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In this work, we describe a procedure to evaluate the free energy of molecular solids with the
GROMACS molecular dynamics package. The free energy is calculated using the Einstein molecule
method that can be regarded as a small modification of the Einstein crystal method. Here, the po-
sition and orientation of the molecules is fixed by using an Einstein field that binds with harmonic
springs at least three non-collinear atoms (or points of the molecule) to their reference positions. The
validity of the Einstein field is tested by performing free-energy calculations of methanol, water (ice),
and patchy colloids molecular solids. The free energies calculated with GROMACS show a very good
agreement with those obtained using Monte Carlo and with previously published results. © 2013 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4812362]

I. INTRODUCTION

The existence of a fluid-solid transition for hard spheres
is now well established but it has been a matter of debate for
long time after Alder and Wainwright1 found evidences of its
existence when performing Molecular Dynamic (MD) sim-
ulations. The debate ended when Hoover and Ree2 in 1968
calculated the free energy of the fluid and solid phases show-
ing that at a certain pressure the chemical potential of the
two phases was the same (i.e., they found the coexistence
conditions). To evaluate the free energy of the solid phase,
Hoover and Ree2 proposed a new method, the cell method,
inspired in the successful cell theory of solids.3 Since then
the interest in determining the free energy of solids and/or
the fluid-solid coexistence by using computer simulations has
kept growing. In 1997, Bruce, Wilding, and Ackland4–7 pro-
posed a new method to determine the fluid-solid equilibria,
the phase switch method. Later on, Grochola8, 9 proposed a
method to compute the free energy difference between a fluid
and a solid phase. The methodology was further developed by
Eike, Brennecke, and Maginn.10 More recently, other methods
have been proposed to compute the free energy of a solid, as
the self-referential methodology of Sweatman,11 the density
of states partitioning method by Do and Wheatley,12 the mod-
ified constrained cell model by Orkoulas and Nayhouse,13 and
the new method recently proposed by Wilding and Sollich,14

just to mention a few. In the last years, direct coexistence sim-
ulations techniques,15–18 that require no free energy calcula-
tions, have become very popular to determine the fluid-solid
equilibrium. However, direct coexistence techniques cannot
be used to determine solid-solid equilibria and may become
computationally expensive when the crystal growth becomes
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very slow.19 Moreover, they do not provide direct informa-
tion about the relative stability between the different poly-
morphs. It is becoming more and more evident that the rela-
tive stability between the different solid phases (i.e., the phase
diagram) provides very interesting information on the orien-
tational dependence of the interactions between molecules,
and that phase diagram predictions can be very useful to test
and further develop potential models (being the TIP4P/2005
water model a good example20, 21). As anticipated by Bernal
and Fowler,22 Whalley,23 Finney,24 Monson,25 and Morse and
Rice26 among others, there is a lot of information about in-
termolecular interactions in the low temperature region of the
phase diagram (where one or more solid phases are thermo-
dynamically stable). For this reason, free energy calculations
of solids are likely to be needed still for some time.

One of the most popular methods to evaluate free energy
of solids is the “Einstein crystal method” proposed by Frenkel
and Ladd,27–29 which consists of a thermodynamic integra-
tion scheme to compute the free energy of a solid using as
a reference system an ideal Einstein crystal, i.e., a solid in
which each particle is bound to its lattice position by a har-
monic spring. The method was later extended to molecular
solids including an angular-dependent orientational field.30

Next, Vega and Noya31, 32 developed the “Einstein molecule
(Em) method” which can be regarded as a small modification
of the Einstein crystal method. While in the Einstein crystal
method a quasi-divergence in the integration from the solid
to the Einstein crystal was avoided by fixing the center of
mass of the system, in the Einstein molecule approach this
was achieved by fixing the position of the reference point of
one molecule (but not its orientation). This simplifies con-
siderably the derivation of the free energy of the reference
system.

Even though several numerical techniques are nowadays
available to compute the free-energy of solids, their calcula-
tion is still limited due to the need of having accessible a la
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carte Monte Carlo (MC) codes. It is becoming quite obvi-
ous that in the last decade the number of groups (specially
the number of young groups) performing simulations using
open source packages such as GROMACS33 or LAMMPS34 is
steadily growing. However, free energy calculations for solids
are not implemented in these open source packages and for
this reason the number of groups determining free energy for
solids still forms a small family.35–56 Nevertheless as it will be
shown here, it is possible to compute free energies for solid
phases using these open source programs.

Free energy calculations have been recently reported
for atomic systems such as Si,57 alloys of copper and
zirconium,58 and a confined Lennard-Jones (LJ) system59 in
all cases using LAMMPS. Few months ago, some of us60

showed how to carry out free-energy calculations (Einstein
crystal and Einstein molecule) for atomic solids within open
source molecular dynamics simulation programs, such as
GROMACS and LAMMPS. Free energy calculations were per-
formed for a LJ solid and for a NaCl solid, and the results
were compared to previously published free energy calcula-
tions obtained using our home made Monte Carlo code. The
agreement was found to be excellent so that the message was:
for atomic systems it works! Besides, in Ref. 60, input files
for both GROMACS and LAMMPS were provided as supple-
mentary material (we provide again three files needed for the
calculations with LAMMPS amended to remove misprints61

that we have checked did not affect the results presented in
Ref. 60). Therefore, one can now compute with GROMACS

and/or LAMMPS the free energy of solids formed by noble
gases, ionic solids, metals, and spherically interacting mod-
els. In spite of that, the situation is not fully satisfactory. With
the methodology described so far it is not yet possible to com-
pute the free energy for molecular solids.

In this work we will show that, by slightly modifying
(from the traditional form) the expression of the field forc-
ing the molecules to adopt the position and orientation of the
solid lattice, it is possible to compute free energies for molec-
ular solids using open source molecular dynamics packages
such as GROMACS. The procedure will be applied to two in-
teresting molecules: methanol and water for which free en-
ergy calculations have been previously reported, and a patchy
colloidal solid. Quite often small molecules are described by
rigid models (methanol,62 water,21 carbon dioxide63). There-
fore, the procedure described in this work describes how to
perform free energy calculations for rigid molecular systems.

II. METHODOLOGY

A. Einstein molecule approach

The Helmholtz free-energy Asol(T , V ) computed with
the Em method can be written as

Asol(T , V ) = A0(T , V ) + �A1(T , V ) + �A2(T , V ), (1)

where A0 is the free energy of the reference system includ-
ing a correction for fixing the reference point of one molecule
(i.e., molecule 1), �A1 is the free-energy difference between
the ideal Einstein crystal and an Einstein crystal in which
particles interact through the Hamiltonian of the real solid

(“interacting” Einstein crystal), and �A2 is the free-energy
difference between the interacting Einstein crystal and the real
solid (see Ref. 50 for further details).

B. The choice of the Einstein field

In the most common approach, the external field used to
calculate the free energy of molecular solids is obtained as the
sum of two terms: a translational field (Ut, consisting on har-
monic springs that bind the reference point of each molecule
to its lattice position) and an angular-dependent orientational
field (Ur, that forces the molecules to adopt the same orienta-
tion as in the reference crystal)50

Ut+r
Em (r2, . . . , rN,�1, . . . , �N )

=
N∑

j=2

Ut (rj) +
N∑

j=1

Ur (�j ), (2)

where rj is the position of the reference point of molecule j,
and �j are the angular coordinates that specify the orientation
of molecule j. Notice that since molecule 1 is fixed as a refer-
ence point, there is no need of including a translational spring
for the reference point of this molecule. However, molecule 1
can still rotate around its reference point and for this reason
it is necessary to include an orientational field for molecule 1
(for a more detailed discussion, see Ref. 32).

When choosing an angular-dependent orientational field,
one usually chooses a functional form that is invariant under
rotations exchanging equivalent atoms in the molecule. For
instance, for N2 it is useful to have an external field that is
invariant to the exchange of the two nitrogen atoms, or in the
case of water H2O it is useful that the external field does not
change when the two hydrogen atoms are exchanged. When
the external field is invariant to the symmetry rotations of the
molecule, there is no need of including in the Monte Carlo
code moves that exchange equivalent atoms of the molecule.
These moves look certainly “strange.” Imagine an instanta-
neous configuration of ice. Now for, say, molecule 27, you
exchange the position of the two hydrogen atoms. Obviously,
the intermolecular energy of the system is invariant to this ex-
change. Why to include such a move? If your external orien-
tational field is not invariant to this symmetry operation, then
you should include this move (specially when the strength of
the external field is small so that the energy penalty of the ex-
change is small and the move will likely be accepted within
the Markov chain) to obtain the correct energy as was first
illustrated by Schroer and Monson.64 Since the inclusion of
these “strange” moves when performing free energy calcula-
tions of solids is rather unusual, the solution is: “use an ex-
ternal field that is invariant to the symmetry rotations of the
molecule and there is no need then of including the strange
exchange moves.” This is what everybody does when per-
forming free energy calculations for solids. So far so good.
This approach of imposing an orientational field that respects
the symmetry of the molecule even though rather straightfor-
ward, has a disadvantage: it is not implemented in molecu-
lar dynamic packages. The situation may change and it may
happen that, in the future, developers of these programs will
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include such kind of external fields. However, as it will be
shown here, this is not strictly necessary. With the tools al-
ready available in these programs (and in this work we shall
focus on GROMACS), it is now possible to compute the free
energy of solids without introducing any single line of code.

A possible alternative to avoid using an angular-
dependent orientational field is to fix the position and orien-
tation of the molecules by binding each atom of the molecule
to its lattice position by a harmonic spring

U
springs

Em =
Nspr.∑
j=2

�′
E

(
r1,j − r0

1,j

)2

+
N∑

i=2

Nspr.∑
j=1

�′
E

(
ri,j − r0

i,j

)2
, (3)

where N is the number of molecules of the system, Nspr. is
the number of springs per molecule, ri, j represents the in-
stantaneous position of atom j of molecule i, and r0

i,j is the
position of the same atom in the reference lattice. �′

E is the
current value of the coupling parameter. To be consistent with
our previous work,50 the maximum value of the external field
will be denoted as �E and we shall denote with the prime the
values used in the integration leading to �A2. Note that the
position of the reference point of one of the particles (for ex-
ample, atom 1 of molecule 1) is kept frozen to avoid a quasi-
divergence in the evaluation of the term �A2 as proposed in
the Einstein molecule method.

How many springs per molecule (Nspr.) can be used?
There are two answers to this question. The first one is that
you can use a spring for each atom (or interaction site) of
the molecule. That will always be correct. Thus for water,
when using, for example, the SPC/E model65 you should use
three springs, one for each hydrogen atom and another one for
the oxygen atom. For a united atom model of benzene (with
6 interaction centers), the field will consist of six springs,
bounded to each interaction center. For a linear molecule,
such as nitrogen you could use two springs, and for a three
site interaction model of carbon dioxide63 you could use three
springs. Let us now reformulate the question. What is the min-
imum number of springs per molecule that could be used? In
fact even though using a spring per atom is correct, the num-
ber of springs can be reduced by realizing that the position and
orientation of a rigid molecule can be fully described by the
position of three non-collinear points for a nonlinear molecule
and two springs for a linear molecule, regardless of its num-
ber of atoms. Thus, you can use as many springs as atoms, or
in case you want to use the minimum number of springs you
should use three (non-collinear) for a nonlinear molecule and
two for a linear molecule.

Now the reader is probably having the following ques-
tion: is the external field given by Eq. (3) invariant to sym-
metry rotations of the molecule? The answer, unfortunately,
is negative. When two nitrogen atoms are exchanged, the
field given by Eq. (3) still links each nitrogen atom to its
original position in the lattice and, therefore, the exchange
of the two nitrogen atoms increases considerably the energy
of the molecule with the external field. Programs such as

GROMACS do indeed incorporate the possibility of having har-
monic springs linking each atom of the system to the initial
lattice position as described in Eq. (3). Therefore, the field
given by Eq. (3) is available in GROMACS. The problem is that
it is not invariant under symmetry rotations of the molecule.
However, a rather simple solution to this problem exists. We
shall return to this point later.

C. Evaluation of A0

Having defined the Einstein field, we first need to evalu-
ate A0(T , V ). This term can be calculated from the partition
function. The partition function of the ideal Einstein crystal
molecule is given by32

QEin−id = 1

N !

1

�3N
(qrqvqe)N

×
∫

e−βUEm(r1,...,rN ,�1,...,�N )dr1, . . . , drN,

d�1, . . . , d�N, (4)

where � is the thermal de Broglie wavelength (we shall
set the thermal de Broglie wavelength to an arbitrary value
since this will not affect coexistence conditions as far as the
same choice is done for all phases); (qrqvqe) are the rota-
tional, vibrational, and electronical partition function (set to
qrqvqe = 1, that is a correct procedure as long as we adopt
the same value in all the competing phases). UEm is the Ein-
stein field that depends on the position and orientation of the
N molecules of the system (UEm(r1,�1, . . . , rN,�N )). The
purpose of this notation is to explicitly show the dependency
of the Einstein field with the integration variables. At this
point, the derivation is independent of the particular func-
tional form, Eq. (2) or Eq. (3), of the Einstein field.

Equation (4) can be simplified by performing a change
of variables so that all the positions are expressed with re-
spect to that of the fixed molecule 1 (r1, r′

2 = r2 − r1, . . . , r′
N

= rN − r1), which allows to trivially integrate over r1

QEin−id = 1

N�3N
V

×
∫

1perm

e−βUEm(r′
2,...,r

′
N ,�1,...,�N )

× dr′
2 . . . dr′

Nd�1 . . . d�N. (5)

We have already taken into account that for a system of N
indistinguishable particles where the position of molecule 1 is
fixed, there are (N − 1)! possible permutations,66 so that the
integral in Eq. (5) is evaluated for one particular permutation
(see Ref. 32).

Once the partition function has been evaluated, we com-
pute the free energy A0

βA0

N
= − 1

N
ln(QEin−id ) = 1

N
ln

(
N�3

V

)

− 1

N
ln

1

�3(N−1)

∫
e−βUEmdr′

2 . . . dr′
Nd�1 . . . d�N.

(6)



034104-4 Aragones et al. J. Chem. Phys. 139, 034104 (2013)

Now, if one uses an Einstein field that depends on the posi-
tion of at least three points of the molecule, such as U

springs

Em

defined in Eq. (3), the translational and orientational degrees
of freedom are coupled and, therefore, the integral cannot
be separated in two contributions. However, it is possible to
separately integrate the contribution of each molecule

βA0

N
= 1

N
ln

(
N�3

V

)

− 1

N
ln

∫
e−βuEm,1(�1)d�1

− (N − 1)

N
ln

1

�3

∫
e−βuEm,2(r2,�2)dr2d�2, (7)

where uEm, 1 is the Einstein field for the molecule with the
reference atom fixed (i.e., molecule 1) given by

Nspr.∑
j=2

�E

(
r1j − r0

1j

)2
(8)

and uEm, 2 is the Einstein field for molecule 2 given by

Nspr.∑
j=1

�E

(
r2j − r0

2j

)2
. (9)

The (N − 1) prefactor in the last term on the right hand side
of Eq. (7) arises from the fact that there are (N − 1) molecules
whose Einstein field is identical to that of molecule 2 so that
it is sufficient to evaluate the integral for molecule 2 and to
multiply it by (N − 1). Notice that the integrals of Eq. (7) must
be computed for the maximum value of the external field �E.
For the sake of simplicity, we write Eq. (7) as

βA0

N
= 1

N
ln

(
N�3

V

)

− 1

N
ln I1 − (N − 1)

N
ln I2. (10)

Note that for the molecule whose reference point is kept fixed
the integral is only performed over the orientational degrees
of freedom (I1), whereas for the remaining molecules the inte-
gral is performed over both the position and the orientational
coordinates (I2).

Therefore, when using the Einstein field defined in
Eq. (3), one needs to evaluate the two integrals, I1 and I2

to obtain A0. Those integrals can be estimated numerically,
for example, using Monte Carlo integration. To compute I2,
we situate the molecule with its reference point located at
the origin of coordinates and with a chosen orientation. For
the evaluation of I2, in each Monte Carlo step the following
procedure is used: (1) a set of coordinates (rx, ry, rz) and Euler
angles � = (θ , φ, χ ) are chosen randomly, (2) the rotational
matrix associated to these Euler angles is calculated, (3) the
molecule is rotated from its reference state by applying the ro-
tational matrix obtained in the previous step, (4) the molecule
is translated from the origin to the position (rx, ry, rz), and
(5) the integrand of I2 is evaluated and accumulated to calcu-
late its average value. I1 is obtained using a completely anal-
ogous procedure, but in this case since the integration is only

performed over the rotational degrees of freedom, no transla-
tions are applied in the MC steps. The sampling in the MC
integration can be considerably improved by noticing that the
integrands e−βuEm,1 and e−βuEm,2 are rapidly decreasing func-
tions with a maximum at r = 0 and � = 0 for e−βuEm,2 and �

= 0 for e−βuEm,1 . Therefore, previous to the evaluation of the
integrals, a short run can be performed to estimate the maxi-
mum displacement of the reference point of the molecule (rx,
ry, rz) and the maximum rotation (θ , φ, χ ) for which the in-
tegrand adopts a value higher than a given threshold, for ex-
ample, 10−16. Thus, the integrals I1 and I2 can be calculated
by sampling only the relevant regions of the configurational
space. About 108–109 MC steps are needed to evaluate these
integrals with enough accuracy. The evaluation of the inte-
gral typically takes about a few hours of CPU time. The value
of A0 as given by Eq. (7) depends on the geometry of the
molecule, number of springs, and the value of �E but it does
not depend on the polymorph considered. A FORTRAN code to
evaluate the term A0 is provided as supplementary material.61

To compute the remaining free-energy terms (Eq. (1)),
�A1 and �A2, molecular simulations are needed. In Sec. II D,
we show how to implement their calculation in an open source
molecular dynamic package such as GROMACS.

D. Evaluation of �A1 and �A2 using GROMACS

First of all, it is important to point out that the free en-
ergy calculations for solids are typically performed in the
NVT ensemble. If one is interested in evaluating the free en-
ergy of a solid for a certain temperature and pressure, one
should perform first an anisotropic NpT simulation, to deter-
mine the equilibrium density and shape of the simulation box.
By anisotropic NpT simulation, we mean that the length of
the three sides and the angle between the three vectors that
define the simulation box are sampled and allowed to change
independently. This is easily achieved by using a Parrinello-
Rahman anisotropic barostat.67 It should be emphasized that
it is for the equilibrium simulation box that free energy calcu-
lations should be performed. The previous remark is general
and it does not depend on whether you are using a MC home
made program or GROMACS. Once the equilibrium density
and simulation box is known at a certain T and p, one can start
the NVT simulations leading to �A1 and �A2. In this work,
the free energy calculations will be performed for the same
T and p (i.e., density and shape of the equilibrium simulation
box) as those previously reported using MC simulations.

�A1 corresponds to the free-energy difference between
the ideal Einstein crystal and the Einstein crystal in which
molecules interact through the Hamiltonian of the real solid
(“interacting” Einstein crystal). The free-energy difference
between these two systems, in terms of the lattice energy, is
given by

β�A1 = βUlattice − ln 〈exp [−β(Usol − Ulattice)]〉Ein−id ,

(11)

where Usol is the potential energy of the instantaneous config-
uration (evaluated using the intermolecular potential of inter-
est), Ulattice is the potential energy of the perfect lattice (which
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can be estimated running GROMACS for a perfect lattice using
just one MD step and zero as the time step), and the angu-
lar brackets denote an ensemble average. This step allows us
to choose a convenient value of the harmonic spring constant
(�E) that keeps the atoms attached to their lattice positions.
As a rule of thumb, a good choice of �E is the one that leads
a difference between �A1 and the lattice energy (Ulattice) of
about 0.02–0.04 NkBT.

To compute �A1 with GROMACS, we prepare an ideal
Einstein crystal with the crystalline structure of the solid
of interest, in which each atom is an ideal gas particle
attached to its lattice position by a harmonic spring
([position_restraints], see GROMACS manual68). Then, we
carry out a NVT molecular dynamics simulation at the density
and temperature of interest storing around 104–105 configura-
tions of the trajectory to properly compute the ensemble aver-
age. This run must be done fixing the position of the reference
point of one molecule, usually molecule 1 ([freezegrps]68)
while letting all other particles vibrate through harmonic
springs around their lattice positions; which entails letting the
center-of-mass move freely ([comm-mode = none]). Then,
we compute the Hamiltonian of the solid of interest Usol for
the stored configurations of the ideal Einstein crystal run, and
calculate �A1 from Eq. (11).

�A2, i.e., the free-energy difference between the inter-
acting Einstein crystal and the solid of interest, is obtained by
a Hamiltonian thermodynamic integration in which the har-
monic springs that tether the atoms to their initial lattice po-
sitions are gradually turned off. Thus, �A2 can be computed
from the integral of the mean square displacement of each
particle from its lattice position

�A2 = −
∫ �E

0

〈
N∑

i=1

Nsprings∑
j=1

(
ri,j − r0

i,j

)2

〉
N,V,T ,�′

E

d�′
E.

(12)

In the previous equation, we have included for simplicity the
case i = 1 (i.e., molecule 1), j = 1 (i.e., the reference atom
of molecule 1) even though this atom remains fixed along the
simulation at r0

1,1 so that it does not contribute to the inte-
gral. We perform NVT MD simulations at different values of
the harmonic spring constant (�′

E). We typically use 12–16
values of �′

E chosen according to the Gaussian quadrature
method, and use the same method to compute the integral in
Eq. (12). From the GROMACS output, we obtain the total har-
monic energy (Upos−rest)

Upos−rest = �′
E

〈
N∑

i=1

Nsprings∑
j=1

(
ri,j − r0

i,j

)2

〉
N,V,T ,�′

E

(13)

from which the mean square displacement (which is the inte-
grand of Eq. (12)) can be easily obtained by dividing by �′

E .
Four factors should be carefully taken into account when

one performs free-energy calculations with a MD package

1. In order to implement the Einstein molecule method, we
should allow the center-of-mass to freely move.60

2. When simulating truncated potentials, the discontinuity
created by the truncation of the potential generates im-

pulsive forces that cannot be handled within GROMACS.
This effect can be significantly reduced by using longer
cut-off distances.

3. It is important to choose the MD integration time step
carefully since the period of an oscillation of an ideal
harmonic spring is a function of the spring constant

1

ν
= 2π

√
m

2�′
E

. (14)

Therefore, the integration time step should be chosen to
allow to properly sample the vibrations for the highest
�′

E values. In other words, smaller time steps are re-
quired for high values of �′

E .
4. A thermostat that treats properly harmonic vibrations

should be chosen, as, for instance, the thermostat of
Bussi et al.69 On the contrary, one cannot use a Nose-
Hoover thermostat70 as it does not treat properly har-
monic vibrations.

Sample input files to evaluate the terms �A1 and �A2

with GROMACS for the examples studied in this work are pro-
vided as supplementary material.61

E. Molecules with rotational symmetry

When dealing with rotationally asymmetric molecules,
the integration to the Einstein field with at least three springs
by the evaluation of Eq. (1) directly leads to the free energy
of the solid. However, for molecules with rotational symmetry
the free energy associated to the symmetry has to be explicitly
taken into account.

As already mentioned, the orientational field is usually
chosen to have the same symmetry as the molecule, so that
the free energy associated with symmetry-preserving rota-
tions is naturally taken into account.50 Schroer and Monson64

showed that for a field that does not preserve the symmetry
of the molecule, the free energy can be calculated by includ-
ing special Monte Carlo moves that perform rotations of the
molecules consistent with the symmetry operations, so that
the configurational space is correctly sampled at low values
of the orientational field. Obviously, these moves cannot be
incorporated trivially in a MD run.

However, as we will demonstrate in Sec. IV, it is possible
to include the free energy associated to the symmetry opera-
tions by simply adding to the free energy as calculated with
Eq. (1) the analytical value of

βAsym.

N
= − ln(�rot ), (15)

where �rot is the number of proper rotations of the molecule.
This number can be calculated by adding up the number of
proper rotation operations of the corresponding point symme-
try group plus the identity symmetry operation (see Table I).
It is interesting to point out that �rot is identical to the
number used to correct the classical partition function of an
asymmetric rotor (configurations that can be distinguished in
classical statistical mechanics are indistinguishable in quan-
tum statistical mechanics), which is usually denoted as σ in
standard Statistical Thermodynamic book (see, for instance,
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TABLE I. Point group symmetries for the molecules studied in this work.

Symmetry operations

Molecule Point group symmetry E Proper rotations Improper rotations Reflection planes �rot

Methanol (OPLS) C1 1 1
Water C2v 1 C2 σv ,σ s 2
Benzene D6h 1 2C6,2C3,C2,3C2

′,3C2
′′ 2S3,2S6 σ h,3σ d,3σv 12

Patchy model Oh 1 8C3,6C2,6C4,3C2 6S4,8S6 3σ h,6σ d 24

McQuarrie71). Malanoski and Monson39 used a similar cor-
rection when computing the free energy of hard diatomic
molecule using an external field similar in form to that of
Eq. (3). We should stress that the estimation of the free en-
ergy associated to the rotational symmetry using this analyti-
cal expression is correct only when molecules are not able to
spontaneously flip between equivalent configurations. Other-
wise the free energy associated to the rotational symmetry is
overcounted. Therefore, it is very important to make sure that
molecules do not flip from their initial orientation. In Sec. IV,
we will discuss ways to check that no flip has occurred and
how to calculate the free energy when flipping occurs.

III. MODELS AND SIMULATION DETAILS

In order to check the validity of the proposed method, we
have evaluated the free energy for different systems for which
the free energy was previously calculated.

A. Methanol: A rotationally asymmetric molecule

The first system we consider is methanol described us-
ing the OPLS model62 (see Figure 1). Methanol is an asym-
metric molecule, which in the OPLS model62 is described by
three centers of interaction. The complete phase diagram of
this model was calculated by Gonzalez-Salgado and Vega72

who found that the α and γ phases of methanol are predicted
to be thermodynamically stable, in qualitative agreement with
experiments, whereas OPLS was not able to reproduce the sta-
bility of the β phase.72

FIG. 1. Molecular models considered in this work: (a) OPLS methanol,
(b) TIP4P/2005 water, (c) octahedral model, and (d) benzene toy model.

In what follows, we will calculate the free energy of the
α solid phase. In this case, the Einstein field used is simply
defined by binding each center of interaction to its lattice po-
sition with harmonic springs. Since the molecule is asymmet-
ric, Eq. (1) leads to the correct free energy without the need
of including any extra term.

B. Ice II and ice Ih: A rotationally symmetric molecule
without and with proton disorder

The second system to test the procedure described is ice,
simulated using TIP4P/200573 (see Figure 1). Different from
methanol, water has C2v symmetry, so the use of an Einstein
field with three springs would not give us the correct free en-
ergy. As shown in Table I, the C2v point group has one proper
rotation symmetry operation (C2) plus the identity E, so that
in this case the number of proper rotations is �rot = 2. Thus,
we need to add the term βAsym./N = −ln (2) to the calculated
free energy

βAsol

N
= βA0

N
+ β�A1

N
+ β�A2

N
− ln(2). (16)

For ice II, which is proton ordered (i.e., all water
molecules are oriented in the same way in all the unit cells
of the solid), Eq. (16) is sufficient to evaluate the free energy
of the solid.

We have also computed the free energy for ice Ih. Ice Ih

has an additional configurational entropy associated to pro-
ton disorder; considering that there are many possible hydro-
gen bond arrangements consistent with the ice rules.22 Unless
special moves are implemented, in the usual simulations time
only one possible configuration of the protons is sampled.74, 75

The free energy associated to the proton disorder in ice Ih was
estimated by Pauling76 (βAPauling/N = −ln (3/2)), and needs
to be added to the total free energy of the solid. Therefore, for
ice Ih, the total free energy is calculated using

βAsol

N
= βA0

N
+ β�A1

N
+ β�A2

N
− ln(2) − ln(3/2). (17)

C. An example of complex molecules:
Octahedral patchy model

The applicability of the proposed Einstein field (Eq. (3))
to molecules with more than three interaction sites was fur-
ther tested by performing free energy calculations for a sim-
ple colloidal anisotropic model with six patches arranged in
octahedral symmetry (see Figure 1). The interaction poten-
tial between two particles is given by a LJ like interaction
multiplied by an orientational term. This type of potential
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FIG. 2. Schematic representation of the three different Einstein fields used
for the evaluation of the free energy of the octahedral patchy model. Black
balls represent patches that are bound to their lattice positions by harmonic
springs whereas patches shown in white are free to move. In the field on the
left panel, all patches are bound to their lattice positions, whereas in the two
other fields only three patches are bound to their lattice positions, located
either in an isosceles triangle (middle panel) or in an equilateral triangle ge-
ometry (right panel).

was first proposed by Doye and co-workers.77 The complete
phase diagram of this model has already been computed us-
ing the Einstein crystal method.78 This model exhibits several
thermodynamic stable phases, namely, a simple cubic, a body
centered cubic, and a face centered cubic crystal which is ori-
entationally ordered at low temperatures but becomes a plastic
crystal at high temperatures. This model is not implemented
in GROMACS but we have chosen it because we had already
initial configurations for the solid structures and the free en-
ergy was already calculated.

Moreover, once the validity of GROMACS was proven
with the methanol and water examples, our purpose was to
check how to define the Einstein field for more complex
molecules, an issue which concerns the methodology rather
than the particular computational code used. In this system,
we have used a bespoken Monte Carlo code implementing
the Einstein field given in Eq. (3) with several possibilities of
the number and location of harmonic springs in the molecule
(see Fig. 2): (1) six springs, one on each patch, U

springs

Em,6 ,
(2) three springs located on three patches forming an isosce-
les triangle U

springs

Em,3i , and (3) three springs located on three

patches forming an equilateral triangle, U
springs

Em,3e . The point
group symmetry of the octahedral patchy model is Oh. The
number of proper rotations in this case is �rot = 24, which,
as mentioned before, is calculated by adding the proper
rotations symmetry operations plus identity, namely, 1(E)
+8(C3)+6(C2)+6(C4)+3(C2) = 24 (see Table I). Therefore,

βAsol

N
= βA0

N
+ β�A1

N
+ β�A2

N
− ln(24). (18)

D. Simulation details

For methanol, ices Ih and II, the free energy was evalu-
ated with the GROMACS code (version 4.5);79 whereas for the
patchy colloids, using a home-made code. We simulated a 300
methanol molecules system, a 432 water molecules system,
and a 216 patchy colloids system. Ice Ih and II free energies
were calculated at 1 bar and 200 K, whereas the α-methanol
free energy was calculated at 1 bar and 150 K.

The term �A2 was computed by performing NVT MD
simulations for about 5 ns, and the integration time step was

of 0.001 ps (i.e., 5× 106 time steps). On the other hand, for
the term �A1 NVT MD simulations of an ideal gas were per-
formed for about 1 ns, using a time step of 0.001 ps (1× 106

time steps). We stored configurations every 100 MD steps,
which correspond to approximately 105 independent config-
urations per simulation run. The temperature was kept con-
stant using the velocity rescaled thermostat proposed by Bussi
et al.69 with a relaxation time of 2 ps. Constraints were used to
fix the geometry of the molecules, both methanol and water,
by using the algorithm LINCS,80 which allows to use the do-
main decomposition of GROMACS. The LJ interactions were
truncated at 8.5 Å (for water) and 10.0 Å (for methanol), and
standard long range corrections were employed. Ewald sums
were used to deal with Coulombic interactions; the real part
was truncated at the same distance as the LJ interactions, and
the reciprocal contribution was evaluated by using PME.81

For ices Ih and II, we also computed each term of the free
energy using our Monte Carlo code, to check term by term the
evaluation of the free energy with GROMACS. We carried out
NVT simulations.82 Coulombic interactions were calculated
using the Ewald summation technique.29 The LJ part of the
potential and the real space contribution of the Coulombic in-
teractions were truncated at the same distances as in the MD
simulations for each system. Both dispersive and screened-
Coulombic interactions up to the cut-off distance were calcu-
lated, and to accelerate the calculations we used a linked cell
list.83 Standard long range corrections to the Lennard-Jones
part of the potential were added. The term �A1 was calcu-
lated in a simulation consisting of 3 × 105 MC cycles for
equilibration and 5 × 105 MC cycles for averages. The inte-
grand of �A2 was evaluated by performing a NVT MC simu-
lation consisting of 3 × 105 MC cycles for equilibration and
7 × 105 MC cycles for taking averages at each value of the
coupling parameter (�E′).

The maximum value of the spring constant (�E) was �E

= 5000kBT/Å2 for ices Ih and II, and �E = 6666.67kBT/Å2

for methanol. We typically use 16 �E′ values to compute the
integral in Eq. (12) using the Gaussian quadrature method.
However, we have also computed this integral with up to
60 �E′ values for ice Ih.

For the patchy model, the free energy was calculated us-
ing our own Monte Carlo code. The simulation box contained
N = 216 molecules arranged in a simple cubic solid. The en-
ergy was truncated and shifted at a cut-off distance of 2.5 σ LJ.
Typically 20 NVT simulations were used to evaluate the term
�A2, each simulation consisting of about 50 000 MC cycles
for equilibration plus 200 000 MC cycles for taking averages
(one Monte Carlo cycle is defined as N attempts to displace
or rotate one molecule). Rather long simulations were used to
evaluate the term �A1 (about 500 000 MC cycles plus 50 000
for equilibration). The maximum value of the coupling pa-
rameter �E was chosen for each considered Einstein field so
that �A1 was not more than 0.03NkBT units different from the
lattice energy of the system. Calculations of the free energy
were performed at two different temperatures T* = kBT/εLJ

= 0.1 and T* = 0.2. The free energy was also evaluated us-
ing an angular-dependent orientational field that preserves the
symmetry of the molecule (we used the Einstein field de-
scribed in Ref. 78).
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FIG. 3. Top view of an α-phase of methanol.

In this work to determine A0 from Eq. (7), we have set
the thermal wavelength � to 1 Å when computing the free
energy of methanol and of ices Ih and II. For the octahedral
patchy model, we have set � to σ LJ which is the distance at
which the LJ potential is zero.

IV. RESULTS

A. Methanol

To test the proposed methodology, we compute the free
energy of the α-phase of methanol using GROMACS. The
methanol molecule described by the OPLS force field repre-

TABLE II. Free-energies for the methanol α-phase as obtained from Ein-
stein Molecule (EM) method using MC72 or GROMACS (G) at 1 bar and
150 K. Free energies are in NkBT units and number densities in Å−3. The
maximum value of the spring constant was �E = 6666.67kBT/Å2. The en-
ergy in bold is the free energy computed previously in Ref. 72.

ρ(N/V) A0 �A1 �A2 Asol

G Methanol 0.01878 29.05 −41.27(1) −17.33(3) −29.55(4)
Ref. 72 Methanol 0.01878 . . . . . . . . . −29.55

sents the simplest example to test the Einstein field proposed
here; it is an asymmetric molecule described by three interac-
tion centers.62 Therefore, the Einstein field is constructed by
binding each center of interaction to its lattice position with a
harmonic spring. The results are presented in Table II.

The free energy computed for the α-phase (see Fig. 3)
is in agreement, within the statistical error bar, with previ-
ous results obtained for the Einstein molecule approach using
an Einstein field with separate translational and orientational
terms.72 In this case, and since the methanol is an asymmetric
molecule, there are no issues with the rotational symmetry:
the free energy obtained from the integration with this Ein-
stein field directly provides the free energy of the methanol
solid.

B. Ice II and ice Ih

Next, we compute the free energy of two solid phases of
water, one proton ordered phase (ice II), and another in which
the protons are disordered (ice Ih) (Fig. 4).

The Einstein field for the water molecule is defined in
a similar fashion as for the methanol molecule; tethering the
three atoms of the molecule to their reference positions with
harmonic springs, fix both the positions and orientations of
the water molecules. We have used either GROMACS (G) or

FIG. 4. Top view of an ice II (left-hand side) and ice Ih (right-hand side).
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FIG. 5. Mean square displacement (�2 = ∑Nspr

j=1 〈(ri,j − r0
i,j )2〉) as a func-

tion of the spring constant strength �′
E for ice Ih for the normal MC (black

circles) and for the MC with rotationally symmetric moves (red squares).

our home made MC code to compute all free energy terms
(Eq. (1)) of these solid phases.

Let us start by presenting the results for ice Ih at 200 K
and 1bar. For this state, we have reported in previous work84

a free energy of −26.25 in NkBT units. This is the bench-
mark value to be reproduced. Before implementing the cal-
culations with GROMACS, we determined the free energy of
the solid using the external field given by Eq. (3) using our
home made Monte Carlo program. After adding (A0 + �A1

+ �A2 + APauling), we obtained −25.56 NkBT (see second
line of Table III). Thus, using the external field of Eq. (3)
the free energy does not agree with our previous published
value. This clearly points out that there is a problem with
the form of the external field given by Eq. (3) when applied
to water. The origin of the discrepancy comes from the free
energy associated to the rotational symmetry of the water
molecule. Different from the methanol, water has rotational
symmetry (2-fold rotational symmetry along the axis of the
molecule). How to solve this problem? There are two possible
routes.

In the first route in order to explicitly take into account
the free energy associated to the rotational symmetry of the
molecule, we carried out a free energy calculation in which
we sampled the symmetric rotations of the water molecules by

including special MC movements exchanging the positions of
the two H atoms, in order to correctly sample the configura-
tional space at low values of the orientational field (similar to
Schroer and Monson’s64 free-energy calculations for a model
of benzene). Within the MC approach, we use 60 �′

E . In
Fig. 5, the integrand of Eq. (12) is plotted in the two cases:
for the normal MC and for the MC with rotationally symmet-
ric moves.

As shown in Fig. 5, both curves coincide except for val-
ues smaller than 1 kBT/Å2. If the spring strength is small
enough, the mean square displacement sharply grows when
the symmetric rotations are sampled. The �A2 values com-
puted including or not flipping moves are −15.75(2) and
−15.05(2) NkBT, respectively. The difference between them is
about −0.7 NkBT, which corresponds to −ln(�rot), where �rot

is the number of proper rotational operations of the molecule
(−ln(2) for the water molecule). The free energy obtained
now (when including flipping moves at low strengths of the
external field) is −26.27NkBT (see third row of Table III)
which is fully coincident with that obtained in our previous
work. Thus, when using an external field of the form of Eq. (3)
it is possible to recover the correct free energy by including
flipping moves at low strengths of the external field. However,
this is not the only possibility. In fact, one can summarize the
situation by stating that the inclusion of flipping moves sim-
ply amounts to incorporating a contribution that can be de-
termined analytically. Indeed, the inclusion of flipping moves
provokes that �A2 decreases by −ln(2), and one could sim-
ply perform the calculations without including flipping moves
and adding a −ln(2) term at the end of the calculations. This is
shown in the fourth row of Table III where we added a −ln(2)
term to the results obtained in the second row. The free en-
ergy obtained in this way is in complete agreement with the
one previously reported. Although flipping moves can be eas-
ily implemented in a Monte Carlo code, this is not the case
for molecular dynamics. For this reason, the suggested route
is to compute the free energy without flipping and adding a
−ln(2) term. Using GROMACS, we have implemented the free
energy using the external field of Eq. (3) (without including
any type of flipping moves). At the end of the calculations,
we simply added a −ln(2) term. As it can be seen, we ob-
tained term by term the same results that were obtained with
our Monte Carlo program for the same external field, and that
after adding −ln(2) we recovered the free energy reported in
our previous work. The free energy of a solid is unique (it

TABLE III. Free-energies of solids as obtained from Einstein Molecule (EM) method using MC or GROMACS (G). Ice Ih and II free energies were calculated
at 1 bar and 200 K. Free energies are in NkBT units and densities in Å−3. The maximum value of the spring constant was �E = 5000kBT/Å2 for both ice phases.
MC* = calculated including flipping movements.

ρ(N/V) A0 �A1 �A2 Asym. APauling Asol

Ref. 84 Ih 0.03103 . . . . . . . . . . . . . . . −26.252
MC Ih 0.03103 27.59 −37.70(1) − 15.05(1) −0.405 −25.56(2) (?)
MC* Ih 0.03103 27.59 −37.70(1) − 15.75(1) - −0.405 −26.27(2)
MC Ih 0.03103 27.59 −37.70(1) − 15.05(1) −0.69 −0.405 −26.26(2)
G Ih 0.03103 27.59 −37.70(1) − 15.05(3) −0.69 −0.405 −26.26(4)

G II 0.03929 27.594 −37.08(1) − 15.359(3) −0.69 . . . −25.54(4)
Ref. 84 II 0.03929 . . . . . . . . . . . . . . . −25.563
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does not depend on the procedure used to compute it) so that
its value obtained from different types of external field should
agree. This is indeed the case.

Therefore, the previous discussion proves that it is pos-
sible to include the free energy associated with the sym-
metry operations of the molecule by simply adding its an-
alytical value (Eq. (15)) to the free energy calculated with
Eq. (1). This will allow us to perform free-energy calcula-
tions of molecular solids with GROMACS, where we do not
need to include movements to sample properly the configu-
rational space. However, a word of caution is necessary. The
analytical estimation of the free energy associated to the ro-
tational symmetry of the molecule is correct only when no
spontaneous flipping occurs in the simulation. Otherwise, we
will be overcounting the rotational symmetry contribution to
the free energy. In our simulations, we have checked that no
molecule has flipped during the simulations, comparing the
initial and final configurations.

Also with the aim to test the methodology for another
solid phase of water (ice II), we have calculated the free en-
ergy of ice II, whose unit cell is rhombohedral. As we men-
tioned above, ice II is a proton ordered phase, therefore, the
Pauling entropy has not been taken into account. The free en-
ergy calculated for the rhombohedral ice II is presented in
Table III, and is also in agreement with the value previously
published.

The configurations of the crystalline structures used in
this work together with the GROMACS input files (topol.top
and grompp.mdp) and a FORTRAN code to evaluate A0 are
provided as supplementary material.61

It has been shown in a recent work, that for certain po-
tential models20 ice II may be more stable than ice Ih at room
pressure and at temperatures close to the melting point. With
the tools provided in this section, it is possible now to com-
pute the relative stability between ices Ih and II (at a certain
T and p) for any potential model that can be simulated with
GROMACS.

C. Benzene toy model

The two molecular models presented so far have in com-
mon that they both have only three interaction centers, which
only leaves us one possible choice of where to locate the
three springs of the Einstein field. However, we would also
like to explore how to apply the proposed Einstein field to
more complex molecules with more than three atoms or in-
teraction sites. As mentioned before (Sec. II), one possible
option would be to locate one spring on each atom of the
molecule. However, using only three springs bound to three
non-collinear points of the molecules must also be a possible
route because the coordinates of three points fully specify the
position and orientation of a rigid molecule.

In order to investigate theoretically how the proposed
Einstein field is applied to those cases, we have designed a
benzene toy model, consisting of six interaction sites located
at the vertex of a hexagon. Since our aim is to investigate
the behavior of the integrand of Eq. (12) for low values of
�A2, we shall perform the calculations for only one molecule.
Moreover, the only possible Monte Carlo moves will be rota-
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FIG. 6. �2 = ∑Nsprings

j=1 〈(ri,j − r0
i,j )2〉N,V,T ,�′

E
versus �′

E for three differ-
ent Einstein fields: in blue with 6 harmonic springs (one on each atom),
in black 3 harmonic springs symmetrically located, and in red 3 harmonic
springs asymmetrically located. Calculations are performed for just one
molecule and the integral of the area always gives ln (12).

tions exchanging the positions of the interactions sites (i.e.,
small vibrations around the lattice points are not allowed).
The number of rotational operations of this molecule (whose
point group symmetry is D6h) is �rot = 12 (which is obtained
as the sum of 1(E)+2(C6)+2(C3)+1(C2)+3(C2′ )+3(C2′′ )
= 12, see Table I).

For this model, we considered different choices of the
Einstein field, differing on the number of springs and on their
location: 6 harmonic springs (one on each atom), 3 harmonic
springs symmetrically located, and 3 harmonic springs asym-
metrically located. Next, we run a Monte Carlo simulation
sampling all 12 configurations. Special movements that per-
form the molecule symmetry operations were applied to eval-
uate the integrand at low values of the coupling parameter
�′

E as it has been observed that virtually no molecular flips
occurred from relatively low values of �′

E .
We then evaluated the integral �A2 (Fig. 6) and ob-

tained ln (12) in all three cases. Thus, one should always add
−ln(�rot) regardless of the number of springs used to fix the
location of a certain molecule, and regardless of the partic-
ular choice of the location of the springs. The conclusion is
that the correction −ln(�rot) is related to the symmetry of the
molecule and not to the symmetry of the external field.

D. Patchy model

The calculated free energies for the simple cubic solid
formed by the octahedral patchy model (see Figure 7) are
given in Table IV. Let us first look at the results of the free
energy at T* = 0.1.

It can be seen that the results obtained with the three dif-
ferent reference Einstein fields, namely, those with six springs
(Usprings

Em,6 ), three springs in an equilateral triangle (Usprings

Em,3e ),

and three springs in an isosceles triangle (Usprings

Em,3i ) (see
Figure 2), all give the same results within statistical error,
and the results are also in excellent agreement with those
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FIG. 7. Simple cubic structure for the octahedral patchy model.

obtained with the angular-dependent orientational field
(Ut+r

EM ). Note that, consistently with the results obtained for
the benzene toy model, the correction that needs to be applied
to Eq. (1) is βAsym./N = −ln (24) regardless of the position or
the number of springs included in the field (Eq. (3)). This def-
initely proves that one can freely choose the number and dis-
tribution of harmonic springs used to define the Einstein field
and that all choices lead to the correct free energy, as long
as a minimum of three non-collinear springs are included for
nonlinear molecules.

However, when the free energy was calculated at the
same density but at a higher temperature, T* = 0.2, we ob-
served that the three different Einstein fields lead to slightly
different values of the free energy, and neither of them
was able to reproduce the value obtained with the angular-
dependent orientational field that preserves the symmetry of

TABLE IV. Free energy of the simple cubic solid for the octahedral patchy
model. The simulation box contained 216 molecules and the energy was trun-
cated and shifted at a distance r∗

cutoff = 2.5. All these calculations were per-
formed at a density ρ* = 0.763. Three different implementations of the Ein-
stein field were tested, namely, six springs one on each patch (Usprings

Em,6 ), three

springs located in three of the patches, one in each axis (Usprings

Em,3e ), and finally
three springs, two on two patches on the same axis and the other one in any
of the remaining patches (Usprings

Em,3i ). The coupling parameter �E is given in

kBT /σ 2
LJ and free energies in NkBT units. The free energy in bold is the free

energy computed using a translational and an orientational field invariant to
symmetry rotations of the molecule.

Eins. field T* �E A0 �A1 �A2 Asym. Asol

U
springs

Em,6 0.1 30000 33.26 −29.31 −14.31 −ln(24) −13.55

U
springs

Em,3e 0.1 60000 33.75 −29.31 −14.84 −ln(24) −13.58

U
springs

Em,3i 0.1 60000 34.06 −29.31 −15.13 −ln(24) −13.55
Ut+r

Em 0.1 20000 28.96 −29.27 −13.25 . . . −13.55

U
springs

Em,3e 0.2 30000 31.67 −14.64 −15.11 −ln(24) −1.25
Ut+r

Em 0.2 20000 27.75 −14.62 −14.35 . . . −1.22

FIG. 8. (a) Initial and (b) final configuration at the lowest value of �′
E

(�′
E = 3.077kBT /σ 2

LJ ) used for the evaluation of the term �A2 using a three

springs Einstein field U
springs

Em,3e for the tetrahedral patchy model at T* = 0.2.
One of the patches is colored in blue, so that it is possible to track any ro-
tation of the particles. In the final configuration, it is evident that one of the
molecules in the bottom row has rotated away from its initial orientation.

the molecule. The origin of the discrepancy was clear when
the results were analyzed in more detail. By looking at the fi-
nal configurations of the simulations at the lowest values of
�′

E , it became evident that some of the molecules had rotated
according to the symmetry operations of the molecule (see
Figure 8). As mentioned before, this leads to an overcount-
ing of the free energy associated with the molecule symme-
try operations. Because we were using our own Monte Carlo
code, it was fairly easy for us to modify it to avoid the flip-
ping by searching for the closest interaction sites to the spring
lattice positions. Once the molecular flipping was removed,
the free energy was computed by using Eq. (1) with the an-
alytical symmetry correction. By doing this the results of the
free energy are in complete agreement with those obtained
with an orientational field that preserves the symmetry of the
molecule (see Table IV).

E. Avoiding molecular flipping

As we have just seen, it is possible that some molecu-
lar flipping occurs at the low values of the Einstein field, and
if that happens, it invalidates the procedure to calculate the
free energy described in this work. Therefore, it is necessary
to discuss ways of how to avoid flipping using a molecular
dynamics package such as GROMACS. As mentioned before,
one quick way to know whether flipping has occurred is by
looking at the final configurations and checking that neither
of the molecules has flipped from the initial state. Although
this method would most likely be a good indicator of flipping,
the rigorous way of studying the flipping would be to calcu-
late the angular distribution functions of the molecules with
respect to their initial states. For the octahedral patchy model,
we calculated the probability distribution function of the co-
sine of the angle (cos θ ) formed between the instantaneous
and the initial orientation of the axis that contains one of the
patches, for example, patch 1. We observed that whereas for
large values of the coupling parameter �′

E this function ex-
hibits one single peak at angles close to cos θ = 1, it adopts
a double peaked structure at low values of �′

E (see Figure 9).
This can be done by writing a simple analysis code that
reads in the output generated by GROMACS and calculates
the angular histograms, which would have multiple peaks in
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FIG. 9. Angular distribution function at the lowest value of �′
E (�′

E

= 3.077kBT /σ 2
LJ ) used for the evaluation of the term �A2 with a three

springs Einstein field U
springs

Em,3e for the tetrahedral patchy model at T* = 0.2.
The distribution is double peaked, with a strong peak at angles close to cos θ

= 1 that represents the molecules that are rotating about their orientation in
the initial configuration, and a much smaller peak around cos θ = 0 (an en-
larged view of this smaller peak is shown in the inset) that evidences that
some of the molecules have rotated according to the rotational operations of
the molecule.

case of flipping and will be singled-peaked if no flipping has
occurred.

If we observe flipping in the system, the most obvious
advice would be to decrease the temperature of the system.
At lower temperatures, the probability of having particles that
are able to overcome the energy barrier for the molecular flip-
ping would decrease considerably. We have seen that for the
patchy model this is indeed a possible route. The free energy
was not calculated correctly at T* = 0.2 but it was possible to
evaluate it at T* = 0.1. In principle, this route must be valid
for any studied solid. Then one could perform a thermody-
namic integration to compute the free-energy of the solid at
the desired temperature.

Another possible route would be to try to evaluate the in-
tegrand of �A2 at low values of the coupling parameter by
manually removing the contribution of those molecules that
have undergone flipping. This can be done with the GROMACS

package by saving the trajectory of the simulations and writ-
ing a code that calculates the mean square displacement (i.e.,
the integrand of �A2) but considering only those molecules
that have not undergone flipping. This is a valid route as long
as most of the molecules remain in the initial orientation. We
checked that for the patchy model this method leads to the
same value of �A2 as removing the flipping on the fly in
the simulations (by searching for the closest spring site in
the instantaneous configuration with respect to the reference
spring positions).

V. SUMMARY AND CONCLUSIONS

In this work, we describe how the free energy of molecu-
lar solids can be calculated via the Einstein molecule method
using MD packages, such as GROMACS. Given that the usual

Einstein fields that include an angular-dependent term would
involve making changes in the MD package, we propose to
use an alternative field in which at least three non-collinear
points of each molecule are bound to their lattice positions
by harmonic springs, which can be implemented easily in the
available MD packages. Note that by specifying the position
of three non-collinear atoms, both the position and orienta-
tion of a rigid molecule are fully defined. Even though for
molecules with rotational symmetry this Einstein field is not
invariant under the symmetry operations of the molecule, we
showed that in most of the cases the correct free energy is
obtained by simply adding an analytical correction term at
the end of the calculations. This route is valid as far as the
molecules in the solid phase are not able to flip within the
typical simulation length. A flipping operation corresponds
to exchanging the position of two equivalent atoms. For in-
stance, in the case of water, it would mean that two hydrogen
atoms exchange their positions. In solids, flipping is a rare
event as the flipping configurations are separated by rather
large free energy barriers. Even when flipping occurs, there is
a simple way of solving the problem: reducing the tempera-
ture so that flipping does no longer exist. After that you can
always use thermodynamic integration to obtain the free en-
ergy at the wished temperature and pressure. Notice that, in
computer simulations, molecular solids are usually mechan-
ically stable up to very low temperatures even though they
may not be the thermodynamically stable phase.85 Another
possibility when flipping occurs is to eliminate its effect by
not including the contribution of the rotated molecules when
computing the integrand of �A2 at low values of �′

E .
Despite the importance of evaluating free energy of solids

and the availability of methods that allow its calculation, there
are not yet that many works in which such calculations are
performed. We believe that one of the reasons for this relies
on the fact that the methods to calculate free energies, for ex-
ample, the Einstein crystal method, have not yet been imple-
mented in commercial and freely distributed MD packages.
We hope that the method described here (that shows how the
Einstein molecule method can be easily implemented in such
codes) will encourage other groups to calculate free energies
of solid in the future. Although in this work we used the pro-
gram GROMACS, it is likely that the procedure described here
can be implemented in other open source MD packages (such
as LAMMPS). The only requirements are: a good thermostat
able to deal with harmonic vibrations as the one proposed by
Bussi et al.,69 the existence of harmonic restraints (i.e., har-
monic springs) linking each atom to a certain reference lat-
tice position, and the possibility of freezing the position of an
atom of the system (frozen atom) which is needed when im-
plementing the Einstein molecule methodology. These three
requirements are in general all available in open source MD
programs.

Finally, we would like to point out that it is likely that the
procedure described in this work could be extended to flexi-
ble models. Free energy calculations for flexible models of n-
alkanes86, 87 and water88 have already being reported by using
Monte Carlo simulations. The extension to flexible molecules
of the procedure outlined in this work would be certainly an
interesting topic for future studies.
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