and this simplifies the calcula-
tions because the simulations of the solid phase as those of the
fluid can be performed using NpT simulations with isotropic

FIG. 1. Unit cell of carbon dioxide in the cubic Pa3 solid structure denoted
as dry ice.
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scaling. The initial lattice parameter of the solid phase was
a = 5.54 Å. This cell has been replicated four times in the
three spatial directions to obtain a simulation box containing
N = 256 molecules. Notice that initial value of the lattice pa-
rameter a has no influence on the calculations as the system
finds (in the NpT simulations) its equilibrium value at a certain
T and p for the considered model. Simulations were arranged
in cycles, each of them consisting of N attempts to move or
rotate a molecule chosen at random, plus a volume change
trial in the case of NpT simulations. Maximum molecule dis-
placements, rotations, and volume changes were tuned along
the simulation to approach a 30% acceptance ratio. In a re-
cent paper, Frenkel57 has recalled, among many other inter-
esting aspects concerning molecular simulation, the mathe-
matical reasoning supporting the choice of acceptance ratio
values around 30%, related with the optimization of sampling
efficiency for Metropolis-style Monte Carlo (MC) moves. A
cut off radius of 10 Å for solid and fluid phases and 1/5L,
in the case of 800 K isotherm at pressures of 0.1, 1, 5, and
10 MPa, have been considered where L is the size of the sim-
ulation box. Apart from the usual LJ long range corrections,58

the Ewald summation method59 was used for the Coulombic
interactions. For NV T and NpT, solid and fluid phases, the
simulation runs were first a equilibration stage of 20 000 cy-
cles followed by production runs of typically 40 000 cycles.
In the case of Gibbs-Duhem simulations, the equilibration and
the production runs were of 10 000 cycles.

The selection of number of molecules and simulation
runs length deserves an additional comment before proceed-
ing further. Several authors have used the Gibbs-Duhem in-
tegration algorithm to determine solid-liquid equilibria along
molecular simulation calculations, and the number of parti-
cles used is in many cases much larger than the one used
here. For instance, Ahmed and Sadus60 used this technique
to determine the Weeks-Chandler-Andersen potential phase
diagram, by simulating 4000 molecules using molecular dy-
namics, with the objective to avoid finite size effects. The
same authors determined the system size dependence for
the solid-fluid equilibria calculation for the Gaussian core
model fluid,61 determining the optimal system size to be 2048
molecules, a value which was used again later for the same
calculation in the case of the n-6 LJ potentials family.62 In
addition, they discussed also the effects of potential trunca-
tion and shift for the solid fluid equilibria calculations for the
case of the LJ potential.63 In the present work, and with the
aim to discard the possible influence of finite size effects, ad-
ditional calculations were performed for a system containing
500 molecules. The coincidence in the numerical values of
the properties determined was remarkable, with density vari-
ations typically in the fifth significative digit, and Helmholtz
free energy variations in the fourth figure, which leads to equi-
librium temperatures according to within the statistical uncer-
tainty with the values shown in the tables. The same com-
parison procedure was performed with simulation runs twice
longer, with identical results. This underlines the robustness
of the method used that will be supported also by the agree-
ment of triple point coordinates obtained by other authors for
different CO2 models using different simulation techniques
and system sizes.

TABLE II. Helmholtz free energy of the solid phase Asol as evaluated from
Einstein molecule calculations at 100 K for different pressures. Free energy
calculations were obtained in NV T runs at the equilibrium density of the
system at 100 K and the considered pressure. The maximum value of the
spring constant was 25 000 (in kT /Å2 for the translational spring and in
kT units for the orientational one). The thermal deBroglie wavelength was
assigned to 1 Å.

Asol/NkT

Models 1000 MPa 200 MPa 4 MPa

Zhang −21.57 −22.72 −22.80
MSM −21.71 −22.88 −22.96
EPM2 −22.48 −23.62 −23.70
TraPPE −23.78 −24.92 −25.00

III. RESULTS

The free energy of the solid phase at 100 K (for the pres-
sures 1000 MPa, 200 MPa, and 4 MPa) as obtained from
Einstein molecule calculations is presented in Table II. The
reason for performing three independent free energy calcu-
lations for each model is as follows: in principle the eval-
uation of the free energy for only one pressure (in combi-
nation with thermodynamic integration), would be sufficient
to determine the free energy along the isotherm. However,
performing three independent calculations allows to perform
a consistency check. Starting from the value evaluated at
1000 MPa and performing thermodynamic integration one
should obtain the same free energy at 200 MPa and 4 MPa
than that obtained from the Einstein molecule methodology.
This is a severe test. In Table III free energies at 200 MPa
and 4 MPa are presented as obtained from Einstein molecule
calculations and as obtained from thermodynamic integra-
tion starting from the free energy computed at 1000 MPa.
The small differences between both sets of values is remark-
able, ensuring the consistency between both calculation meth-
ods. Since free energy calculations for solids are somewhat
involved, these consistency tests are highly recommended. It
is interesting to compare the free energies obtained at 100 K
and 200 MPa (conclusions would be similar for other pres-
sures) obtained for the different models. As can be seen
the free energy of the Zhang and MSM are quite similar,
being the results for the EPM2 model lower by approxi-
mately 1 NkT , and those of the TraPPE model lower by
2 NkT. Thus for the TraPPE model the solid phase I is about
2 NkT more stable than for the Zhang and/or MSM models.
It is interesting to point out that in the I solid structure

TABLE III. Helmholtz free energies in NkT units, AEM and ATI, obtained
by Einstein molecule method (EM) and thermodynamic integration (TI), re-
spectively, for the potential models considered in this work, at T = 100 K.

200 MPa 4 MPa

Models AEM ATI AEM ATI

Zhang −22.72 −22.73 −22.80 −22.81
MSM −22.88 −22.89 −22.96 −22.97
EPM2 −23.62 −23.63 −23.70 −23.71
TraPPE −24.92 −24.92 −25.00 −25.00
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TABLE IV. Helmholtz free energies Afluid of the fluid phase at the ther-
modynamic reference points. The Afluid value at 1000 MPa and 200 MPa
was evaluated by using thermodynamic integration along the T = 800 K
isotherm from ideal gas state (0.1 MPa). An additional thermodynamic in-
tegration along an isochore was needed to obtain the Afluid value at 4 MPa.
The density of the isochore was set to the density value of each model at
4 MPa and 250 K. Temperature of 800 K for 1000 and 200 MPa pressures
and 250 K for 4 MPa pressure.

Afluid/NkT

Models 1000 MPa 200 MPa 4 MPa

Zhang −3.48 −5.18 −7.59
MSM −3.48 −5.18 −7.63
EPM2 −3.46 −5.17 −7.63
TraPPE −3.45 −5.17 −7.76

(also denoted as αN2 in the literature) the relative orienta-
tion between first nearest neighbors is T like.64 Not surpris-
ingly this is the most stable relative orientation for a pair of
ideal quadrupoles. Thus it is clear that the larger value of
the quadrupole moment of the TraPPE model43 is playing
a key role in the stabilization of the solid phase. Although
this is interesting, these results by themselves do not guar-
antee that the melting point of the TraPPE model will be
higher than that of the MSM and/or Zhang models. It may
also be the case that for the fluid phase the free energy of
the TraPPE model is lower than that of the Zhang model
by the same amount, and in such a case both models would
have the same melting point temperature. To analyze this in
more detail the free energy for the fluid phase has been calcu-
lated at several pressures. Results are presented in Table IV.
Under the considered conditions the free energies of the four
models are quite similar. Therefore, the higher quadrupole of
the TraPPE model has a much smaller impact in the fluid free
energies. It is interesting to point out that the average energy
between two quadrupoles is zero when the molecules are able
to rotate freely.64 Of course molecules in the fluid phase do
not behave as free rotors, but it is clear that orientational cor-
relations are much smaller in the fluid than in the solid phase
(in this last case first nearest neighbors must adopt a T like
configuration in the I solid). For a given fluid, one would ex-
pect that if the models predict the same vapor-liquid coexis-
tence curve, they should also produce the same liquid phase
free energies. The partitioning of energies between LJ (dis-
persive) and Coulombic interactions is largely irrelevant for
weakly/non-associating fluids as long as the overall magni-
tude and range of the interactions is correct. Some extreme
examples demonstrate this: Avendaño et al.65 have developed
a single site CO2 model (not considering the quadrupole) as
part of the SAFT-γ approach that provides a very good repro-
duction of the fluid phase properties; and Ketko and Potoff66

have developed a series of models for dimethyl ether using a
wide range of partial charges (including zero) that reproduce
in all cases the saturated liquid densities to within 1%–2% of
experimental values. While these aforementioned models are
able to reproduce the fluid phase properties to high accuracy,
they would obviously provide poor predictions of solid-liquid
coexistence.

FIG. 2. Chemical potential μ as a function of temperature T obtained from
the TraPPE model for the solid (�) and fluid (•) phases for the three isobars
investigated.

From the discussion presented so far one may anticipate
that the TraPPE model will present a higher melting temper-
ature for a given pressure, and that the ordering of the melt-
ing temperatures will be given by the order of the quadrupole
moment. Now we shall determine the fluid-solid equilibria for
several pressures. Once the chemical potential is known for a
reference state within each isobar then thermodynamic inte-
gration can be performed along the isobar to obtain the chem-
ical potential as a function of the temperature. When this is
done for the fluid and solid phases, the coexistence is sim-
ply found as the temperature at which the chemical potential
of both phases becomes identical for each considered pres-
sure. For the solid phase, thermodynamic integration was per-
formed using the results of NpT simulations along the isobars
of 1000, 200, and 4 MPa. These NpT simulations were per-
formed by increasing the temperature starting from the initial
reference temperature (i.e., 100 K) for which chemical po-
tential is known. Similarly for the fluid phase thermodynamic
integration was performed using the results of NpT simula-
tions along the isobars 1000, 200, and 4 MPa. These NpT
simulations were performed by decreasing the temperature
starting from the initial reference temperature (i.e., 800 K, for
1000 MPa and 200 MPa, 250 K for 4 MPa) for which chem-
ical potential of the fluid phase is known. Figure 2 plots the
chemical potential values obtained for the TraPPE model, for
both the fluid and the solid phases. For each pressure the inter-
section point determines the coexistence temperature. Table V
lists the coexistence point temperatures determined for each
model at different pressures. Bearing in mind the quadrupole
moment values for each model listed in Table I, an inspection
of Table V reveals a direct correlation between these values
and the estimated coexistence temperature at a given pressure.
In fact, the models in Table V are ordered in increasing Q val-
ues, starting with Zhang and Duan model, the one with the
lowest Q value, up to TraPPE model. The results of Table V
do indeed confirm the relation between the melting point and
the quadrupole moment, a relation already anticipated from
the analysis of the free energies.
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TABLE V. Solid-fluid coexistence points for each model at different pres-
sures. Last two columns show the triple point temperature and pressure ob-
tained for each model along with the experimental value.69 All temperatures
are in Kelvin.

Models 1000 MPa 200 MPa 4 MPa Tt pt (MPa)

Zhang 290 216 189 188 0.136
MSM 298 217 189 188 0.130
EPM2 321 232 200 200 0.123
TraPPE 345 249 214 213 0.44
Expt. . . . . . . . . . 216.6 0.518

Once the fluid-solid equilibria have been determined for
at least one pressure one can use Gibbs-Duhem integration to
obtain the entire melting curve. We have used the coexistence
temperature at the pressure of 1000 MPa as the initial coex-
istence point. Since one single coexistence point is sufficient
to obtain the entire melting curve, the calculation of the co-
existence conditions for three different points may appear to
be excessive. However, it offers an important advantage. It al-
lows once again to cross-check all the calculations. In fact, by
using GD integration and starting from the coexistence point
at a certain pressure one should reproduce the coexistence
conditions for other pressures obtained from free energy cal-
culations (provided that there is no error in the calculations).
Figure 3 plots the estimated solid-fluid coexistence lines in a
T − p diagram for the models considered in this work. Ex-
perimental results for the melting curve are also presented.67

The conclusion is clear. The TraPPE model provides an ex-
cellent description of the experimental melting curve of CO2.
It is important to emphasize that the TraPPE model was not
designed to reproduce the melting curve, so that its success in
the prediction is a true merit of the model. The GD lines pre-
sented in Figure 3 started at 1000 MPa. The lines are entirely
consistent with the coexistence points estimated at 200 MPa
and 4 MPa from free energy calculations. That shows the con-
sistency of the calculations. Let us now focus on the location
of the vapor-liquid-solid triple point.
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FIG. 3. Solid-fluid coexistence lines in the T − p diagram for each model
as obtained from Gibbs-Duhem simulations starting from the coexistence
point at 1000 MPa: TraPPE (red line), EPM2 (green line), MSM (violet
line), and Zhang (cyan line), compared with experimental data67 (black line).
Symbols represent coexistence points obtained from independent free energy
calculations.
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FIG. 4. Solid-fluid and fluid-vapor coexistence lines for each model com-
pared with experimental data.68 Legend as in Figure 3.

The triple point can be simply determined by represent-
ing the vapor-liquid and fluid-solid coexistence curves on a
T − p plot. The intersection of both lines yields the triple
point temperature and pressure. In Figure 4 the vapor-liquid
coexistence curves and fluid-solid curves are presented. The
vapor-liquid coexistence line was obtained using the Gibbs-
Duhem method from specific coexistence points taken from
Refs. 42–44. The fluid-solid coexistence curves appears as
approximately horizontal lines indicating that changing the
pressure by a few MPa does not modify much the melting
temperature. The upper part of the graph represents the vapor-
liquid coexistence pressure (i.e., the vapor pressure curve) ob-
tained for the models and compared with experimental data.68

Obviously in this case a change of a few MPa significantly
modifies the coexistence temperature. It is clear that all mod-
els considered in this work predict similar (and accurate)
vapor-pressures. For this reason the vapor pressure curves
for the four models considered in this work show excellent
agreement with the experimental results. However the melting
curves are quite different. Consequently the triple point condi-
tions (i.e., the intersection of the two coexistence curves) are
quite different for each model. The triple point coordinates,
are listed in Table V along with the experimental results.69

The TraPPE model provides excellent predictions not only for
the triple point temperature, but also for the triple point pres-
sure. Notice that the triple point pressure of the TraPPE is ap-
proximately three times higher than that of the other models.
The TraPPE model predicts quite well not only the triple point
temperature and pressure but also the density of the phases at
the triple point. This is shown more clearly in Table VI.

TABLE VI. Densities of the solid, fluid, and vapor at the triple point condi-
tions of each model. Experimental results are also shown.68

ρ(g cm−3)

Models Solid Fluid Vapor

Zhang 1.537 1.270 0.004
MSM 1.527 1.261 0.004
EPM2 1.524 1.225 0.006
TraPPE 1.501 1.181 0.012
Experiment 1.512 1.178 0.013
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It is interesting to compare the numerical values of the
triple point coordinates obtained in this work with results
from other authors, obtained using also molecular simulation,
and the TraPPE molecular model for CO2, but different calcu-
lation techniques and simulation settings. For instance, Chen
et al.70 determined the triple point coordinates, using Gibbs
Ensemble MC simulations, for a system containing a total of
1728 molecules, to study the coexistence of solid and vapor
phases, yielding values of Tt = 212 ± 2 K and Pt = 0.45
± 0.05 MPa, which are fully consistent with the values ob-
tained here. Recently, Do and Wheatley71 proposed a novel
simulation density of states partitioning technique, intended
to calculate the free energy of a solid phase. It is to be noted
that their calculations were performed with 500 molecules,
and the TraPPE CO2 triple point coordinate estimates were
Tt = 213 ± 2 K and Pt = 0.41 ± 0.03 MPa, again in very
good accordance with our values. The conclusion obtained
from this comparison deserves to be commented upon. The
agreement shown between the triple point coordinates for the
TraPPE CO2 model, obtained using different simulation tech-
niques and system sizes ranging from 256 to 1728 molecules
underlines the reliability of the calculation method applied in
each of the cases cited. Although it is well known that finite
size effects play an important role in solid-fluid equilibria de-
termination using molecular simulation, as demonstrated by
Ahmed and Sadus,60 and the further study of the thermody-
namic limit of these “realistic” models of CO2 is an inter-
esting goal, the results of this work compared with the other
two references cited70, 71 evidence that the triple point of the
TraPPE model of CO2 for the typical system size used in com-
puter simulations is located around Tt = 212 K.

Once the fluid-solid curve has been determined for each
model it is interesting to compare the predictions for the melt-
ing enthalpy with the experimental values.67 This is done in
Figure 5. All models underestimate the melting enthalpy. That
said the results of the TraPPE model are closer to the experi-
mental values. Since the melting enthalpy increases with the
value of the quadrupole moment the results of Figure 5 sug-
gest that an important contribution to the melting enthalpy

FIG. 5. Melting enthalpy �hs at different pressures for all tested models
compared to experimental data67 (legend as in Figure 3). Symbols represent
results for simulations at 300, 500, 700, and 900 MPa carried out to check the
Gibbs-Duhem results.

FIG. 6. Melting volumes �vs at different pressures. Legend as in Figure 5.

of carbon dioxide is due to the quadrupolar interaction en-
ergy. Further work is needed to understand why all models of
carbon dioxide underestimate the melting enthalpy. Volume
changes along the fluid-solid coexistence curve are shown in
Figure 6. The results are similar to those for the melting en-
thalpy. All models underestimate the volume change, the re-
sults of the TraPPE model being much closer to the experi-
mental values. The symbols shown in Figures 5 and 6 were
obtained by performing long NpT runs (50 000 cycles) of the
fluid and solid phase at four selected values of the coexistence
line. The symbols are quite close to the results obtained from
Gibbs-Duhem simulations (lines) which were obtained using
somewhat shorter runs. Therefore, the underestimate of the
melting enthalpy and volume change of the four considered
models is a real effect.

We have also studied the mechanical stability of the solid
along several the 1000, 200, and 4 MPa isobars. We found that
in general dry ice was mechanically stable up to temperatures
of 100 K (1000 MPa), 70 K (200 MPa), and 50 K (4 MPa)
above the equilibrium melting temperature for each consid-
ered pressure. That means that the carbon dioxide solid (in
absence of interface) can be overheated in NpT simulations.
This is in line with previous results for water, where it was
found that in computer simulations (without interfaces) ices
could be superheated by about 70–80 K with respect to the
equilibrium melting temperature.72

IV. CONCLUSIONS

In this work the fluid-solid coexistence and triple points
have been located for four popular models of carbon dioxide.
These four models yield quite reasonable predictions of the
vapor-liquid equilibria. This is not surprising as vapor-liquid
equilibria are commonly used as a target property when de-
termining the parameters of most forcefields. However, the
four models yield quite different predictions for the triple
point (vapor-liquid-solid) conditions and for melting curves.
Thus the prediction of the entire phase diagram (including
also fluid-solid equilibria) is a severe test for potential mod-
els. It is clear from the results of this work that the TraPPE
model yields an overall better performance of the phase di-
agram of carbon dioxide. It fact, it predicts the triple point
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temperature and pressure quite well, and the same is true
for the melting curve. It also yields reasonable estimates (al-
though the agreement with experiment is not yet fully quan-
titative) for the melting enthalpy and for the volume change
along the melting curve.

It is interesting to analyze the origin of the superior-
ity of the TraPPE model. Already in the 1970s and 1980s
it was known that adding an ideal quadrupole to a spher-
ical simple model (i.e., HS, LJ) modified significantly the
structure of the liquid phase.73, 74 Several studies also ana-
lyzed its impact on the critical properties.75–79 The conclu-
sion of these studies was that the quadrupole significantly
affected the fluid properties, including the vapor-liquid equi-
libria. Since experimentally carbon dioxide presents an im-
portant quadrupole it seems reasonable to incorporate the
quadrupole in the model. However, it should be reminded
that even without the quadrupole it is still possible to pro-
vide quite reasonable estimate of the properties in the fluid
phase.65, 80 But when it comes to the solid phase, the role of
the quadrupole is not needed just to improve the phase equi-
libria predictions, but it is absolutely required to understand
its phase diagram. Some time ago it was shown that for a sim-
ple linear model without quadrupole moment the stable phase
is not the αN2 structure (i.e., ice I). This solid phase was sta-
ble only when the quadrupole was introduced in the model.81

Later on it was shown that to understand the small liquid range
of carbon dioxide (as reflected by the parameter Tt/Tc which
adopts an extraordinary high value for CO2) a high value of
the quadrupole moment is needed.82, 83 The four models con-
sidered in this work do indeed have a quadrupole moment.
But its magnitude changes significantly from one model to
another. Since all models provide reasonable values of the va-
porization enthalpy, it means that the relative weight of dis-
persive to Coulombic forces is different in the four models.
It turns out that the model with the highest quadrupole mo-
ment (TraPPE) is also the model with the best prediction of
the triple point temperature and pressure. The TraPPE model
is the model that has a quadrupole moment closest to the value
estimated by Vrabec et al.84 and to the experimental value
in the gas phase. In some recent studies the key role played
by the quadrupole to understand the phase diagram of water,
and also the correlation between the melting temperature and
the quadrupole moment for ice Ih has been illustrated.45–47 It
seems that the same is true for carbon dioxide. Quadrupolar
forces (and polar forces in general) depend quite significantly
of the relative orientation between molecules. In the solid
phases of molecular solids, these relative orientations are dic-
tated by the geometry of the lattice. It is not surprising then
that the solid phase is far more sensitive to the quadrupole
moment than the fluid phase.85 It is shown here, that TraPPE
does indeed a good job and its good performance is related to
its high quadrupole moment. It seems clear that to understand
the properties of carbon dioxide, one must not only include
some Coulombic interactions, but its strength must also be
correct. There is not much hope in describing the phase di-
agram of carbon dioxide without taking into account its high
quadrupole moment. Whether the TraPPE model is successful
in describing other solid phases of carbon dioxide (those that
can be regarded as molecular solids since TraPPE can never

describe the molecular dissociation as it is a rigid model) is
an issue that probably deserves future studies.
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