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We present the results of a study of solid-fluid phase equilibria in systems of hard dumbbells 
for three values of the dumbbell bond length. Monte Carlo simulations were used to calculate 
the equation of state and Helmholtz free energy. Four orientationally ordered solid phases 
have been considered-the a-N, structure and three different base centered monoclinic 
structures formed by the stacking of hexagonally packed layers that allow the dumbbells to 
achieve their maximum packing density. In addition, a face-centered-cubic (fee) plastic crystal 
was studied for the system with the lowest bond length. The three base centered monoclinic 
structures have thermodynamic properties which are indistinguishable at the level of accuracy 
in our calculations. For longer bond lengths, the stable solid structure tends to be 
orientationally ordered base centered monoclinic. However, we also consider the stability of an 
aperiodic crystal for the case of dumbbells formed from tangent spheres. At lower bond 
lengths, the system freezes into a fee plastic crystal which becomes unstable with respect to a 
base centered monoclinic structure at higher pressure. The transition between these solid 
phases is apparently first order. The behavior for the lowest bond length considered resembles 
that of nitrogen at high temperatures. Our results suggest that the cr-N, is not a stable crystal 
structure for hard dumbbell solids at any bond length, but does appear as a metastable phase in 
some cases. 

1. INTRODUCTION 

The freezing of hard spheres is considered to provide a 
good molecular model for the underlying physics in the 
freezing of the rare gases. ‘*’ For relatively simple nonspheri- 
cal molecules such as N,, CO,, or the halogens, a variety of 
more complicated molecular interactions beyond simple size 
and shape effects can be expected to play some role in stabi- 
lizing the solid in a given crystal structure and hence in de- 
termining the solid-fluid equilibria. These might include an- 
isotropic dispersion forces or quadrupole-quadrupole 
interactions. Nevertheless, it is important to understand 
how much of the physics of freezing in molecular systems 
can emerge by only including the size and shape effects. Sim- 
ple models such as the hard dumbbell and hard ellipsoid are 
especially important in this context. Such models can be ex- 
pected to serve as reference systems in perturbation or mean 
field theories of the solid-fluid equilibria in more complex 
systems. 

Frenkel et a1.3-5 have made a comprehensive Monte 
Carlo simulation study of hard ellipsoids. This study focused 
principally on the isotropic-nematic transition in the fluid 
phase for more anisotropic systems, but the solid-fluid equi- 
libria were also obtained. They found that for large anisotro- 
pies, the hard ellipsoids freeze into an orientationally or- 
dered solid phase, which may be obtained by performing an 
affine transformation on the particles in a fee hard sphere 
solid. For small anisotropies, they found a fee plastic crystal 
to be the stable solid phase on freezing. This transforms into 
the orientationally ordered phase at higher pressures in a 
transition which is thought to be second order or weakly first 
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order. Frenkel and co-workers also found that the phase 
densities and the pressure at freezing exhibited a maximum 
when plotted vs the molecular anisotropy. 

Density functional theory has been extended to hard 
dumbbells by Smithline et al6 and by McCoy et aL7 These 
studies predicted a freezing transition into a fee plastic crys- 
tal for mildly anisotropic systems. However, for anisotropies 
appropriate to N,, the plastic crystal phase could not be 
stabilized relative to the fluid. This result may well be due to 
the failure of approximations made in the density functional 
theories. However, until the present work, no simulation re- 
sults have been present which establish the thermodynamic 
stability of the plastic crystal phase for hard dumbbell SYS- 
tems with anisotropies appropriate to nitrogen. However, 
the mechanical stability of the plastic crystal phase at lower 
anisotropy has been established.* 

In this paper, we present a fairly extensive study of the 
solid-fluid equilibria in systems of hard dumbbells for three 
different elongations. The model we are considering consists 
of two hard spheres, each of diameter o, separated by a dis- 
tance L. We characterize the molecular anisotropy by the 
reduced bond length or elongation L * = L /a. We have stud- 
ied systems with L * = 0.3, 0.6, and 1.0. Our principal find- 
ings are as follows. For L * = 0.6, the fluid freezes into an 
orientationally ordered structure. We have examined three 
orientationahy ordered base centered monoclinic structures 
of this type (formed by stacking hexagonally packed layers 
of dumbbells) which have identical maximum packing den- 
sities and thermodynamic properties which are indistin- 
guishable within the uncertainties of our simulations. These 
structures are related to those formed by the solid halogens.9 
The a-N, structure is mechanically stable, but thermody- 
namically metastable for the L * = 0.6 solid at moderate 
pressures, but is unstable for the L * = 1.0 solid. For 
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L * = 0.3, the hard dumbbell fluid freezes into a fee plastic 
crystal. This phase becomes unstable with respect to the 
orientationally ordered phase at higher pressure. The cr-N, 
structure again appears as a metastable phase at high pres- 
sures. For L * = 1.0, we have studied freezing into orienta- 
tionally ordered close packed structures. For this system, we 
also have the possibility of forming aperiodic crystals due to 
the degeneracy of the system.‘&” Although we have not 
simulated such structures, we have made an estimate of the 
extra stability afforded by the degeneracy contribution to the 
free energy and have used this to estimate the influence on 
the freezing properties. 

The remainder of this paper is organized as follows: In 
Sec. II, we describe the orientationally ordered structures 
which allow hard dumbbells to achieve their maximum 
packing densities. In Sec. III, we describe the Monte Carlo 
simulation techniques used in this work. We discuss the re- 
sults in detail in Sec. IV and Sec. V presents our conclusions. 

II. STRUCTURES OF HARD DUMBBELLS AT CLOSE 
PACKING 

Although to our knowledge it is not possible to establish 
apriori the stable structure of hard dumbbell solids, it seems 
to us that in common with hard ellipsoids, the structure at 
close packing should be a good starting point. To understand 
the geometry of hard dumbbell solids at closest packing, we 
begin by noting that hard dumbbells can be arranged into 
hexagonally packed layers in such a way that each sphere of 
the dumbbell also lies in a hexagonally packed layer. The 
dumbbell axis is then tilted from the normal to the hexagonal 
layer by an angle equal to arcsin (L */v?) . Each of these lay- 
ers exposes a hexagonal array of spheres to the layers above 
and below it. Thus the layers may be stacked like layers of 
spheres. We have identified three different ways in which the 
dumbbell layers may be stacked. These are readily illustrat- 
ed for the case where L * = 1.0 which at closest packing is 
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FIG. 1. Close packed structures of hard dumbbells. We show the primitive 
unit cells at close packing for the case L * = 1.0. (a) CPl; (b) CP2; (c) 
CP3. 
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identical in structure to a close packed array of spheres. 
There are two different ways of stacking the layers in which 
the dumbbell axes are all parallel. In one of these, the dumb- 
bell spheres are arranged in an ABC sequence so that the 
structure is a fee array of spheres. We label this structure 
CP 1. In the other way the dumbbell spheres are stacked in an 
ABAB sequence so that the structure is a hexagonal close 
packed (hcp) array of spheres. We label this structure CP2. 
The layers may also be stacked so that the tilt angle alter- 
nates between successive layers. We label this structure CP3. 
Primitive unit cells for each structure are shown in Fig. 1. 
Each of these different arrangements has the same maxi- 
mum packing density, which in reduced units is given by 

P& = 
2( 1 + 3/2L * - L *3/2) 

Rd cos c ’ 
where 

when L * = 0, where it is fee, and when L * = 1.0 for CP2, 
where it is base-centered orthorhombic. For CP3, the Bra- 
vais lattice is base-centered monoclinic with a motif of two 
molecules except for L * = 0, where it is fee. 

For the case of L * = 1.0, it is also possible to pack the 
dumbbells in orientationally disordered structures in which 
the spheres of the dumbbell lie on a fee or hcp lattice, but the 
centers of mass form an aperiodic structure. Many such 
structures could be formed by starting with a fee or hcp array 
of spheres and randomly assigning bonds between pairs of 
spheres in such a way as to create an orientationally disor- 
dered array of dumbbells. This idea has been explored re- 
cently for two-dimensional dumbbells by Wojciechowski et 
al. ‘o-12 They found that there is a substantial positive contri- 
bution to the entropy of such a system which comes from the 
degeneracy of the aperiodic structure. This negative contri- 
bution to the free energy renders the aperiodic structure 
more stable than the orientationally ordered structures at all 
densities, even though the effect on the equation of state and 
the free energy without the contribution from the degener- 
acy is quite small. We have not simulated such structures in 
this work, but our results do allow us to make an estimate of 
the their properties. We will return to this later in the paper. 

sin < = -&- (L *cos c + &YF sin g), (2.2) 

sin c = 
j, - [L * + 4@=2L *2) 1’ 

3R 
9 (2.3) 

R= [l +L*2+2/3L*(L*+dm)]“2. 
(2.4) 

The reduced densityp* is defined aspd 3 where d is the diam- 
eter of the sphere with the same volume as the dumbbell. 
Equal values of this reduced density for systems with differ- 
ent L * correspond to the same volume or packing fraction. 
Figure 2 shows a plot of& vs L * together with the result for 
the a-N, structure which is given by 

PC*, (a-N, 1 = 
12v”3( 1 + 3/2L * - 1/2L *3) 

(L*+%./T=Eq3 * 
(2.5) 

Notice that the result for the CP structure is always higher 
than for a-N,, although they become quite close as L * be- 
comes small. 

The Bravais lattice for the CPl and CP2 structures is 
base-centered monoclinic with motif one molecule except 

III. SIMULATION METHODOLOGY 

The determination of the solid-fluid equilibria requires 
the knowledge of the equation of state (EOS) and free ener- 
gies in both phases. Since we are considering several solid 
structures as described in the previous section, the EOS and 
the free energy calculations must be done for each solid 
structure. 

To simulate the solid phase, we used the Monte Carlo 
(MC) equivalent of the molecular dynamics method devel- 
oped by Parrinello and Rahman.13 The method is a constant 
pressure MC simulation’4 but changes in the unit cell shape 
are allowed, in contrast to the conventional constant pres- 
sure MC.15 The change in the shape of the unit cell is per- 
formed by random displacement in all the elements of the h 
matrix, h being the matrix which relates the real coordinates 
r( 2 {x,y,z)) to the scaled coordinates r[ ( = {x’,y’,z’}) 13*14 
through the expression r = h r;. The cell shape changes are 
important because the equilibrium unit cell shape may 
change with pressure. 

FIG. 2. Maximum packing densities as a function of the molecular elonga- 
tion L * for the close packed structures (solid line) and for the a-N, struc- 
ture (dashed line). 

The simulation of the close packed structures involved 
in most cases a 144 (6 X 6 x 4) particle system, but in a few 
cases, a 486 (9 ~9 x 6) particle system was used. For the 
close packed structures, the initial simulation box shape in 
the 144 (486) particle system was obtained by stacking six 
(9) particles in the a and b directions, four (6) in the c 
direction, and then expanding to the desired density (a, b, 
and c are the base vectors of the primitive unit cell used in the 
simulation). In the initial configuration, the a axis is coinci- 
dent with the x Cartesian axis; the a-b plane lies in the x,y 
plane. Therefore the initial configuration was not in general 
cubic. In the case of the CY-N, lattice, we used 108 particles, 
although in some cases, 256 particles were used and the ini- 
tial simulation box was cubic. A run typically involved 
20 000 cycles for equilibration and 20 000 for the calculation 
of thermodynamic averages. A cycle consisted of an attempt 
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to move each particle and an attempt to change the volume 
and/or shape of the system. A particle move consisted of a 
combined translation and rotation. The volume change was 
carried out by a simultaneous random displacement of all 
the elements of the h matrix, allowing changes in the lengths 
and orientations of the cell unit basis vectors a, b, and c. The 
acceptance ratio for the translational-orientational moves 
was generally about 20%-30%. For the volume change, we 
found an acceptance ratio of 5%-10% to be the optimum. 
For some states, we checked that the pressure obtained from 
the virial theorem was close to the imposed pressure. 

To study the orientational ordering, we computed an 
orientational order parameter defined as16 

‘=$i ( 
5 IIt cos2Xi - II2 + 2 COSxi &Xi] 

i=, ) 
, (3.1) 

where x, is the angle formed by the particle i with the z 
Cartesian axis and the brackets denote an ensemble average. 
This parameter varies between unity if all of the particles 
have the same value of xi and l/9 if the values of xi are 
uniformly distributed. In addition, we evaluated the normal- 
ized probability distribution function for the angles 0 and 4, 
8 being the angle formed by the molecular axis with the per- 
pendicular to the a-b plane and 4 the angle formed by the 
projection of the molecular axes on the a-b plane and the a 
axis. The difference in the definitions of 8 and x allows for 
the possibility of rotation of the entire simulation cell with 
respect to space fixed Cartesian coordinates, although this 
was not observed to any great extent in our calculations. 
These distribution functions were obtained by using the rela- 
tions 

Once the EOS for the solid is known, the calculation of 
the free energy for a state of the solid must be performed so 
that the chemical potential and phase equilibria can be deter- 
mined. To that purpose, we used the Frenkel-Ladd” meth- 
od as extended to nonspherical particles by Frenkel and 
Mulder.3 We give a brief description of the method and refer 
the reader to the papers of Frenkel and co-workers3-5*17 for a 
more detailed discussion. The basic idea behind the Frenkel- 
Ladd method is to create a reversible path linking the solid 
under consideration to a noninteracting Einstein crystal 
with fixed center of mass for which the partition function is 
known in a closed form. ” There are four steps involved. In 
the first step, the free energy of a noninteracting Einstein 
crystal with fixed center of mass A, is determined. The 
Hamiltonian defining the noninteracting Einstein crystal H, 
is given in the case of a linear molecule by 

HI = 2, C (ri - I$‘)‘,, + & C sin2(a, 1 + Hideal 9 (3.5) 

where rp represents the average position of the center of mass 
of particle i in the hard dumbbell fluid and a, is the angle 
formed by the axes of particle i with the equilibrium position 
of the axes of particle i in the original hard dumbbell solid. 
The equilibrium orientations in the hard dumbbell solid are 
not necessarily the same for all the particles (see, for in- 
stance, the a-N, or the CP3 lattice). ;1, and /2, are coupling 
parameters with units of energy/length2 and energy, respec- 
tively, and in this work we shall take their numerical values 
to be the same. Hidea, contains all the contributions to the 
kinetic energy. After integrating over the momenta, we ob- 
tain 

f(e) = 

fed) = g-j), 

(3.2) (3.6) 

(3.3) 

where N( 8) and N(4) are the number of particles encoun- 
tered between an angle 0 and 8 + dB or 4 + dq%. For homo- 
nuclear dumbbells, the distribution function f(O) has the 
symmetrypropertyf(0) =f(a--@,whileforf(d),itholds 
that f(d) = f( 4 + G-). In the beginning of the simulation, we 
set 8 to less than r/2. Thus if the symmetry in 0 is not as- 
sumed, a symmetric f(e) will only be obtained when the 
density is sufficiently low to allow molecular axes to reorient 
and only after a sufficiently lengthy simulation. In many 
cases, the length of the run was not enough to get a complete- 
ly symmetric f( 8) orf( 4). This nonsymmetric distribution 
gives us information about how easy or difficult it is for the 
molecular axes to reorient at the given density. It should be 
understood, however, that the truef(+) andf( 8) are indeed 
symmetric. 

To study the translational order, we use the order pa- 
rameter t, defined as 

t, = -$ ([ ;i, cos&-0, )I2 + [ ig, W2mln, 1-J’) , 
(3.4) 

where n, stands for the number of particles in the a direction 
with identical expressions for t, and t,. 
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where0 = l/kT, d 1 =dr, da, (w denotes a normalized set 
of orientational coordinates), I is an arbitrary unit of length, 
A, = (h 2/2z-mkT)“2, and A, = (h 2/81i?IkT). Now to de- 
termine Z,, the center of mass of the Einstein crystal is fixed 
and the partition function (3.7) can be computed analytical- 
ly. The final expression for A, is3 

&T= ln(A?13) + ln(A,) - In[J(n,)] 

3-r 

/Z,/(kT/Z’) 
(3.8) 

s 

I 

JU, 1 = exp[Pi12(x2 - l)]dx. (3.9) 
0 

Once the free energy of the noninteracting Einstein crys- 
tal with fixed center of mass is known, the next step is to 
evaluate the difference in free energy AA, between this and 
an interacting Einstein crystal for which the Hamiltonian 
H2 (excluding the ideal part) is given by 
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H, =R, C (ri --1$‘)‘+/2~ zsin2(cri) 

+ c c UHD tide (3.10) 
icj 

Here uHD (i,j) is the pair potential of the hard dumbbell 
system and is given by 

u,,(1,2) = CO if any r,<u, i,j= 1,2 (3.11) 
and 

unD (1,2) = 0 if all ril > a; i, j= 1,2. (3.12) 
rII stands for the distance between site i of particle 1 and site j 
of particle 2. The term AA, can then be obtained by using 
umbrella sampling18 and is then given by 

A-4, -= 
NkT 

-+lnPE), (3.13) 

where (P,) stands for the probability of finding no overlap 
between hard dumbbells for configurations generated ac- 
cording to the canonical distribution function of the nonin- 
teracting Einstein crystal. Since (PE) is less than unity, AA, 
is always positive. The values ofil;1,, and/z y are chosen so 
that hA , is small. The next step consists in linking the inter- 
acting Einstein crystal with fixed center of mass (/z 1 = ,l I;““, 
R, = il y) with the hard dumbbell solid with fixed center 
of mass (;I, = 0, R, = 0). An arbitrary path in the (R, ,R, ) 
plane linking these two points must be chosen. We follow the 
procedure of Frenkel and Mulder and choose il, = &l y, 
R, =&-A F where the coupling parameter 6 changes from 1 
to0.1fwenowdefine/Z:=/Z,/(kT/12),;1:=/2,/(ki? 
and choose R y and il 7” so that they have the same value in 
reduced units, then AA, is given by3 

thermodynamic averages. To evaluate the integral, we fol- 
lowed the procedure of Ref. 3 and used a ten point Gauss- 
Legendre quadrature with the transformation described in 
Ref. 17, which makes the integrand a smooth varying func- 
tion of the integration variable. The unit cell dimensions 
used in the free energy calculation at a given density corre- 
spond to that obtained by averaging the fluctuating box 
shape in the constant pressure Monte Carlo simulations. For 
the close packing structures, we found that the equilibrium 
shape of the unit cell was very close to that found at close 
packing, but with a small distortion in the length of the c axes 
which tend to be generally slightly smaller than at close 
packing. The same behavior was found by Frenkel and 
Mulder3 for the hard ellipsoid solid. For the cr-N, structure, 
the system remained cubic at all pressures. 

Once the free energy of a given hard dumbbell solid 
structure has been determined for a given density A@, ), 
then the free energies at a different density A@, ) can be 
obtained by thermodynamic integration 

P2 
A(/32 )/NkT= A(p, )/NkT+ 

s 
Wp*W+. (3.18) 

PI 

A-42 -= 
P NkT A$~, 

(A* + r*)dR. *, (3.14) 

A2 = 
$T(c tr, -r~)2)A:=A*=A*~ (3.15) 

~2=f(zsin2(~i))A:-A:-A~. (3.16) 

Here the brackets stand for canonical average for a system 
with Hamiltonian given by Eq. (3.10). Since the integrand 
in Eq. (3.14) is positive, then AA, is negative. 

The last step consists of evaluating the change in free 
energy AA, going from the hard dumbbell solid with fixed 
center of mass to the hard dumbbell solid. AA, is then given 
by” 

AA,/NkT= --$ln( V/l’). (3.17) 

The Helmholtz free energy of the hard dumbbell solid at 
a given density A /NkT is finally obtained from the expres- 
sion 

To perform integration in Eq. (3.18)) we fitted the pres- 
sure to a polynomial. To determine the solid-fluid equilibria, 
the EOS and Helmholtz free energy of the fluid branch are 
needed. Tildesley and Streett” have performed a number of 
simulations for the hard dumbbell fluid with different elon- 
gations for packing fractions up to 0.4712 and fitted the re- 
sults to an empirical expression. Since we needed to know 
the fluid EOS at somewhat higher densities than this, we 
decided to investigate the accuracy of the Tildesley-Streett 
equation of state outside the range of states where it was 
determined. We have performed additional runs at higher 
pressures with 144 particles (20 000 cycles equilibration and 
20 000 cycles for averaging) for hard dumbbells with 
L * = 0.3,0.6, and 1 .O. The results are shown in Table I along 
with the predictions of the Tildesley-Streett EOS.‘9*20 As 
can be seen, the Tildesley-Streett EOS agrees very well with 
the MC results. The predicted densities lie well within 1% of 
the simulation results which is the estimated uncertainty of 
the simulation densities. At L * = 1.0, the deviations are 
slightly larger, but still remain within the uncertainty of the 
MC results. Since the agreement was found to be good, we 
used the Tildesley and Streett EOS to describe the fluid be- 
havior of hard dumbbells. By thermodynamic integration of 
the fluid EOS, the residual part of the free energy can be 
determined. The solid-fluid equilibria was then determined 
by equating the pressure and chemical potential in the solid 
and fluid phases. 

A A, u, u2 u3 ---- 

NkT= NkT+ NkT+ NkT+ NkT’ 
(3.17) 

AA, and AA, were obtained by performing constant volume 
MC runs with 144 (486) particles for the close packed struc- 
tures and 108 (256) particles for the a-N, structure. We 
used 10 000 cycles for equilibration and 20 000 to obtain 

To check the computer codes, we have done several 
tests. We have evaluated the free energy for hard spheres at 
p* = 1.0409 and f ound good agreement with the results re- 
ported by Frenkel and Ladd. I7 We have also checked ther- 
modynamic consistency. For that purpose, we have evaluat- 
ed the free energy of the CP3 lattice for L * = 1.0 at two 
different densities (p* = 1.181 and p* = 1.218) with the 
Frenkel-Ladd method, and in this way, we found a free ener- 
gy difference between the states hA /NkT = 1.01. By inte- 
gration of the equation of state, we found that 
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TABLE I. The equation of state for hard dumbbells with elongations 
L * = 1.0,0.6, and 0.3 in the fluid phase as obtained from MC results and 
from the Tildesley and Streett (TS) (Ref. 19) EOS. Pressures and densities 
are given in reduced unitsp* = pd 3/kT andp* = pd ‘, where d is the diam- 
eter of a hard sphere with the same volume as the hard dumbbell. 

L * = 1.op* MC @*) ‘IS Co*) 

15 0.881 0.883 
20 0.943 0.942 
25 0.979 0.988 
30 1.013 1.024 
35 1.045 1.055 
40 1.072 1.081 

L * = 0.6p* MC Co*) TS (p*) 

15 0.949 0.955 
20 1.021 1.017 
25 1.056 1.063 
30 1.098 1.100 
35 1.125 1.131 
40 1.152 1.157 

L*=o.3p* MC @*) -I-S @*) 

10 0.900 0.895 
15 0.984 0.984 
20 1.039 1.045 
22.5 1.073 1.070 
25 1.092 1.092 
27.5 1.116 1.111 
30 1.131 1.128 
32.5 1.150 1.144 

A,4 /NkT = 1.02, which indicates that the two calculations 
are thermodynamically consistent. 

IV. RESULTS AND DISCUSSION 

Tables II-VII summarize all our results for the solid 
EOS and free energies of hard dumbbell systems as well as 
the results of our phase equilibrium calculations. In Table II, 
we present the results for the EOS in the solid branch for 

TABLE II. The equation of state for hard dumbbells with L * = 1.0 in the 
solid phase. The three close packed structures are considered. Every result 
represents the average of three independent runs. The number of particles 
used was 144 except for the results labeled with an asterisk where 486 parti- 
cles were used. The value of the orientational order parameter is shown 
between brackets for some selected states. 

P* 

20 
25 
30 
35 
35* 
40 
45 
50 
50* 
55 
60 

CPl 
(P*) 

lDlO(O.96) 
1.099 
1.148 
1.174 
1.174* 
1.204(0.99) 
1.224 
1.242 
1.244* 
1.255 
1.264(0.99) 

CP2 CP3 
Co*) Co*) 

1.043 1.036 
1.106 1.105 
1.151 1.139 
1.178 1.178 

1.202 1.200 
1.226 1.222 
1.244 1.239 

1.257 1.254 
1.265 1.266 
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TABLE 111. The equation of state for hard dumbbells with L * = 0.6 in the 
solid phase. The three close packed structures and the a-N, structures are 
considered. Every result represents the average of three independent runs. 
The orientational order parameter is shown between brackets for some se- 
lected states. 

CPl CP2 CP3 LX-N, 
P* (p*) (P*) (P*) @*) 

30 1.196(0.58) 1.202(0.63) 1.202(0.62) 1.166(0.88) 
35 1.231(0.65) 1.237(0.62) 1.236(0.65) 1.196(0.93) 
40 1.257 1.254 1.258 1.225 
45 1.288(0.98) 1.279(0.96) 1.283(0.92) 1.241(0.95) 
50 1.305 1.304 1.303 1.258 
55 1.322 1.322 1.320 1.273 
60 1.333(0.99) 1.336(0.99) 1.332(0.98) 1.282(0.97) 

hard dumbbells with L * = 1.0 for the three close packed 
structures considered (CP 1, CP2, and CP3). For each pres- 
sure and structure, we have performed three independent 
runs with 20 000 cycles equilibration and 20 000 cycles aver- 
aging for each and we give the average value of the density 
from these three runs. The estimated accuracy in the density 
for a given pressure is about 1%. We started at the highest 
pressure and then took the last configuration of the previous 
run as the initial one for the next lower value of the pressure. 
The EOS of the three close packed structures is almost the 
same. That situation resembles the case of hard spheres, 
where the two close packed structures (hcp and fee) have an 
almost identical EOS.2’ For some selected states, we show in 
brackets the value of the orientational order parameter. The 
particles are highly oriented at all the studied pressures. 
However, we observed two changes in the unit cell with re- 
spect to its structure at close packing. First we observed a 
decrease of about 3% in the ratio c/u relative to its value at 
close packing (see Table V). This change in the shape of the 
unit cell has a significant effect on the computed free energy 
for a given density as we have observed by repeating the 
calculation at one state with c/a fixed at the close packed 
value. For L * = 1 andp* = 1.18 1, the free energy per parti- 
cle decreases about 0.30 when the ratio (c/u)/(c/a),, 
changes from 1 to 0.98. A similar effect was observed by 
Frenkel and Mulder3 for hard ellipsoids. The second change 
accounts for a small shift in the angle 0 made by the particles 
with the direction perpendicular to the layers. For L * = 1, 
the value of 6’at close packing is 35.26”, whereas the observed 
value of 6 during the runs was of about 32”. The computed 
angle distribution functions f( 8) and f( 4) remain sharp 
with a high peak centered on the equilibrium position. 

Another interesting feature concerns the translational 
order in these systems. For all the pressures, the system was 
found to be translational ordered. However, at low pressures 
(in the metastable part of the solid branch), we found the 
translational order parameter in the a and b directions to be 
smaller than the translational order parameter in the c direc- 
tion by about 20% indicating some anisotropy in transla- 
tional order. (This anisotropy was found to be much smaller 
for L * = 0.6 or L * = 0.3.) The anisotropy in translational 
order is reminiscent of that which might be seen in a smectic 
phase for more elongated particles. In Table V, we show the 
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TABLE IV. The equation of state for hard dumbbells with L * = 0.3 in the solid phase. The three close packed 
structures, a-N,, and the fee plastic crystal (PC) structures are considered. Every result represents the average 
of three independent runs. In the column labeled as PC, the states with the asterisk were obtained from expan- 
sion of the state p* = 45 of the a-N, lattice, while the other three were obtained by compression of the state 
p* = 35. The orientational order parameter is shown between brackets for some selected states. The states 
marked “unstable” for the a-N, structure are oneS where this structure was not mechanically stable and 
changed into the fee plastic crystal during the course of the MC run. 

P* 
CPl 
(P*j 

CP2 
(P”) 

CP3 
@*) 

a-N, 
(p*) 

PC 
(P*, 

20 1.090(0.06) 1.088 1.091(0.05) Unstable 1.089(0.10)* 
25 1.145 1.147 1.147 Unstable 1.125* 
30 1.192(0.32) 1.192 1.196(0.47) Unstable 1.148* 
35 1.236(0.56) 1.237 1.241(0.61) Unstable 1.175(0.10)* 
40 1.260 1.264 1.258 Unstable 1.193(0.14) 
44 1.212(0.12) 
45 1.285(0.73) 1.287 1.282iO.73) 1.271(0.88) 
48 1.230(0.12) 
50 1.299 1.297 1.303 1.289 1.234 
55 1.312(0.83) 1.315 1.315(0.83) 1.305(0.94) 
60 1.331 1.335 1.325 1.323 

computed free energies of the reference state obtained with 
the Frenkel-Ladd method and used for the determination of 
the phase equilibria. In Table VI, the solid-fluid coexistence 
properties are shown. 

The three close packed lattices have almost identical 
behavior and in particular almost the same densities and 
pressures at freezing. We cannot within the accuracy of our 
calculations establish which of these three lattices is the most 
stable. The problem again resembles that of hard spheres 

where it is difficult to determine which of the two close pack- 
ing structures (hcp or fee) is the most stable at freezing.” 
We did some simulations of the a-N, structure for L * = 1 .O 
using 108 particles. However, we found that the structure 
was not mechanically stable. Over the course of the run, the 
simulation cell slowly changed shape from cubic to ortho- 
rhombic and the density became indistinguishable from that 
of the three close packed structures. Figure 3 shows the 
branches of the equation of state and the fluid-solid equili- 

TABLE V. Free energy calculations for hard dumbbells in the CPI, CP2, CP3, a-N,, or plastic crystal (PC) 
solid phases. N is the number of particles used, a,,,,, is the maximum value of /2, A,,, = /I y = A ; with 
A : = A, /(k’F/cr *) and 1: = A,/kT, NA is the number of points used to integrate Eq. (3.14) using Gauss- 
Legendre quadrature. R is the ratio c/a divided by its value at close packing [i.e., R = (c/a)/(c/a),, 1, p* is 
the reduced density (units are the same as in Table I), AA,, and AA, are defined in Eqs. ( 3.13) and ( 3.14) 
respectively, and& is the absolute Helmholtz free energy at the reference density. All free energies are divided 
by NkT. The result for hard spheres labeled with an asterisk was taken from Ref. 17. 

L* Lattice N a mai N.4 R P* M2 M, A rd 

1.0 CPl 144 8OOU 10 0.96 1.180 - 8.727 O.COOO 13.34 
1.0 CPl 486 8OWJ 10 0.99 1.174 - 8.836 0.0’330 13.28 
1.0 CP2 144 8000 10 0.98 1.181 - 8.721 0.0000 13.35 
1.0 CP2 144 8000 10 1.00 1.181 - 8.453 O.CKXlO 13.62 
1.0 CP3 144 8000 10 0.98 1.181 - 8.728 0.0000 13.34 
1.0 CP3 144 8OCHI 10 0.98 1.218 - 7.716 0.0000 14.35 
0.6 a-N, 108 8000 10 1.00 1.225 - 10.22 0.0000 11.72 
0.6 CPl 144 8000 10 0.96 1.289 - 9.105 0.0020 12.86 
0.6 CP2 144 8OKl 10 0.99 1.284 - 9.271 0.0050 12.69 
0.6 CP3 144 16000 10 0.99 1.283 - 10.99 0.0310 12.72 
0.3 a-N, 256 3000 10 1.00 1.269 - 8.222 0.0081 11.11 
0.3 PC 108 1000 20 1.00 1.090 - 10.16 0.0008 6.39 
0.3 PC 108 1 OCQ 20 1.00 1.125 - 9.485 0.0036 7.06 
0.3 PC 108 1000 20 1.00 1.160 - 8.701 0.0122 7.86 
0.3 CPl 144 3000 20 0.94 1.235 - 9.353 0.0156 9.96 
0.3 CP2 144 3000 20 0.97 1.240 - 9.253 0.0272 10.07 
0.3 CP3 144 3ooo 20 0.94 1.222 - 9.727 0.0448 9.62 
0 fee 125 632.03 5 1.00 1.041 - 2.972 0.0182 4.96 
0* fee 108 632.03 10 1.00 1.041 - 2.972 0.0177 4.95 
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TABLE VI. Solid-fluid equilibria of hard dumbbells as obtained from the 
MC results for the solid EOS (see Tables II-IV) and the free energy calcula- 
tions shown in Table V. The fluid was described with the Tildesley and 
Streett (Ref. 19) equation of state. For L * = 1.0, the solid-fluid equilibria 
for freezing into the CPI structure was determined by using the free energy 
calculations for both 144 and 486 particles (see Table V). 

L*= 1.0 
Lattice 

CPl 
(N= 144) 
CPI 
(N= 486) 
CP2 
CP3 

L + = 0.6 
Lattice 

Pf P: 

1.053 1.174 

1.058 1.179 
1.052 1.177 
1.051 1.173 

PY P: 

P* p/kT 

34.57 42.64 

35.45 43.48 
34.37 42.45 
34.25 42.34 

P* p/kT 

a-N, 1.193 1.255 48.59 51.29 
CPI 1.146 1.249 37.97 42.22 
CP2 1.143 1.244 37.37 41.70 
CP3 1.148 1.252 38.33 42.53 

L * = 0.3 
Lattice Pf Pf P* p/kT 

PC 1.017 1.070 17.45 22.37 
CPI 1.148 1.221 33.22 36.85 
CP2 1.148 1.222 33.22 36.85 
CP3 1.143 1.218 32.32 36.08 

bria for hard dumbbells with L * = 1.0. For the solid, we 
only plot the results for the CPI structure since the results 
for CP2 and CP3 are almost identical. 

In view of the similarity of the equation of state and free 
energies of the three different orientationally ordered struc- 
tures, we conjecture that the properties of the aperiodic crys- 
tal may be similar, apart from the contribution to the free 
energy arising from the structural degeneracy. Indeed this 
has been observed by Wojciechewski et al. I2 in their study of 
two-dimensional hard dumbbells with L * = 1 .O. This being 
the case, we can estimate the free energy of an aperiodic 
structure from that of any of the orientationally ordered 
structures by adding a contribution from the degeneracy of 
the aperiodic structure at close packing. Determination of 
this is the well-known dimer problem on a fee crystal and, by 
using series expansion techniques, the contribution to the 
free energy has been estimated” to be 
AA,,/iVkT= - In 4.5693 = - 1.5194. Assumingthat the 
degeneracy contribution is independent of density, we have 
used this result together with the free energy and EOS for the 
CP3 structure to recompute the freezing properties. These 
estimates are p * = 19.4, p/* = 0.936, and pf = 1.03. Notice 
that these are substantially lower than the results for freezing 
into the orientationally ordered structure. At this point, we 
should note that the aperiodic structure may also be stable 
for values ofL * slightly less than 1.0 for densities below close 
packing, but this will not be the case for L * = 0.3 and 0.6. 

In Table III, the EOS for hard dumbbells with L * = 0.6 

TABLE VII. Phase transitions for hard dumbbells with L * = 0.3. The first 
two lines correspond to transitions between equilibrium phases. The other 
lines give data for transitions between metastable phases. 

Phase 1 

Fluid 
PC 
PC 
Fluid 

Phase 2 

PC 
CP3 
a-N, 
CP3 

P: P: 

1.017 1.070 
1.195 1.262 
1.233 1.288 
1.143 1.218 

P* p/kT 

17.45 22.37 
39.95 42.20 
49.88 50.37 
32.32 36.08 

in the close packed structures and in the a-N, structure are 
shown. The results again correspond to the average of three 
independent runs. The three close packed structures again 
have an almost identical EOS. However, the a-N2 lattice has 
a significantly different EOS. At a given pressure, the density 
of the cr-N, structure is always about 4%-5% less than that 
of the close packed structures. This is not surprising since the 
close packing density of a-N, for L * = 0.6 is about 6% 
smaller than the density at close packing of the other struc- 
tures. This suggests that at high pressures, the a-N, struc- 
ture cannot be the stable one for L * = 0.6. For the close 
packed lattices, we did not observe any significant change in 
the shape of the unit cell with respect to the close packed 
geometry (except that the ratio c/a decreases slightly). 
However, the orientational order parameter undergoes a 
drop (some results are given in Table III) between p* = 45 
and p* = 35. At p* = 40, the density of the system is such 
that the mean distance between particles within the same 
layer is about 1 + L */2, and that is the minimum distance 
which will allow reorientation on the lattice. In fact, such a 
reorientation was observed during the simulations at pres- 

3 

FIG. 3. Solid-fluid equilibria for hard dumbbells with L * = 1 .O. The fluid is 
described with Tildesley and Streett (Ref. 19) EOS. The dots correspond to 
the MC results for the orientationally ordered solid. The lines through the 
MC results are a fit ofthe data. The tie lines connect the states ofthe orienta- 
tionally ordered .solid and fluid in equilibrium. The solid tie line was ob- 
tained by using 144 particles in the free energy calculations, while the 
dashed tie line was obtained when 486 particles were used in the free energy 
calculations. 
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4fdegrees 

FIG. 4. Angular distributions functionsfl0) andf($) [see Eqs. (3.2) and 
(3.3) ofthemain text] forhard dumbbells with,% * = 0.6. The resultscorre- 
spond to the solid structure CP 1 at the reduced pressuresp* = 37.5 (dashed 
line) and p* = 45 (solid line). 

sures smaller thanp* = 40. Such behavior was not found for 
L * = 1. In Fig. 4, we show the behavior off( 0) andf( 4) for 
p* = 45 and p* = 37.5. For p* = 45, f(6) are f(4) are 
sharply peaked and no reorientation is observed [note the 
peak inf( 0) around 18” and the small value obtained at 180”- 
18” = 162”]. The peak forf( 6) is placed around 18” which is 
slightly smaller than the tilt angle at close packing which is 
for L * = 0.6 of about 20”. However, forp* = 37.5, a second 
peak appears inf( 8) indicating the occurrence of reorienta- 
tion. Moreover, the distribution f(e) is shifted towards 
smaller angles and significant numbers of particles have 
their axes perpendicular to the a-b plane although most of 
them remain tilted. The distribution for f(4) becomes 
broader. We conclude that the system, while remaining 
strongly orientationally ordered, gains significant orienta- 
tional freedom at about p* = 40. 

In Table VI, the results of the solid-fluid equilibria are 
presented. The solid-fluid transition for a-N, occurs at 
higher pressures than for the close packed structures. Conse- 
quently, the hard dumbbell fluid with L * = 0.6 does not 

60 

50 

“a 

40 

30 

FIG. 5. Solid-fluid equilibria for hard dumbbells with L * = 0.6. The fluid is 
described with the Tildesley and Streett (Ref. 19) EOS. The filled circles 
correspond to the MC results for the solid in the CPl structure and the open 
circles correspond to the a-N, structure. The lines through the MC results 
are a fit of the data. The tie lines connect the states of the solid and fluid in 
equilibrium. 

freeze into an a-N, solid structure. Moreover, by examining 
the Gibbs free energy vs pressure, we found that for a given 
pressure the Gibbs energy of the close packed structures is 
always smaller than that of the a-N, structure. Thus for 
L * = 0.6, the a-N, structure is not stable with respect to the 
close packed structures at any pressure. The densities and 
pressures at melting of the close packing structures are again 
very similar and the differences remain within the accuracy 
of the present calculations. Figure 5 illustrates the branches 
of the EOS and the fluid-solid equilibria for hard dumbbells 
withL*=O6 . . 

We now turn to the results for L * = 0.30. Table IV 
shows the results for the EOS for L * = 0.3. The differences 
between the results for the close packed structures are again 
very small. As in the case of the longer bond lengths, the 
ratio c/a decreases as the density is lowered from that at 
closest packing. The orientational order parameter has val- 
ues around 0.80 until a pressure of aboutp* = 50 is reached 
below which it decreases continuously with decreasing the 
pressure. Figure 6 showsf( 8) and& 4) for one of the close 
packed structures at two pressures. The curves are symmet- 
ric in all the cases. The molecular axes tend to lie perpendic- 
ular to the plane of the layers and the distribution over the 
angle 4 is featureless. By decreasing the pressure, the distri- 
bution of the angle 8 becomes broader. 

From Table IV, we can also observe that the density of 
the a-N, lattice for a given pressure is always smaller than 
that of the close packed structures by about 1%. The maxi- 
mum packing density of the a-N, structure is about 2% less 
than that of the other structures which helps explain much of 
the difference. The order parameter always takes high val- 
ues. However, when the system is simulated at pressures be- 
low p* = 40, important changes occur. The results labeled 
with an asterisk in the column labeled plastic crystal inTable 
IV were obtained from the expansion of the final configura- 
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FIG. 6. Angular distributions functionsf(8) andAd) for hard dumbbells 
with L * = 0.3. The results correspond to the solid structure CPI at the re- 
duced pressuresp* = 30 (dotted line) andp* = 45 (solid line). 

IO 1 I 1 L , 8 I I 
1.05 1.10 1.15 1.20 1.25 1.30 

P* 

FIG. 7. Solid-fluid equilibria for hard dumbbells with L * = 0.3. The fluid is 
described with Tildesley and Streett (Ref. 19) EOS. The points correspond 
to the MC results for the solid (filled circles-CPl; open circles-a-N,; 
diamonds-fee plastic crystal). The lines through the MC results are a fit of 
the data. The tie lines connect the states (both stable and metastable) in 
equilibrium. 
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FIG. 8. Angular distribution functionsf(8) andf(4) for hard dumbbells 
with L * = 0.3. The results are for the structures a-N, at p* = 45 (solid 
line) and fee plastic crystal atp* = 30 (dotted line). 

tion from the simulation of the a-N, system atp* = 45. The 
orientational order parameter has dropped to a value typical 
of an isotropic distribution. The symmetry of the system is 
still cubic (as in the a-N, structure) and the center-of-mass 
distribution corresponds to that of a  fee lattice, but with the 
particles oriented randomly. Moreover, this orientational 
change is accompanied by an appreciable density change. 
The system is now a plastic crystal. We  also compressed the 
system starting from the plastic crystal state at p* = 35 and 
hysteresis was observed. The system remained in a lower 
density branch with very low value of the orientational order 
parameter, but with high values of the translational order 
parameter. Figure 7 shows all the branches ofthe EOS which 
we studied forL * = 0.3. In Fig. 8, we showf( 0) andf( 4) for 
the a-N, structure at p* = 45 and for the plastic crystal at 
p* = 30. The distribution of angles is flat for the plastic crys- 
tal indicating equal probability for any selected orientation 
in agreement with the results of Ref. 23. It is interesting to 
note that Allen and Imbierski’ found a fee plastic crystal for 
hard dumbbells with L  * = 0.05, although they did not cal- 
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culate free energies. For L * = 0.3, they studied one state 
point of a-N, at very high density. Our results show that at 
lower densities, a first-order phase transition between a-N, 
and the fee plastic crystal phase would occur. However, we 
emphasize that even at the high densities, the a-N, structure 
is metastable with respect to the close packed structures. 

Our results suggest that the phase transition between a- 
N, and a fee plastic crystal is first order. To determine the 
coexistence between these two phases, we have determined 
the free energy in both of them. The free energy calculations 
are shown in Table V. We determined the tie line between the 
coexisting phases to be atp* = 50. This is in agreement with 
the fact that a-N, was found to be mechanically unstable for 
pressures below p * = 40. The difference in density between 
the fee plastic crystal and the a-N, structure at the transi- 
tion is about 4%. 

We have determined the solid-fluid transition for the 
close packed structures and the plastic crystal phase. The 
results are presented in Table VI. The close packing struc- 
tures melt at higher pressures than the plastic crystal phase. 
Note also the difference in the density change for both transi- 
tions which is large for the fluid to close packed structure 
transition and small for the fluid to plastic crystal transition. 
At low pressures, the fluid is the stable phase and at high 
pressures the close packing structures are found to be the 
stable ones. At intermediate range of pressures, the fee plas- 
tic crystal is the stable one. Therefore the sequence of stable 
equilibrium phases for hard dumbbells with L * = 0.3 (for 
the structures considered) is fluid to the fee plastic crystal to 
close packed structure. The a-N, is never stable with respect 
to the close packed structures. In Table VII, we show all the 
phases transitions found for L * = 0.3. The first two rows 
show the transitions between the most stables structures and 
the next rows are for the transitions occurring between meta- 
stable phases which are the fee plastic crystal to a-N, phase 
transition and the close packed structure to fluid phase tran- 
sition. Figure 7 shows the tie lines for all the phase transi- 
tions found for L * = 0 3 . . 

The phase diagram found for hard dumbbells with 
L * = 0.3 has some similarities and some differences with the 
behavior found in N, .24 N, at liquid temperatures freezes 
into a hexagonally close packed structure in which there is 
no long-range orientational order. This phase is called B-N, 
and is a plastic crystal. Upon cooling, P-N, undergoes a 
first-order transition to a-N,. For hard dumbbells with 
L * = 0.3 (which corresponds approximately to the anisot- 
ropy of N, ), we found the fluid at freezing to be in equilibri- 
um with a plastic crystal, and that this plastic crystal is less 
stable at higher densities or pressures than the a-N, struc- 
ture (although this is metastable with respect to the close 
packed structures). Moreover, the density jump at freez- 
ing 25 found for N, is about 2%, which is small compared 
with the jump found in other substances. Meijer et ~1.~~ have 
recently studied the liquid to /3-N, transition for a realistic 
model of N, at 300 K and found a density change of about 
2%. The density change at freezing found in this study for 
hard dumbbells with L * = 0.3 is about 5% which is about 
half of that found for L * = 0.6 and L * = 1 .O. The relatively 
small density change on freezing seen for these hard dumb- 
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bells and for N, is due to the expanded nature of the plastic 
crystal structure. 

Of course P-N, and the fee plastic crystal differ in the 
arrangement of the center of mass (hcp and fee, respective- 
ly). Although we have not studied the relative stability of the 
fee plastic crystal with respect to the B-N, structure and 
therefore we cannot determine which of these two structures 
is more stable, we believe the free energy differences will be 
small. Two observations support this argument. The first is 
that the differences in free energy between hcp and fee lat- 
tices for hard spheres are very small. I7 Second, two theoreti- 
cal studies6*7 have found almost no difference in free energy 
between the hcp and fee plastic crystals for hard dumbbells 
of small elongations. Another difference between the hard 
dumbbell model and N, is that in the case of hard dumbbells, 
the plastic crystal transforms into the close packed structure 
at higher pressures. However, N, transforms from the fl- N, 
structure into a number of structures (a,y,6) depending on 
the temperature and pressure. Hard dumbbells should be 
able to mimic the behavior of N, at very high temperatures 
where the effect of the attractive forces decreases. Under 
these conditions, it is experimentally observed that liquid N, 
freezes into the P- N, structure, then it transforms into 6- N, 
(cubic) and finally into a solid structure which loses its cu- 
bic symmetry and seems to be rhombohedral. This resembles 
the sequence fluid to plastic crystal to close packed structure 
of the hard dumbbell model. Another important difference is 
that for hard dumbbells, the a-N, structure was never found 
to be stable, whereas nitrogen exhibits this solid structure at 
low temperatures. We believe the quadrupole moment of 
nitrogen to play an important role in stabilizing the a-N, 
structure’ with respect to the close packed structures at low 
temperature. 

In Fig. 9, we show the dependence on L * of the solid- 
fluid coexistence pressures of the hard dumbbell systems 

. 

FIG. 9. Coexistence pressures for the solid-fluid equilibria of hard dumb- 
bells as a function of the molecular elongation L *. The results for hard 
spheres (L * = 0) are those of Ref. 27. The result indicated by the open 
circle is our estimate of the coexistence pressure for freezing into an aperiod- 
ic crystal for L * = 1.0. 
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FIG. IO. Densities ofthe fluid (filled and open circles) and the solid (filled 
and open squares) at coexistence for hard dumbbells. The results for hard 
spheres (.L * = 0) are those of Ref. 27. The results indicated by the open 
symbols are our estimates of the coexistence densities for freezing into an 
aperiodic crystal for L * = 1 0 . . 

found in this work, as well as those of hard spheres.27 The 
molecular anisotropy first increases the coexistence pressure 
with respect to the hard sphere model, it reaches a maximum 
around L * = 0.6 and then decreases again for higher anisot- 
ropies. Figure 10 shows the densities of the fluid and solid at 
equilibrium for hard dumbbells. The freezing transition for 
hard dumbbells occurs at higher densities (packing frac- 
tions) than for hard spheres. The densities of the fluid and 
solid at coexistence reach a maximum around L * = 0.6 and 
then start to decrease. For hard ellipsoids, Frenkel and 
Mulder’ also found a maximum in the coexistence pressure 
and densities as a function of the anisotropy. In both Figs. 9 
and 10, we have included our estimate of the freezing proper- 
ties for L * = 1.0 into the aperiodic structure as well as for 
the orientationally ordered structures. 

The jump in the density at freezing is about 10% for 
hard dumbbells with L * = 0.6 and L * = 1.0. However, for 
L * = 0.30, it is only about 5%. The reason for this different 
behavior is that while hard dumbbells with L * = 0.6 and 
L * = 1.0 freeze into a close packed structure, hard dumb- 
bells with L * = 0.3 freeze into a fee plastic crystal. The 
change in density at freezing for hard spheres (L * = 0) is 
about 10%. Since we found a density change of 5% for hard 
dumbbells with L * = 0.3 and since we also expect freezing 
into the fee plastic crystal to occur for L * < 0.3, we conjec- 
ture that between L * = 0 and L * = 0.3, there is a smooth 
decrease in the fractional density change. 

Finally, we need to address the effect of system size on 
our results. Frenkel and Ladd17 have shown for hard 
spheres that the free energy calculations are especially sensi- 
tive to the system size. Although we have not studied system- 
atically the system size dependence of the determined coexis- 
tence properties, we have performed some calculations with 
a system of 486 particles for L * = 1.0 and the CPl lattice. 
We performed constant pressure MC simulations atp* = 35 
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andp* = 50 and the results are shown in Table II. The effect 
of system size on the EOS is quite small. For the state 
p* = 35, we have also performed free energy calculations 
(see Table V) and there is some system size dependence in 
the determined free energy. In Table VI and in Fig. 3, we 
compare the coexistence properties obtained with the EOS 
of the N = 144 system together with the free energy obtained 
from the N = 486 system and the differences, although quite 
small, are not entirely negligible. Nevertheless, they are suf- 
ficiently small as to suggest that the main features and trends 
found in this work do not differ significantly from what 
might be found with larger system sizes. 

V. SUMMARY AND CONCLUSIONS 

We have presented a study of the solid-fluid equilibria 
in systems of hard dumbbells. Five types of solid phase were 
investigated. We found that for L * = 0.6, the stable solid 
structure is base centered monoclinic although we were un- 
able to distinguish the relative stability of three structures of 
this type (CPl, CP2, or CP3). At the shortest bond length 
considered (L * = 0.3), the fluid freezes into a fee plastic 
crystal which becomes unstable with respect to the orienta- 
tionally ordered close packed structures at higher density. 
Our results indicate that the a-N, structure is not the stable 
structure for hard dumbbells of any elongation, but appears 
as a metastable phase. The coexisting pressures and density 
exhibit a maximum when plotted vs the dumbbell elonga- 
tion. This is similar to the dependence seen in studies of hard 
ellipsoids. For L * = 0.3, the results are qualitatively similar 
to the freezing properties of N, at high temperatures in that 
a plastic crystal is the stable solid phase at freezing and the 
density change on freezing is small. The stable crystal struc- 
tures of the hard dumbbells at higher elongations are related 
to those exhibited by the solid halogens. 

For L * = 1 .O, we have studied freezing into orientation- 
ally ordered close packed structures. For this system, we also 
have the possibility of forming an aperiodic crystal. Al- 
though we have not simulated such a structure, we have 
made an estimate of the extra stability afforded by the struc- 
tural degeneracy contribution to the free energy and have 
used this to estimate the influence on the freezing properties. 
We estimate that the aperiodic structure would be substan- 
tially more stable than the orientationally ordered struc- 
tures, and the freezing pressure and densities are also signifi- 
cantly lower. Some simulations of the equation of state and 
free energy of the aperiodic structure will be necessary to test 
the accuracy of these estimates. 

We hope that the simulation data presented here will be 
useful in testing different theoretical approaches to the de- 
termination of solid-fluid equilibria of hard nonspherical 
models such as the density functional theories.6,7 In this con- 
text, we have found that the simple Lennard-Jones and De- 
vonshire2* cell theory provides quite accurate predictions of 
equation of state and free energy of the orientationally or- 
dered solid phases considered in this work and when used 
together with the Tildesley-Streett EOS for the fluid phase 
predicts correctly the trends in the coexistence properties 
with the hard dumbbell elongation.29 
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