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Direct coexistence simulations between the fluid and solid phases are performed for several ices. For
ices Ih and VII it has already been shown that the methodology is successful and the melting point
is in agreement with that obtained from free energy calculations. In this work the methodology is
applied to ices II, III, V, and VI. The lengths of the direct coexistence runs for the high pressure
polymorphs are not too long and last less than 20 ns for all ices except for ice II where longer runs
(of about 150 ns) are needed. For ices II, V, and VI the results obtained are completely consistent
with those obtained from free energy calculations. However, for ice III it is found that the melting
point from direct coexistence simulations is higher than that obtained from free energy calculations,
the difference being greater than the statistical error. Since ice III presents partial proton orientational
disorder, the departure is attributed to differences in the partial proton order in the water model with
respect to that found in the experiment. The phase diagram of the TIP4P/2005 model is recalculated
using the melting points obtained from direct coexistence simulations. The new phase diagram is
similar to the previous one except for the coexistence lines where ice III is involved. The range of
stability of ice III on the p-T plot of the phase diagram increases significantly. It is seen that the
model qualitatively describes the phase diagram of water. In this work it is shown that the complete
phase diagram of water including ices Ih, II, III, V, VI, VII, and the fluid phase can be obtained from
direct coexistence simulations without the need of free energy calculations. © 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4824627]

I. INTRODUCTION

Simulation studies of water have been an important area
of research since the pioneering works of Barker and Watts1

and Rahman and Stillinger.2 The description of the phase di-
agram represents a way to test the ability of water potential
models.3–7 New models were developed with an improved de-
scription of the phase diagram of water and of the maximum
in the density of liquid water (TIP4P/Ice,8 TIP4P-Ew,9 and
TIP4P/200510). The phase diagram has been evaluated for a
number of water models using both classical simulations11–14

and simulations including nuclear quantum effects.14–16

The methodology employed to determine the phase dia-
gram for simulation is often based on the calculation of an ini-
tial point for each coexistence line followed by Gibbs Duhem
integration17 to trace the rest of the coexistence line. At co-
existence, the chemical potential of water in both phases (at a
certain temperature and pressure) becomes identical. For the
fluid phase it is relatively simple to determine the chemical
potential. However, the calculation of the chemical potential
of the solid phases requires special techniques such as the
Einstein crystal method18 proposed by Frenkel and Ladd or its
variant Einstein molecule method19, 20 proposed by Vega and
Noya. Until recently, solid free energy calculations were per-
formed with home-made programs but it has been shown21, 22
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that the calculations can indeed be performed with free molec-
ular dynamic packages such as GROMACS.23

Ices can be divided into three families: ices in which
the protons are orientationally ordered (ices II, VIII, IX, XI,
XIII, XIV, and XV), ices with full proton disorder (Ih, VI, and
VII), and ices with partial proton disorder (III and V). For the
first two types the evaluation of the free energy of the solid
phase is rather trivial. For proton ordered ices, it suffices to
compute the free energy of the solid configuration. When
the system presents total proton disorder, one can take a
representative configuration and add the Pauling entropy
contribution24 which accounts for the number of possible
configurations compatible with the Bernal-Fowler rules.25–27

However, when there is partial proton disorder (III and V)
things are more difficult. The approach we have used in the
past has been to take a representative configuration of ices III
and/or V, calculating its free energy by the Einstein crystal/
molecule method, and then adding a modified Pauling
entropy28 (accounting for the fact that the proton disorder is
only partial). But the choice of a “representative” configura-
tion of a partially disordered ice is not a trivial task since the
energy of different configurations varies significantly.29, 30

Another way to calculate the melting point of a solid is to
use direct coexistence simulations. In the direct coexistence
technique, the two phases of interest (typically a solid and a
fluid phase) are put in contact within the same simulation box.
Although it can be implemented in different ways, a possibil-
ity is to fix the pressure of interest and to perform simulations

0021-9606/2013/139(15)/154505/8/$30.00 © 2013 AIP Publishing LLC139, 154505-1
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at different temperatures to obtain the equilibrium melting
temperature. The procedure was first proposed by Ladd and
Woodcock31, 32 in the 1970s and is steadily becoming more
popular, especially after the works of Morris and Song33 and
Fernandez et al.34 The direct coexistence method has been
successful in determining the melting point of ice Ih for com-
mon water models,34–38 with predictions in good agreement
with those obtained from free energy calculations.34 The same
approach was applied39, 40 to other simple ice structures re-
lated to cubic ice Ic (i.e., VII and the plastic crystal phase).
The technique also allows to determine the mechanism and
growth rate of ice Ih.41–46 Besides, it has been applied to a
number of substances including hydrates,47 methanol,48 or
patchy colloids.49

To be of practical use, the direct coexistence method re-
quires that the melting/freezing occurs on time scales below
the microsecond. An interesting issue is whether the tech-
nique could also be useful in the investigation of more com-
plex water polymorphs as it is the case of ices II, III, V, and
VI. This is one of the goals of this work. We will show that the
melting point obtained from direct coexistence simulations of
ices II, V, and VI is identical to that obtained from free en-
ergy calculations of the TIP4P/2005 water model. However,
for ice III, the melting point evaluated using the direct coexis-
tence technique is about 25 K higher than that obtained from
free energy calculations, thus increasing significantly its sta-
bility region. As discussed later in the manuscript, this is due
to the differences in the experimental and simulated proton
partial ordering of ice III. We shall also revisit the phase di-
agram of TIP4P/2005 from the melting points obtained from
direct coexistence simulations. Although the stability range
of ice III is larger than that found in experiment, TIP4P/2005
still provides a reasonable description of the water phase dia-
gram (we only take into consideration the experimentally sta-
ble ices Ih, II, III, V, and VI). In summary, it will be shown
that direct coexistence simulations (along with Gibbs Duhem
integration) suffice to determine the phase diagram of water.
An important conclusion of the study is that direct coexistence
simulation results do not seem to be strongly affected by the
proton ordering used in the initial configuration. This is not
the case of free energy calculations for which the proton or-
dering is fixed in the input configuration. The problem is that
one cannot take for granted that the proton ordering found in
experiments is identical to that found for the model.

II. METHODOLOGY

Solid phases studied in this work are ices II, III, V, and
VI. Ice II is proton ordered, ices III and V are partial proton
disordered phases, and VI shows full proton disorder. For the
proton disordered solid phases, we used the algorithm of Buch
et al.50 to generate a starting configuration that satisfies the
Bernal-Fowler rules with a dipolar moment close to zero.25

For ice II, the initial configuration is obtained directly from
crystallographic coordinates. Although ice II has a rhombohe-
dral unit cell, we use an equivalent orthorhombic cell in order
to work with a more simple simulation box.22 The number of
molecules in the solid phase must be an integer multiple of
the number of molecules in the unit cell of the corresponding

TABLE I. Number of water molecules (N) and box size of the different
systems studied in this work.

System N Box size (Å3)

Ice VI-liquid 1440 18×18×95
Ice V-liquid 1008 21×23×50
Ice III-liquid 1296 20×20×75
Ice II-liquid 1296 26×23×58

ice polymorph. Table I shows the number of molecules and
box size for the systems studied. The number of molecules is
always above 1000. With this system size the magnitude of
finite size effects is rather small.34 The initial configuration
is obtained by putting together a slab of the solid and a slab
of the fluid, and removing possible overlaps at the interface.
Thus, at the beginning of the runs approximately half of the
molecules are solid and half fluid.

We performed NpT molecular dynamics simulations at
different temperatures and pressures using the molecular dy-
namics package GROMACS (v4.5.5)23 with a time-step of
1 fs. The temperature was fixed using a velocity rescal-
ing thermostat51, 52 with a relaxation time of 1 ps. To keep
the pressure constant, a Parrinello-Rahman barostat53, 54 was
used. The relaxation time of the barostat was 1 ps. The three
different sides of the simulation box were allowed to fluctu-
ate independently to allow changes in the shape of the solid
region and to avoid the existence of stress in the solid. The
typical length of the simulations was about 10-20 ns (except
for the system formed by ice II and liquid water). The geom-
etry of the water molecules was enforced using constraints.55

The Lennard-Jones part of the potential was truncated at
8.5 Å. Ewald sums were used to deal with the electrostatic in-
teractions. The real part of the Coulombic potential was also
truncated at 8.5 Å. The Fourier part of the Ewald sums was
evaluated using the particle mesh Ewald (PME) method.56 We
used an interpolating fourth order polynomial together with a
0.1 nm grid.

To determine the equilibrium temperature between the
solid phase and fluid phases at a given pressure we proceed
as follows. Simulations at several temperatures are performed
at the pressure of interest. The time evolution of the energy is
followed. When the temperature is above the melting temper-
ature of the model the solid phase melts until, eventually, the
system transforms completely into a fluid phase. This trans-
formation is reflected in a steady increase of the potential en-
ergy of the system. If the temperature is below the melting
point, the fluid phase freezes and the entire system will be-
come solid. In this case the potential energy of the system
will decrease with time. We estimate the melting tempera-
ture at the pressure of interest as the average of the lowest
temperature for which the solid phase melts and the highest
temperature for which the fluid phase freezes. By following
this procedure we determine an initial coexistence point (i.e.,
a temperature and pressure where both phases are in equi-
librium). Once an initial coexistence point is obtained for a
certain solid-liquid transition one can trace the entire coex-
istence line by using the Gibbs-Duhem17 integration method
proposed by Kofke. Basically the Gibbs Duhem integration
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method consists in integrating numerically the Clapeyron
equation, by determining the enthalpy and volume difference
between the two coexistence phases from NpT simulations. In
this work we use a fourth-order Runge-Kutta integration to
integrate the Clapeyron equation.

To describe the water interactions we use TIP4P/2005,10

a rigid and nonpolarizable model proposed by our research
group. The model provides a reasonable description of
many water properties both in the liquid13, 57–59 and solid
states.10, 60, 61 In fact, it has demonstrated a better overall per-
formance than other common rigid, non-polarizable models.62

III. RESULTS

The direct coexistence method has proved to be quite
successful in determining the Ih-liquid coexistence. In fact,
in a previous work34 we have shown that the melting point
obtained from direct coexistence simulations at room pres-
sure was in very good agreement with that obtained from di-
rect coexistence simulations. The same was found by other
authors.63 But the structure of ice Ih is quite simple, all the
molecules are connected in a tetrahedral network. Other solid
water polymorphs are much more complex and it remains to
be seen if the direct coexistence method is able to yield satis-
factory results for them. Table II presents the melting temper-
atures Tm of the different ices studied in this work modeled
with the TIP4P/2005 model.

We start by commenting the results for the ice VI-liquid
equilibrium at a pressure of 12 000 bar. The time evolution of
the energy of this system is shown in Fig. 1. From this plot
one can estimate the equilibrium melting temperature of ice
VI at 12 000 bar to occur at 267 K. The typical time to freeze
the liquid slab is of about 15 ns. It has been reported34 that the
freezing of water into ice Ih also required times of about 10 ns.
Thus, there is not much difference between the ice growth
rates for ices VI and Ih. This is interesting since ice VI is a
much more complex structure than ice Ih. Ice VI consists of
two inter-penetrated (but not interconnected) sub-lattices, the
molecules of each sub-lattice being connected by hydrogens
bonds. Besides, in ice VI, not all molecules are topologically
equivalent while all the molecules are topologically equiva-
lent in ice Ih. This difference in the complexity of the struc-
ture is not reflected in the crystal growth rates. In a previ-
ous work, we reported the equilibrium temperature between
ice VI-liquid at 12 000 bar using free energy calculations.
The value obtained was 267 K. The good agreement obtained
between these two different techniques gives confidence in

TABLE II. Melting temperatures as obtained from free energy (FE) calcu-
lations and from direct coexistence (DC) simulations of this work.

Phases p (bar) Tm(FE)/K Tm(DC)/K

Ice VI-liquid 12000 267(5) 267(2)
Ice V-liquid 7000 238(5) 241(3)
Ice III-liquid 3500 215(5) 240(4)
Ice II-liquid 2900 215(5) 215(4)
Ice Ih-liquid 1 252(5) 249(3)
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FIG. 1. Evolution of the potential energy as a function of time along NpT
runs at 12 000 bar for the system ice VI-liquid water using the TIP4P/2005
model.

the accuracy of the calculated melting temperature also for
structurally complex ice polymorphs.

Let us now consider the results for ice V-liquid water. We
have determined the equilibrium temperature at 7000 bar. The
features are similar to those discussed for ice VI (the time evo-
lution of the energy of the system is given in the supplemen-
tary material64). The kinetics is even faster than for ice VI,
since in less than 6 ns it is possible either to melt or to freeze
the entire sample. However, it should be taken into account
that the length of the simulation box (Lz) for ice VI is almost
twice that of ice V. Since the initial configuration is approx-
imately half liquid and half solid, for a proper comparison
between the growth rates of both ices, one should multiply
the results obtained for ice V by a factor of two. When this
is done one finds that the growth rates of ices VI and V are
rather similar. Once again the complexity of the solid struc-
ture (ice V has several types of topologically non-equivalent
water molecules) is not reflected on the kinetics. From the
evolution of the energy with time, one may estimate the melt-
ing temperature of ice V to be 241(3) K at 7000 bar. This is
in very good agreement with the value obtained from free en-
ergy calculations, namely 238(5) K. It is interesting to point
out that a certain amount of partial proton ordering has been
found in experiments with ice V. However, our results with
TIP4P/2005 indicate that the degree of proton partial ordering
of ice V is very small. Thus, assuming full proton disorder for
this model seems to be a quite reasonable approximation.

As for ice III-liquid water, direct coexistence simulations
were performed at a pressure of 3500 bar. Results are pre-
sented in Fig. 2. The melting of ice III occurs rather quickly
for temperatures above 243 K. Freezing is found for tempera-
tures below 237 K. This is also confirmed from the snapshots
of the initial and final configurations. Snapshots of the initial
and final configurations at two different temperatures (above
and below the melting point) for ices III, V, and VI are given
in the supplementary material.64 The growth rate of ice III
is slightly slower than that found for ices VI and V: it takes
about 20 ns to freeze the entire system at 237 K. From the
results presented here we conclude that the melting point at
3500 bar is around 240 K. Free energy calculations yield a
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FIG. 2. Evolution of the potential energy as a function of time along NpT
runs at 3500 bar for the system ice III-liquid water using the TIP4P/2005
model.

melting point of 215(5) K at this pressure. It is clear that both
results are not in agreement, the difference being of about
25 K, clearly greater than the error bar. What is the origin
of the discrepancy? Which of the two estimates is the correct
one? Ice III is a proton disordered phase. However, it does
not present complete but only partial proton disorder. There
is a way to indicate the degree of proton disorder through the
parameters α and β which measure the occupancy of certain
lattice positions by the hydrogens (see Table IV of Ref. 65 or
Fig. 4 of Ref. 28 for a description of the hydrogen positions
labeled as α and β). When the proton disorder is complete,
α = 0.5 and β = 0.5. When the proton disorder is not com-
plete these parameters differ from 0.5. Experimentally, Finney
and co-workers65 found α = 0.35 and β = 0.52. It is impor-
tant to point out that for ice III deviations of α and/or β from
0.5 (the value found when the proton disorder is complete) do
not imply the existence of net polarization in the solid. Ice III
is a non-ferroelectric solid even though experimentally it has
only partial proton disorder. In our determination of the phase
diagram of TIP4P/200510 we imposed the experimental val-
ues of α and β to generate a proton disordered configuration.
The free energy of this configuration was obtained from free
energy calculations by using the Einstein crystal method. Af-
ter that, we added an estimation of the Pauling-like entropy
for a system with partial proton disorder.28 The disagreement
between the melting points obtained via free energy calcula-
tions and direct coexistence simulations seems to indicate that
the assumption that the values of α and β for the model are
the same as the experimental ones may be incorrect. There are
now several indications supporting this assertion.

The relaxation time for proton disorder is of the order of
microseconds at room temperature,66 beyond the time scale
affordable in computer simulations. Thus, computer simula-
tions do not allow the entire rearrangement of the hydrogen
bonding network unless special moves (sampling the proton
order) are introduced. The use of this type of moves was ini-
tiated by Rahman and Stillinger67 and further improved by
Rick and Haymet.68–70 Recently, we introduced29, 71, 72 this
type of moves in a paper aimed at computing the dielectric

constant of ices. We found that the values of α and β in
ice III for TIP4P/2005 were α = 0.5 and β = 0.25, differ-
ent from those found in experiment. This is also reflected in
the internal energy. In fact, at 243 K and 2800 bar, using the
experimental populations for α and β, the residual internal
energy was found to be about 0.22 kcal/mol73 higher than
the one obtained when introducing the Rick-Haymet moves.29

Therefore, using the experimental values of α and β for
TIP4P/2005 significantly decreases the stability of ice III. We
should have used the values of α and β corresponding to the
model rather than the experimental ones. However, the latter
values have only been reported in 2011,29 so they were un-
known in 2005.10

We have still a second evidence. In this work we have
performed direct coexistence runs using different initial pro-
ton disordered configurations of ice III. Independent of the α

and β values in the starting configuration, we found that the
melting point was always close to 240 K. The fact that the
equilibrium temperature in direct coexistence simulations is
not too sensitive to the details of the proton disorder of the ice
III slab is interesting. It means that the ice III growing from
the melt adopts the correct proton ordering regardless of the
proton ordering of the initial slab. Thus, the system uses the
solid slab as an initial template but generates the correct pro-
ton ordering when growing. Therefore, the melting point ob-
tained from direct coexistence simulations for ice III is more
reliable than that obtained previously from free energy cal-
culations where an incorrect proton ordering was used for the
model. This represents a clear advantage of direct coexistence
simulations with respect to free energy calculations. One nei-
ther needs to know in advance the degree of partial proton or-
dering nor needs to evaluate a modified Pauling-like entropy
for a system with partial ordering.

Notice that ice III is a special case within the solid phases
of water. For the rest of ices, the internal energy and the free
energy change very little with the details of the proton dis-
order. In fact, the assumption of full proton disorder for ices
Ih, VI, and VII seems to be fully justified. For ice V at 5300
bar and 243 K the internal energy did not change so dramat-
ically when using the experimental values of proton ordering
or those obtained after introducing Rick and Haymet moves
(the energy was found to be about 0.06 kcal/mol29, 73 lower
when using the Rick and Haymet moves). This is about one
fourth of the change found for ice III. Thus, the effect is much
smaller for ice V than for ice III. Therefore, the message is
that ice III must be treated with care when computing the
phase diagram of water as pointed out by Ramirez et al.30

Direct coexistence simulations provide a robust way of by-
passing the tricky issue of the partial proton disorder.

The change in the melting point of ice III certainly affects
the appearance of the phase diagram so that it is necessary to
recalculate it. We performed Gibbs Duhem integration for the
ice Ih-liquid, ice VI-liquid, ice V-liquid, and ice III-liquid co-
existence curves (for the Gibbs Duhem runs involving ice III
we used a configuration with an internal energy located in the
center of the energy distribution shown in Fig. 2 of Ref. 29).
The Ih-liquid line meets the ice III-liquid line at the fluid-Ih-III
triple point. It is interesting to note that, from this point, one
can start a Gibbs Duhem run to compute the Ih-III coexistence

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

147.96.95.58 On: Wed, 23 Oct 2013 11:43:45



154505-5 Conde et al. J. Chem. Phys. 139, 154505 (2013)

0 50 100 150 200 250
t (ns)

-13.4

-13.2

-13

-12.8

-12.6

-12.4
U

  (
kc

al
/m

ol
)

p = 2900 bar

T = 225 K

T = 205 K

T = 220 K

T = 222 K

T = 215 K

Water - Ice II

T = 208 K

FIG. 3. Evolution of the potential energy as a function of time along NpT
runs at 2900 bar for the system ice II-liquid water using the TIP4P/2005
model.

line. Similarly the III-liquid coexistence curve intersects the
V-liquid coexistence line at the III-V-liquid triple point. From
this triple point one can proceed with Gibbs Duhem runs to
determine the III-V coexistence curve. The V-VI-liquid triple
point can be analogously located from which the V-VI coex-
istence line can be obtained. By proceeding in this way it is
possible to determine a large portion of the phase diagram in-
cluding solid-solid transitions.

The coexistence lines of liquid water with ices Ih, III, V,
and VI lie in the stable region of the phase diagram. This is not
the case of the ice II-liquid coexistence. However, some other
coexistence curves involving ice II (Ih-II, II-III, II-VI, and
II-V) do appear in the experimental phase diagram. In order
to complete the calculation of the water phase diagram from
direct coexistence simulations it is necessary to determine at
least one point of some of these solid-solid coexistence lines.
This calculation is a harsh test of the possibilities of the direct
coexistence method. A triple point involving ice II must be
computed. We have shown in previous paragraphs how can
this be done. For instance, the liquid-Ih-II triple point may
be obtained as the intersection of the liquid-Ih and liquid-II
curves. But it remains to be demonstrated that direct coexis-
tence is feasible for the calculation of the melting point of a
metastable (and proton ordered) ice. To check if this is true
we have performed direct coexistence simulations for the II-
liquid equilibrium at 2900 bar. The results of the runs for ice
II are shown in Fig. 3. Although much longer runs than for
the other ices are required (about 100 ns or more), the method
is able to provide an estimate of the melting curve of ice II,
about 215 K. Likely, the low melting temperature of ice II is
responsible for the slower dynamics of crystal growth. The
calculated melting temperature may be compared with that
from free energy calculations. This value has not yet been re-
ported but previous work74 enables one to easily obtain the lo-
cation of the liquid-Ih-II triple point. We need only to extend
the Ih-II coexistence line until it crosses the Ih-liquid water
equilibrium. Both curves intersect at about 2900 bar and 215
K. Thus, we find again an excellent agreement between the
free energy results and direct coexistence simulations.
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FIG. 4. Phase diagram for the TIP4P/2005 water model as obtained from
direct coexistence simulations (black solid lines). The red dashed lines are
the Ih-II and Ih-liquid lines as determined from free energy and Gibbs Duhem
calculations in our previous work. The blue dotted line is the melting line of
ice II obtained from Gibbs Duhem integration after determining an initial
point (circle) at 2900 bar from direct coexistence simulations.

Once the melting point of ice II at 2900 bar is known
(by two routes) one can use Gibbs Duhem integration to
calculate the II-water coexistence line. The melting point of
ice II at 1 bar is about 195 K (i.e., more than 50 degrees be-
low that of ice Ih). Thus, ice Ih is the stable solid phase of
TIP4P/2005 at room pressure. Moreover, at higher pressures,
the melting curve of ice II also appears at a temperature be-
low that of other polymorphs. Thus, the melting of ice II is
metastable at any pressure (see Fig. 4). The knowledge of the
liquid-Ih-II triple point allows one to trace the Ih-II equilib-
rium until the curve intersects the Ih-III coexistence line at
the Ih-II-III triple point. Similarly, the II-III, II-V, and II-VI
coexistence curves may be determined. The resulting phase
diagram for TIP4P/2005 water model as obtained from direct
coexistence simulations is presented in Fig. 4.
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FIG. 5. Phase diagram for the TIP4P/2005 water model as obtained in this
work (full lines) compared with that of Ref. 10 obtained from free energy cal-
culations (dashed lines). The blue circles are results from direct coexistence
simulations from this work.
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FIG. 6. Phase diagram for the TIP4P/2005 water model (top) compared with
the experimental phase diagram (bottom).

Fig. 5 shows the phase diagram of TIP4P/2005 from
this work compared to that obtained in our previous work.10

The coexistence lines not involving ice III are essentially the
same as those reported in Ref. 10. Thus, VI-liquid, V-liquid,
Ih-liquid, V-VI, II-VI, and II-V are hardly affected by the
revision. However, the range of temperatures and pressures
where ice III is stable has increased significantly. Now ice
III occupies a larger part of the phase diagram of water. This
is in line with the results of Habershon and Manolopoulos75

and Ramirez et al.30 who found a larger stability region for
ice III for another TIP4P-like model (q-TIP4P/f).15 It seems
that for TIP4P/2005 (and probably for other TIP4P models as
TIP4P,76 TIP4P-Ew,9 or TIP4P/Ice8) we underestimated the
stability of ice III which should occupy a larger portion of
the phase diagram than previously assumed. Whether this is
true also for other charge geometries (SPC/E, TIP5P) is an
issue that deserves a further study. The comparison with re-
spect to experiment is shown in Fig. 6. Although the region of
stability of ice V is underestimated and that of ice III is over-
estimated, the prediction of TIP4P/2005 is still qualitatively
correct. It is interesting to note that we have recently shown
that the introduction of nuclear quantum effects significantly
increases the stability of ice II, thus reducing that of ice III.14

It seems that to understand the small range of existence of
ice III on the experimental phase diagram it is important to
deal not only with the partial proton disorder but also with the
effect of nuclear quantum effects.

IV. CONCLUSIONS

In this work we have shown that direct coexistence sim-
ulations can be applied successfully to determine the melting
point of the high pressure polymorphs of water. Since the in-
tersection of the melting curves of two different polymorphs
provides a triple point, solid-solid lines can also be computed
with the method in combination with Gibbs-Duhem integra-
tion. Thus, direct coexistence allows one to determine the
whole phase diagram of a substance. The method has been ap-

plied here to ices II, V, and VI obtaining good agreement with
the results obtained from free energy calculations. In previ-
ous work, it has been shown that the technique also works for
ices Ih and VII so that both methodologies are in agreement.
However, it is found that the results for ice III differ. An anal-
ysis of the results seems to indicate that the effect of the par-
tial proton disorder is significant for this polymorph. In fact,
Monte Carlo simulations of TIP4P/2005 with special moves
to better sample the hydrogen bond network showed that the
equilibrium values of α and β are different from those found
experimentally. Since we used the experimental parameters
defining the proton ordering, our previous free energy calcu-
lations were not correct for ice III. On the other hand, we have
found that, when using direct coexistence simulations, the re-
sulting melting temperature is not significantly affected by the
particular proton ordered introduced on the solid slab of the
initial configuration. It seems that the initial slab is used as a
template for the growth of ice.

We have recomputed the phase diagram of the
TIP4P/2005 using the correct melting temperature of ice III.
The range of stability of ice III increases significantly with re-
spect to our previous work. However, the experimental phase
diagram of water is still described qualitatively. The impact
on our recent work14 on TIP4PQ/200516 will be much smaller
(ice III will occupy a slightly larger portion on the phase dia-
gram) since we used for TIP4PQ/2005 a configuration with an
internal energy located in the center of the energy distribution
shown in Fig. 2 of Ref. 29 (rather than a configuration with the
experimental values of α and β), and the Pauling entropy.14

The results presented here also present other interest-
ing possibilities for studies of fluid-solid equilibrium. For
instance, determining the fluid-solid interfacial free energy
for high pressure polymorphs would be an interesting topic
to consider.77, 78 Rozmanov and Kusalik79 and Weiss et al.45

have determined that the growth rate of ice Ih is maximum at
temperatures about 15 K below the melting point. The results
obtained in this work illustrate that the growth rate can also be
determined for high pressure polymorphs of water. Whether
such maximum in the growth rate also exists for other poly-
morphs is an interesting question. Finally, let us mention that
the growth rate of ice Ih is quite anisotropic and its magni-
tude depends on the plane of the solid exposed to the fluid
phase.46, 80 For ice Ih the fastest growth is obtained when ex-
posing the prismatic secondary plane. For direct coexistence
simulations it is convenient to choose a plane for the solid-
liquid interface for which the dynamics is fast since the co-
existence temperature does not depend on the plane, and one
would like to have fast relaxation (growth/melt) of the inter-
face. The same is likely to be true for other polymorphs. We
have not studied here the anisotropy of ice growth (a topic of
interest for future studies81) but we have shown that there is
at least a plane for the selected ices for which the ice growth
proceeds at a reasonable speed. As to whether the finding of
this work can be extended to other substances remains to be
tested. The methodology will work as far as the dynamics of
the fluid/solid interface (melt/growth) occurs on a time scale
affordable by current computers (i.e., below the microsec-
ond regime). If this is not the case the technique in princi-
ple should work, but the computer time may exceed current
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capacities. Free energy calculations are not affected by these
kinetic factors. However, it should be pointed out that, al-
though the Einstein crystal methodology can be easily imple-
mented for systems with complete order or complete disor-
der, it is not yet entirely clear how to implement it for systems
where the disorder is partial. Ice III (and, to a less extent, ice
V) are two examples of solids where there is partial proton
disorder. The fcc solid phase of the restricted primitive model
which shows partial substitutional ordering of the particles is
another example.82, 83 It would be of interest in the future to
establish a rigorous procedure to evaluate the free energy of
these type of solids.

Note added in proof. After this study was completed we
were made aware of two interesting papers relevant to the
content of this paper. Wang et al.84 have shown that direct
coexistence simulations of the ice-water interface can also be
successfully applied to calculate the phase diagram for polar-
izable models of water. On the other hand, Ramirez et al.85

have suggested that other ices not considered in this work (as
for instance ices IX and XII) could become more stable at
certain thermodynamic conditions than the polymorphs con-
sidered here.
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