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The interfacial free energy between a crystal and a fluid, γ cf, is a highly relevant parameter in phe-
nomena such as wetting or crystal nucleation and growth. Due to the difficulty of measuring γ cf
experimentally, computer simulations are often used to study the crystal-fluid interface. Here, we
present a novel simulation methodology for the calculation of γ cf. The methodology consists in us-
ing a mold composed of potential energy wells to induce the formation of a crystal slab in the fluid
at coexistence conditions. This induction is done along a reversible pathway along which the free
energy difference between the initial and the final states is obtained by means of thermodynamic
integration. The structure of the mold is given by that of the crystal lattice planes, which allows to
easily obtain the free energy for different crystal orientations. The method is validated by calculating
γ cf for previously studied systems, namely, the hard spheres and the Lennard-Jones systems. Our
results for the latter show that the method is accurate enough to deal with the anisotropy of γ cf with
respect to the crystal orientation. We also calculate γ cf for a recently proposed continuous version
of the hard sphere potential and obtain the same γ cf as for the pure hard sphere system. The method
can be implemented both in Monte Carlo and Molecular Dynamics. In fact, we show that it can be
easily used in combination with the popular Molecular Dynamics package GROMACS. © 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4896621]

I. INTRODUCTION

A fluid and a crystal at coexistence are divided by a flat
interface. The work needed to create such interface per unit
area is known as the interfacial free energy. The crystal-fluid
interfacial free energy, γ cf, is a highly relevant quantity due
to its central role in important phenomena such as wetting or
crystal nucleation and growth.1–3 Despite its importance, γ cf
is still unknown for many substances given that there is not
an easy and reliable way of measuring γ cf experimentally.4

This difficulty contrasts with the determination of the fluid-
fluid interfacial free energy, a task for which there are well es-
tablished experimental and computational techniques.5, 6 Un-
fortunately, these techniques are not easy to implement when
one of the phases involved in the coexistence has an infinitely
large viscosity, as the crystal phase has. Moreover, γ cf is
anisotropic and depends on the orientation of the crystal with
respect to the fluid. The situation for water, arguably the most
important substance on earth, is a good example of the diffi-
culty of measuring γ cf: while it is well known that the interfa-
cial tension of liquid water at ambient conditions is 72 mN/m,
the reported values for the ice-water interfacial free energy at
ambient pressure range from to 25 to 35 mN/m.7

Computer simulations can be used to assess experimen-
tal measurements of γ cf and to improve our understanding
on the crystal-fluid interface at a molecular scale. An impor-
tant effort has been devoted to develop simulation method-
ologies to calculate the crystal-fluid interfacial free energy.
To the best of our knowledge, these are the existing compu-
tational methods for the calculation of the crystal-fluid inter-
facial free energy: the cleaving method, the capillary fluctua-

tion method, the metadynamics method, the tethered Monte
Carlo (MC) method, and the Classical Nucleation Theory
method. The cleaving method, proposed by Broughton and
Gilmer in 1986,8 was the first method devised to directly com-
pute γ cf in a simulation. In this scheme, the reversible work
needed to cleave and re-combine the crystal and the fluid
is calculated by thermodynamic integration. This method is
still in use and an improved version of it has been recently
employed to calculate γ cf for several water models,9, 10 hard
particles,11, 12 Lennard-Jones (LJ),13 and dipolar fluids.14 The
cleaving method has recently been further improved by sort-
ing out some hysteresis issues.15 In the tethered Monte Carlo
scheme,16 a complex order parameter is used to allow for a
continuous transition between the fluid and the solid. This
method has been applied to the hard sphere (HS) system.16

The Metadynamics method17 uses the rare event simulation
technique Metadynamics18 to obtain the work of formation
of the interface from a fluid at coexistence. This methodol-
ogy was originally applied to a Lennard-Jones system17 and
has also been used to assess experimental measurements of
γ cf for Pb.19 The crystal-fluid interfacial free energy can also
be indirectly estimated by combining simulation measure-
ments of the size of critical nuclei with classical nucleation
theory.20 This approach has been used, e.g., to estimate γ cf
for chlathrates21 or water.22

All the aforementioned methods have proved successful
in the calculation of γ cf for a number of systems. However,
not all methods are equally good in terms of accuracy, sim-
plicity, and computational cost. The anisotropy of γ cf for dif-
ferent crystal orientations is easy to study with the capillary
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fluctuation and with the cleaving methods, whereas dealing
with the orientation of the crystal with respect to the fluid
is not so trivial for the other methods. On the other hand,
while the Metadynamics and the tethered Monte Carlo meth-
ods converge well for relatively small system sizes, the cap-
illary fluctuation and the classical nucleation methods require
large system sizes. From a practical point of view, there are
methods simple to implement, like that based on classical nu-
cleation theory, or more cumbersome ones like the cleaving
method that requires following a multi-step thermodynamic
route. Moreover, all methods but the cleaving require a local-
bond order parameter in order to either detect the interface
or induce its formation. Such order parameter, used to distin-
guish liquid-like from solid-like molecules, may be difficult
to conceive if the structure of the crystal lattice is complex.
In this work, we present a simple method for the direct cal-
culation of γ cf that gives accurate results even for relatively
small system sizes. The calculation of γ cf for different crystal
orientations is trivial with this methodology. The method can
be easily implemented in a bespoke Monte Carlo (MC) code
or even in open access Molecular Dynamics (MD) packages
as GROMACS.23 In brief, we use a mold of potential energy
wells placed at the positions of the atoms in a lattice plane to
induce the formation of a crystal slab in the fluid at coexis-
tence conditions. The work of formation of the crystal slab,
obtained via thermodynamic integration, is directly related to
the interfacial free energy.

We test the method by calculating the interfacial free
energy of HS and LJ (for several orientations of the crys-
tal) and by comparing the results with values published in
the literature.11, 13, 17, 24, 25 Moreover, we compute γ cf for the
pseudo hard-sphere potential recently proposed in Ref. 26.

II. THE MOLD INTEGRATION METHOD

A. Description of the method

In this section, we describe a new methodology to com-
pute the interfacial free energy between a crystal and a fluid,
γ cf, by means of computer simulations. The basic idea is to
reversibly induce the formation of a thin crystalline slab in
the fluid (see Fig. 1 for snapshots of a fluid and a fluid with a
crystal slab). The work needed to form such crystalline slab,
�Gs, is related to γ cf. Because the formation of the crystal
slab is performed at coexistence conditions, the fluid and the
crystal have the same chemical potential. Then, �Gs is just
the interfacial free energy times the area of the interface times
2. The factor of 2 is due to the fact that when the crystal slab
is formed two crystal-fluid interfaces are created (see Fig. 1,
bottom). Thus, γ cf can be simply obtained as

γcf = �Gs

2A
. (1)

In order to induce the formation of the crystal slab, we
use a mold composed of potential energy wells. The loca-
tion of the wells is given by that of the particles in the lat-
tice plane whose γ cf is calculated. In Fig. 1, we show a snap-
shot of the mold used for the calculation of γ cf for the 100
plane of hard spheres (red spheres). Each potential well must

FIG. 1. Top: Snapshot of a hard-sphere fluid at coexistence (green particles).
Bottom: Snapshot of a fluid with a thin crystal slab at coexistence conditions
(a projection on the x − z plane is shown). The diameter of green particles
has been reduced to 1/4 of its original size. The mold that induces the forma-
tion of the crystal slab is conformed by a set of potential energy wells (red
spheres) whose positions are given by the lattice sites of the selected crystal
plane at coexistence conditions. The interaction between the mold and the
hard-spheres is switched off in the top configuration and on in the bottom
one.

be small enough so that it can only accommodate one parti-
cle. When the mold is switched off, particles freely diffuse
in the fluid (Fig. 1, top). On the contrary, when the mold is
switched on, every well contains a particle and, if the wells
are sufficiently narrow, a crystal slab is formed at coexis-
tence conditions (Fig. 1, bottom). Typically, the mold con-
sists of 1 or 2 crystalline planes. In Fig. 1, we show a mold
composed of a single plane. When filled with particles, the
mold induces the formation of crystalline planes in either side
(Fig. 1, bottom) thus giving rise to two crystal-fluid interfaces.
By gradually switching the interaction between the mold and
the particles the work of formation of the crystal slab at co-
existence conditions can be obtained by means of thermody-
namic integration.

To perform thermodynamic integration, we define the
following potential energy:

U (λ) = Upp(r1, . . . , rN) + λUpm(r1, . . . , rN; rw1
, . . . , rwNw

),

(2)
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where N is the number of particles and Nw the number of
wells; r1, . . . , rN denotes the positions of all particles and
rw1

, . . . , rwNw

the position of the wells (which are kept fixed

during the simulation); Upp is the potential energy given by
the interaction between all particles and Upm is the potential
energy given by the interaction between the mold and the par-
ticles. λ is a parameter that varies from 0 to 1 connecting the
initial state (mold switched off, Fig. 1, top) with the final state
(mold switched on, Fig. 1, bottom). The interaction between
the mold and the particles, Upm, is pair additive

Upm(r1, . . . , rN; rw1
, . . . , rwNw

) =
i=N∑
i=1

w
j
=N

w∑
w

j
=1

upw(riw
j
),

(3)

where upw(riw
j
) is a square-well interaction between the ith

particle and the jth well that depends on the distance between
their centers, riw

j

upw(riw
j
) =

{−ε, if riw
j
≤ rw

0, if riw
j
> rw

, (4)

where rw and ε are the radius and the depth of the wells, re-
spectively. These are the only adjustable parameters of the
method. Below we explain how to deal with the tuning of
these parameters. In any case, rw cannot be larger than the
particle radius to avoid multiple filling of a single well.

By performing thermodynamic integration in λ,27 one
can obtain the free energy difference between the fluid and
the fluid plus the filled mold, �Gm

�Gm =
∫ λ=1

λ=0
dλ

〈
∂U (λ)

∂λ

〉
λ,N,p

x
,T

=
∫ λ=1

λ=0
dλ〈Upm〉λ,N,p

x
,T , (5)

where px and T are the coexistence pressure and tempera-
ture, respectively. The mold coordinates and the edges of the
simulation box parallel to the mold are kept fixed throughout
the simulation. For that purpose, the pressure is exerted only
along the axis perpendicular to the mold, the x axis in our case.
Thus, the x edge is allowed to fluctuate to keep the pressure
constant, while the y and z edges do not change. The mold co-
ordinates are not rescaled when a volume move is performed.
The integrand, 〈Uw〉λ,N,p

x
,T , is evaluated in NpxT simulations

for various values of λ and then integrated numerically to get
�Gm. �Gm is the free energy change due to the appearance
of the crystal slab plus that due to the interaction between the
particles and the mold. The latter is simply given by −Nwε

(recall that the well-particle interaction is just a square well
of depth ε). To calculate the interfacial free energy, we are
just interested in the free energy change due to the generation
of the crystal slab

�Gs = �Gm + Nwε. (6)

This equation, combined with Eq. (1), allows in principle for
the calculation of γ cf in a straightforward manner.

FIG. 2. Sketch of the free energy profile versus the crystallinity degree for
various potential well radius, r

w
, at coexistence conditions. The black curve

corresponds to the free energy profile in the absence of any mold. The free
energy is flat in between both phases because the emerging crystal slab has
the same chemical potential as the fluid and it grows with constant crystal-
fluid interfacial area.

There is one open issue, though: the value of �Gs, and
hence that of γ cf, depends on rw. Therefore, one has to find
a priori which value of rw gives the right value for γ cf. We
shall refer to this radius as ro

w (optimal well radius). In order
to choose ro

w, it is important to understand the way in which
the mold affects the free energy landscape. In Fig. 2, we show
a sketch of the free energy profile that separates the fluid from
the crystal as a function of the crystallinity degree (XD). The
latter can be measured, for instance, with the aid of a local
bond order parameter that quantifies the number of crystal-
like particles in the system.28, 29 The black curve in Fig. 2
corresponds to the free energy profile in the absence of any
mold. The liquid and the crystal have the same free energy
given that the simulations are carried out at coexistence con-
ditions. In between both phases, there is a free energy plateau
corresponding to the presence of a crystal slab in the fluid
at coexistence conditions. Given that when a crystal slab is
present there are two interfaces of the same area A (see Fig. 1,
bottom), the free energy difference between the plateau and
the minima is 2Aγ cf. For rw > ro

w, the free energy profile at
low crystallinity degrees changes to that sketched by the blue
curve. In this case, the free energy gap between the plateau
and the fluid’s minimum is reduced by the mold, but there is
still a free energy cost to form a crystal slab. Therefore, a fluid
where a mold with rw > ro

w is switched on can remain stable
for a long time before any crystal slab arises. If the minimum
given by the blue curve is shallow (values of rw larger than ro

w

but close to ro
w), a fluid slab can form after some induction pe-

riod due to thermal fluctuations. For rw < ro
w, the free energy

profile changes to that schematically shown by the red curve
in Fig. 2. Accordingly, as soon as the mold is switched on a
crystal slab will quickly develop in order to minimize the free
energy. Therefore, the evolution of XD depends on whether
rw is larger or smaller than ro

w. Exploiting this difference ro
w

can be enclosed within a certain range by running simulations
for different values of rw and monitoring the behaviour of XD.

Once ro
w is identified, one could in principle perform ther-

modynamic integration for rw = ro
w to obtain γ cf. However,

in a flat landscape as that given by rw = ro
w (green curve in

Fig. 2), XD can freely grow and may eventually fall into
the crystal’s basin. Therefore, it is not advisable to perform
thermodynamic integration for rw = ro

w. Instead, it is safe to
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integrate to states with rw > ro
w (blue profile in Fig. 2) for

which there is a well defined minimum in the free energy pro-
file. Although these integrations yield underestimates of γ cf,
they provide a function γcf (rw) that can be extrapolated to ro

w

in order to obtain the right value of γ cf.
In summary, the method, which we call mold integration

method, consists of the following steps: (i) Preparation: The
mold coordinates are obtained and an initial configuration of
the fluid at coexistence conditions is prepared. The simulation
box dimensions must be compatible with those of the mold.
(ii) Choice of ro

w: The mold is switched on and several simu-
lations are run starting from the fluid configuration previously
prepared. Simulations are repeated for different values of rw.
By monitoring XD a range within which ro

w is enclosed is
identified. (iii) Calculation of γcf (rw): Thermodynamic inte-
gration is performed by gradually switching the mold on. By
repeating this for several values of rw > ro

w a γcf (rw) function
is obtained. (iv) The extrapolation of γcf (rw) to ro

w provides
the definite value of γ cf.

Being the method above described completely novel, our
approach shares some features with existing methodologies.
For example, in the Metadynamics method17 the work needed
to create a crystal slab in a fluid at coexistence is also cal-
culated, although in a different way (via Metadynamics as
opposed to thermodynamic integration) and with the aid of
local-bond order parameters that may be difficult to find for
complex crystal structures. This difficulty is bypassed in our
method with the use of an ad hoc mold. In some recent imple-
mentations of the cleaving method, a cleaving potential based
on the location of the particles in the crystal plane is used,9

in resemblance to our mold of potential energy wells. How-
ever, whereas in our method the mold is used as a platform
for the growth of a crystal slab in the fluid, in the cleaving
method the cleaving potential is used to cleave both phases in
order to subsequently recombine them. Therefore, our route
to a system at coexistence is more direct than that proposed
in the cleaving framework. The use of potential wells is not
exclusive of methods for the calculation of γ cf. Potential
wells have also been used in the calculation of the free en-
ergy of amorphous and crystalline solids via thermodynamic
integration.30

B. Implementation

The implementation of the mold integration technique in
MC is rather straightforward. A routine to evaluate the inter-
action between the particles and the mold, Upm, via Eq. (3)
has to be incorporated to a standard NpxT MC code. Upm is
evaluated every time a move is attempted and the change of
λUpm associated to the move is added to the energy change
according to which the trial move is accepted or rejected.
To perform thermodynamic integration via Eq. (5), the av-
erage value of Upm must be evaluated in the course of the
simulation.

It is also possible to implement the mold integration tech-
nique in MD. We briefly discuss here how to do it for the pop-
ular MD package GROMACS.23 The trick is to consider the
wells as a special kind of atom. The interaction between the

0 0.1 0.2 0.3 0.4 0.5
r
ij
 /σ

-1

-0.8

-0.6

-0.4

-0.2

0

u w
p / 

ε

FIG. 3. Well-particle interaction potential for r
w

= 0.32σ . We use a square-
well potential for the well-particle interaction in MC simulations (red curve).
In order to perform MD simulations, we approximate the square-well inter-
action by the continuous potential given by Eq. (7) (black curve). In this
particular example, α in Eq. (7) is 0.005σ .

wells and the particles, Eq. (4), can be approximated by the
following equation:

upw(riw
j
) = −1

2
ε

[
1 − tanh

(
riw

j
− rw

α

)]
, (7)

where riw
j
, rw, and ε have the same meaning as in Eq. (4) and

α controls the steepness of the well’s walls. This potential
is continuous and differentiable and can therefore be used in
MD. In Fig. 3, we compare uwp(rriw

j
) given by Eq. (4) (black)

with that given by Eq. (7) (red) for α = 0.005σ . It is evident
that a square-well interaction is well approximated by Eq. (7).
In GROMACS, it is possible to define the well-particle inter-
action given by Eq. (7) in a tabular form, so there is no need
to modify the source code to program the interaction between
the wells and the particles. The interaction between different
wells has also to be defined in GROMACS in a tabular form.
Such interaction is simply 0. In order to fix the position of the
wells, we use the “frozen” GROMACS option. To perform
thermodynamic integration via Eq. (5), we need to be able to
evaluate 〈Upm〉 for a given value of λ ∈ [0 : 1]. To do that we
run the simulation with a well-particle interaction given by
λuwp. Since GROMACS provides average values of the po-
tential energy for any kind of pair interaction, one can obtain
λ〈Upm〉 as the average particle-well potential energy, and, in
turn, 〈Upm〉. Finally, GROMACS also allows that the pressure
is exerted only in one specific direction of the simulation box.
Therefore, GROMACS includes all required tools for an easy
implementation of the mold integration method in MD.

III. RESULTS AND DISCUSSION

A. A worked example: γ cf of hard spheres

1. Preparation

The first step is obtaining the mold coordinates and a fluid
configuration at coexistence conditions. The dimensions of
the simulation box must be consistent with those of the mold.
The mold coordinates are obtained by replicating the unit cell
and taking a plane of the resulting lattice. In our case, we
replicate 1 × 7 × 7 times the fcc unit cell and take a plane
of atoms parallel to the y − z plane. The resulting coordinates
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TABLE I. Summary of the system size used for the calculation of γ cf for the
HS and PHS models. ST stands for simulation type, hkl for the Miller indices
of the crystal plane whose γ cf is calculated, N

w
for number of wells, N for

number of particles, and NL for number of layers (in the mold). The optimal
well radius, ro

w , and the estimated value of γ cf are also reported in the table.

System ST hkl (Ly × Lz)/(σ
2) N

w
NL N ro

w/σ γ
cf

/(
k
B

T

σ 2 )

HS MC 100 10.978×10.978 98 1 1960 0.315 0.586 (8)
PHS MD 100 12.531×12.531 256 2 5632 0.375 0.588 (8)

are shown by the red spheres in Fig. 1, top. Under periodic
boundary conditions the mold is just a 100 plane of a fcc lat-
tice. A configuration of the fluid at coexistence conditions31

(pressure = 11.54 kBT/σ 3) is then prepared in a box whose
y and z edges have the same length as the y and z sides of
the mold. To achieve this we equilibrate the fluid in an NpT
simulation where pressure is exerted only along the x axis (we
refer to this as NpxT ensemble). In this way, the length of the x
axis, Lx, is allowed to fluctuate, while Ly and Lz are kept fixed
to the desired value (7 times the unit cell side in this particu-
lar example). The resulting simulation box, that contains 1960
particles, is shown in Fig. 1, top, alongside the corresponding
mold. We summarize the system size used for the study of the
HS system in the top row of Table I.

2. Choice of ro
w

Once the fluid is equilibrated we proceed to run NpxT
simulations starting from a fluid configuration. The mold is
switched on at the beginning of the simulations. If the inter-
action between the mold and the particles is sufficiently large
all wells are quickly filled when the mold is switched on. We
find this to be the case when ε in Eq. (4) is larger than ∼7kBT.
We monitor XD in the course of our simulations. As a mea-
sure of XD we use the following parameter, ξ :

ξ = ρ − ρf

ρs − ρf

, (8)

where ρ is the actual density of the system and ρ f and ρs are
the coexistence densities of the fluid and the solid, respec-
tively. Thus, ξ fluctuates around 0 when the whole system is
fluid, and around 1 when the whole system is crystalline. As
a crystal slab grows in the fluid ξ should take intermediate
values between the typical ones for the fluid and the crystal.
In Appendix A, we show that this simple way of quantify-
ing XD is totally equivalent to a more sophisticated one based
in counting the number of particles in the largest cluster of
solid-like particles.

In Fig. 4, we show the evolution of ξ for several values
of rw. For a given value of rw, we run 10 trajectories starting
from the same initial configuration in order to have a statis-
tical picture of the behaviour of the system upon switching
the mold on. The trajectories differ in the seed for the ran-
dom number generator. Each NpxT MC simulation consists
of a million sweeps. A sweep, in turn, consists of a displace-
ment attempt per particle plus a volume move. The shifts for
volume and displacement moves are tuned so that an average
acceptance of 30%–40% is attained.

Three different types of behaviour can be seen when the
trajectories are inspected for each rw: (a) Behaviour consis-
tent with the presence of a deep minimum in the free energy-
XD profile: in plots (e) and (f) of Fig. 4, XD stays low and
fluctuates around a certain equilibrium value for all trajecto-
ries. This is consistent with the situation sketched by the blue
curve in Fig. 2: rw is larger than ro

w and XD fluctuates around
the minimum given by the blue curve. (b) Behaviour not con-
sistent with the presence of a minimum the free energy-XD
profile: in plots (a) and (b) of Fig. 4, XD readily grows as the
mold is switched on and each trajectory evolves differently
from the others. This corresponds to the situation illustrated
by the red curve in Fig. 2: rw is smaller than ro

w and, due
to the presence of the mold, there is no free energy penalty
for the growth of XD. (c) Behaviour consistent with the pres-
ence of a shallow minimum in the free energy-XD profile: In
plots (c) and (d) of Fig. 4, XD fluctuates around an equilib-
rium value for some trajectories although, stochastically, there
are trajectories that visit high values of XD. For instance, for
rw = 0.33σ the trajectory given by the orange curve stays
at low XD until it jumps around 7 × 105 MC sweeps. This
phenomenology suggests that there is a minimum in the free
energy profile as indicated in Fig. 2 by the blue curve. How-
ever, the gap between the minimum and the horizontal plateau
is not high and can be stochastically overcome by thermal
activation.

Since the optimal radius, ro
w, must be in between the

highest rw that shows no hint of a minimum (rw = 0.31σ )
and the lowest that does show it (rw = 0.32σ ) we take
ro
w = 0.315 ± 0.005σ .

In summary, the recipe to find ro
w is to look for a value of

rw that is comprised in between the largest one that shows no
indication of the presence of a minimum in the free energy-
XD profile and the smallest one that does show it. A given
rw shows no indication of a minimum if XD can grow and
evolves in a different way for different trajectories. By con-
trast, a given rw shows indication of a minimum if some tra-
jectories show that XD fluctuates around a low constant value.
In Appendix B, we show how the free energy profile along the
XD coordinate can be estimated for each well radius using the
information contained in Fig. 4. This is quite helpful to iden-
tify which radii generate a free energy profile with a minimum
and which ones do not.

3. Calculation of γcf (rw )

Once we get a value for ro
w we proceed to calculate

γcf (rw) for rw > ro
w by means of thermodynamic integration

(Eq. (5)). Thermodynamic integration is performed by gradu-
ally switching the mold on in such way that all wells are filled
with particles when the upper integration limit is reached (i.e.,
when λ = 1 in Eq. (5)). In Fig. 5(a), we plot the average num-
ber of filled wells versus the parameter λ ∈ [0 : 1] that con-
trols the strength of the interaction between the particles and
the mold via Eq. (2). Each point in Fig. 5 is obtained in a NpxT
MC simulation consisting of 3.3 × 105 equilibration sweeps
and 6.7 × 105 production sweeps. The plot in Fig. 5 corre-
sponds to a well-particle interaction parameter ε = 7.5kBT
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FIG. 4. Crystallinity degree, XD, as measured by the parameter ξ (see main text) as a function of simulation time for several values of the radius of the potential
wells, r

w
/σ , as indicated inside each plot. The well depth is in all cases 7.5kBT. For a given r

w
, 10 trajectories differing in the seed for the random number

generator are started from a fluid configuration. The mold is switched on at the beginning of the simulation. The plot corresponds to the HS potential and the
100 crystal orientation.

(Eq. (4)) and to a rw = 0.34σ . The value of ε must guaran-
tee that every well contains a particle for λ = 1. Provided
that this condition is fulfilled, ε can take any value. How-
ever, it is convenient that ε is not too large so that the in-
tegrand varies smoothly as λ increases. In the particular case
study we present here, the mold is conformed by 98 wells (see
Fig. 1, top) As shown in Fig. 5(a) all 98 wells are filled when λ

approaches 1. On average, about 17 wells are occupied when
the mold is switched off. The curve that is actually integrated
in Eq. (5) is shown in Fig. 5(b). The integrand, Upm, is sim-
ply given by the product between the average number of filled
wells and −ε. The integral of the curve shown in Fig. 5(b) is
�Gm = −600.123kBT, which gives the free energy difference
between the system with the mold on and the system with the
mold off. To simply get the free energy difference between the
fluid and the fluid having the structure induced by the mold,
�Gs, we need to subtract to �Gm the interaction between

the mold and the fluid: �Gs = �Gm + εNw = −600.123
+ 7.5 × 98 = 134.88kBT . �Gs divided by two times the
area LyLz gives an (under)estimate of the interfacial free en-
ergy (Eq. (1)): γcf (rw = 0.34σ ) = 0.560kBT /σ 2. In this step,
γ cf is evaluated for some other values of rw > ro

w in order to
extrapolate γcf (rw) to ro

w in the following step.
As previously discussed, in order for thermodynamic in-

tegration to be reversible we must avoid integrating at val-
ues of rw that entail any risk that the system crystallizes.
Clearly, Fig. 4 shows that such risk is negligible for rw = 0.34
and 0.35σ , since XD fluctuates around a low, equilibrium
value for all trajectories. The situation is not so clear for rw

= 0.33σ , where the trajectory given by the orange curve
appears to have jumped to the free energy plateau from
where the system could evolve towards the crystalline state.
Therefore, by performing thermodynamic integration at rw =
0.33σ there is a small chance that the system crystallizes in
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FIG. 5. (a) Average number of filled wells as a function of the parameter λ

that controls the strength of the interaction between the mold and the parti-
cles. (b) The integrand of Eq. (5) is plotted against λ. Both plots correspond
to the 100 face of HS and to a 98-well mold with r

w
= 0.34σ and ε = 7.5kBT.

the typical simulation time required to perform thermody-
namic integration. Hence, according to the study shown in
Fig. 4, it is safe to perform thermodynamic integration only
for rw ≥ 0.34σ . However, one can also try doing thermody-
namic integration for rw’s closer to ro

w and validate the inte-
gration a posteriori by checking that the system did not crys-
tallize for any integration point. One of these checks is shown
in Fig. 6, where we plot XD for the runs used to compute each
integration point in Fig. 5. XD stays low for all integration
points, which guarantees that the integration is reversible. It
is important to do this check after performing thermodynamic
integration, specially for rw’s close to ro

w.

0 2e+05 4e+05 6e+05 8e+05 1e+06
MC sweeps
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FIG. 6. Crystallinity degree as measured by the parameter ξ for the simula-
tions corresponding to each integration point in Fig. 5.
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FIG. 7. Solid symbols: interfacial free energy versus the radius of the poten-
tial wells for the 100 face of HS. The red dashed line is a linear fit to our
data. The value of the fit at r

w
= ro

w = 0.315σ gives our estimate for the in-
terfacial free energy γ cf = 0.586kBT/σ 2, indicated by the open symbol. The
horizontal dashed lines indicate the value of γ cf given in Ref. 11.

4. Extrapolation of γcf (rw )

Above we discuss in detail the calculation of γcf (rw) for
rw = 0.34σ . The same calculation has to be repeated for other
values of rw in order to get a function γcf (rw) that can be ex-
trapolated to the radius previously identified as the optimal
one: ro

w = 0.315σ . In Fig. 7, we show γcf (rw) for the HS sys-
tem. The dependency of γ cf on rw looks rather linear, which
allows to easily extrapolate γcf (rw) to ro

w. The extrapolation
is given by the open symbol with the error bar in Fig. 7. Thus,
our estimated value for γ cf for the 100 plane of HS is γ cf

= 0.586(8)kBT/σ 2. The main error source in our calculation
comes from the uncertainty in determining ro

w. The uncer-
tainty in the thermodynamic integration also contributes, al-
though to a lesser extent, to our final error bar. Our value is
in very good agreement with the most recent estimate11 of γ cf

= 0.582(2)kBT/σ 2 (horizontal dashed lines in Fig. 7), obtained
via the cleaving method.8 Our value is also in agreement with
the latest estimate of γ cf for the 100 plane of HS from capil-
lary wave fluctuations:24 0.57(2)kT/σ 2.

This excellent result proves the ability of our mold in-
tegration method to evaluate the crystal-fluid interfacial free
energy. The method is simple conceptually and easy to im-
plement. With a 10 processors machine and our bespoke MC
algorithm the calculation of the crystal-fluid interfacial free
energy for the 100 plane of HS took us about two days. To
further validate the methodology in Sec. III B, we show re-
sults for the LJ system, for which we compute the interfacial
free energy not only for the 100 plane but also for the 111
plane.

B. γ cf for the LJ system

In this section, we report the calculation of γ cf for the LJ
model as modified by Broughton and Gilmer.32 We perform
the calculation at the triple point of the model, which was
determined in Ref. 33 to be at T = 0.617ε/kB, correspond-
ing to a pressure p = −0.02ε/σ 3 (ε and σ are the interaction
parameters of the LJ system32). At these thermodynamic con-
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FIG. 8. Molds used for the calculation of γ cf for the 100 (left) and the 111
(right) crystal orientations of the LJ system. Note the more compact packing
of wells in the 111 mold.

ditions, the density of the fluid is 0.828σ−3 and that of the
crystal 0.945σ−3.13

To illustrate the suitability of our methodology to deal
with the anisotropy of the crystal-fluid interfacial free energy,
we calculate γ cf for two different crystal orientations. The ori-
entation of the crystal with respect to the fluid is indicated by
the Miller indices of the plane parallel to the interface. In this
work, we calculate γ cf for the 100 and the 111 orientations.
Obtaining γ cf for a given crystal orientation with the mold in-
tegration method just requires using a mold coming from the
lattice plane that defines such orientation. In Fig. 8, we show
the molds used for the calculation of the 100 (left) and the 111
(right) interfacial free energies.

In Sec. III A, where we describe the calculation of γ cf for
the HS system, we use a single layer mold. However, the mold
can be composed of more than a single layer. We prove in
this section that using molds composed of two layers (bilayer
mold) one obtains results which are consistent with those ob-
tained by using a single layer (monolayer mold). Moreover,
we also compare in this section MC with MD. In Sec. II B
above, we describe the way the mold integration method can
be easily implemented in the popular MD simulation package
GROMACS, which we use to calculate γ cf for the LJ system.

The first step is to prepare the mold and a fluid config-
uration at equilibrium in a simulation box compatible with
the mold. We give details on how to do this for the HS sys-
tem in Sec. III A. In Table II, we list the simulations used for
the calculation of γ cf for the 100 and 111 crystal orientations
for the LJ system. We indicate the area of the simulation box
side parallel to the mold (Ly × Lz), the number of wells that
conform the mold, the number of layers of the mold, and the
number of particles of the system.

Once the initial setup is ready we run a number of trajec-
tories (about 10) for different values of rw in order to find ro

w.
As previously described for the HS system, ro

w can be found
by looking at the behaviour of XD as a function of the simula-
tion time for different rw’s. The values of ro

w thus obtained are
shown in Table II. It is interesting to realize that ro

w changes
from one crystal orientation to another. ro

w is always smaller
for the 111 plane. This shows that it is necessary to adjust
the value of ro

w for every crystal orientation separately. We
also show in Table II that ro

w also depends on the number of
layers that conform the mold. Monolayer molds need smaller
values of ro

w to induce the formation of a crystal slab than bi-
layer ones. The work required to fill a well increases as its
radius decreases since the smaller the well’s volume the more

TABLE II. Summary of the size of the systems used for the calculation of
γ cf for the LJ system. The meaning of ST, hkl, N

w
, NL, and N is the same as

in Table I. For comparison, in the bottom frame of the table we give values
for γ cf obtained in previous works, alongside the number of particles used
for their calculation.

ST hkl (Ly × Lz)/(σ
2) N

w
NL N ro

w/σ γ
cf

/( ε

σ 2 )

MC 100 11.323×11.323 98 1 1960 0.305 0.372(8)
MD 100 11.323×11.323 98 1 1960 0.315 0.372(8)
MD 100 14.543×14.543 324 2 6480 0.385 0.373(8)
MC 111 13.726×9.906 120 1 2160 0.285 0.350(8)
MD 111 13.726×9.906 120 1 2160 0.295 0.354(8)
MD 111 13.726×9.906 240 2 2160 0.385 0.348(8)

100 12 158 0.371(3)13

100 38 740 0.369(8)34

100 2352 0.370(2)17

100 1790 0.34(2)8

111 8916 0.347(3)13

111 38 740 0.355(8)34

111 1674 0.35(2)8

unfavourable it becomes confining a particle inside. There-
fore, one has to supply more free energy per well to a mono-
layer mold in order to get the same free energy per unit area
as in a bilayer mold. This seems reasonable since a bilayer
mold has twice as many wells per unit area. Finally, from our
analysis it also turns out that MD ro

ws are slightly larger than
MC ones (when compared for the same crystal orientation and
the same number of layers in the mold). This may be due to
the fact that, although the continuous potential given by Eq.
(7) closely follows a square-well interaction (see Fig. 3), the
equivalence is not perfect. Nevertheless, as we show below,
the small difference in ro

w between MC and MD is not re-
flected in the estimated value of γ cf.

Once ro
w is identified for each system the next step is to

perform thermodynamic integration for at least a couple of
values of rw > ro

w in order to obtain a function γcf (rw) that
can be extrapolated to ro

w. In Fig. 9, we show γcf (rw) for all
systems investigated. Black symbols correspond to the results
for the 100 orientation and red ones to the 111 orientation.
Let us start by discussing the results for the 100 orientation.
Filled symbols correspond to the calculation of γcf (rw) via
thermodynamic integration and empty ones to the extrapola-
tion of γcf (rw) to ro

w. The black squares correspond to MC
and the black circles to MD simulations, both with a mono-
layer mold. It is clear from Fig. 9 that both MC and MD yield
consistent results for the calculation of γcf (rw) via thermody-
namic integration. A linear extrapolation of the MC and MD
data to their corresponding values of ro

w (see Table II) pro-
vides an estimate for γ cf, indicated by the open symbols in
Fig. 9 and reported in Table II. Within the error of the method
both MC and MD give the same γ cf for the 100 orientation.
By using a bilayer mold (black diamonds) we also get, within
error, the same value for γ cf. Red squares and circles corre-
spond to the results for a 111 monolayer mold as obtained
from MC and MD, respectively. Again, a good agreement be-
tween both simulation techniques is obtained. Moreover, the
results for the bilayer (red diamonds) give the same γ cf as
the monolayer mold. In summary, in Fig. 9 we show that the
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FIG. 9. Interfacial free energy as a function of the well radius for the LJ-
like potential proposed in Ref. 32. Results are shown for two different crys-
tal orientations (111, red symbols, and 100, black symbols), two simulation
techniques (MC, squares, and MD, other symbols), and two thicknesses of
the mold (bilayer, 2L, diamonds, and monolayer, 1L, other symbols). Filled
symbols are simulation data and empty symbols with error bars correspond
to the extrapolation to ro

w . Brown and orange dashed horizontal lines corre-
spond to the value of γ cf reported in Ref. 13 for the 100 and 111 orientations,
respectively. Black and red dashed lines are linear fits to the different sets of
solid symbols.

mold integration technique gives consistent results regardless
the simulation technique (MC or MD), or the number of lay-
ers in the mold (1 or 2). The accuracy of the technique is suffi-
cient to distinguish between the interfacial free energy of two
different crystal orientations (100 and 111).

As discussed above, in order to compute γ cf we rec-
ommend to obtain first two or three under-estimates of γ cf
for rw > ro

w, where thermodynamic integration is reversible,
and then extrapolate the results to ro

w. A close inspection of
Fig. 9 shows that the MC estimate of γ cf for the 100 ori-
entation was directly performed at rw = ro

w. This allows to
directly estimate γ cf without the need of any extrapolation,
but apparently contradicts the advice of performing thermo-
dynamic integration for rw > ro

w. In fact, we had to resort to a
tailored type of MC move in order to perform thermodynamic
integration for rw = ro

w, where the reversibility of thermody-
namic integration is compromised by the possibility that the
system fully crystallizes. Such move consisted in performing
blocks of thousands of MC sweeps that are accepted or re-
jected according to the final value of XD. If XD increases
beyond the point at which the system is committed to fully
crystallize, the whole block of MC sweeps is rejected and re-
started with a different seed for the random number generator.
Otherwise, the MC simulation continues normally. In order to
set both the length of the simulation blocks and the XD thresh-
old, it is necessary to get some experience first by examining
several unbiased runs at rw = ro

w. In this way, we have two
MC estimates of γ cf for the 100 interface: one coming from
the “direct” calculation of γ cf at rw = ro

w (as described in this
paragraph), and another coming from the extrapolation of es-
timates for rw > ro

w. As shown in Fig. 9 both estimates coin-
cide pretty well, which gives us confidence in the extrapola-
tion procedure described in Sec. III A. Although both ways of
estimating γcf (ro

w) are equally valid, we recommend the use
of the extrapolation method because it is more general as it
does not require the implementation of the MC-block moves
described in this paragraph.

In Table II, we show that one can obtain consistent re-
sults for molds with one or two layers. In principle, any num-
ber of layers can be used. However, one must take into ac-
count that ro

w increases as the number of layers increases (see
Table II) and that ro

w cannot be larger than 0.5σ in order to
avoid multiple filling of the wells. For this reason, in practice,
we could not use a mold with more than two layers to com-
pute γ cf. In any case, there is no practical advantage in using
bi-layer over mono-layer molds. In fact, with a mono-layer
mold the number of well-particle interactions is half as many
and the code runs slightly faster.

The interfacial free energy for the LJ model at the
triple point has been directly determined by Broughton and
Gilmer in 1986 using the cleaving method,8 by Laird and
Davidchack using a more accurate variant of the same
methodology,13, 35 by Morris and Song using a capillary fluc-
tuation approach,34 and by Angioletti-Uberti et al. using
a Metadynamics-based approach.17 In the bottom part of
Table II, we report the values of γ cf obtained in these
works. The agreement between our data and those obtained in
Refs. 13 and 34 is very good. The comparison with Ref. 8
is not bad either, particularly taking into account that in 1986
the computational resources did not allow for accurate enough
calculations to distinguish between different crystal orienta-
tions. In Ref. 20, γ cf was indirectly estimated via classical nu-
cleation theory (γ cf = 0.302(2)ε/kBT). The discrepancy with
our data may be partly due to the fact that in Ref. 20 a value
of γ cf averaged over several crystal orientations is provided.
In summary, in Table II we show that the values obtained
from our method are in good agreement with the general
consensus reached for the γ cf of LJ for two different crystal
orientations.

The extensive work done on the LJ system allows
for a comparison between different simulation methods. In
Table II, we report the number of molecules used for the cal-
culation of γ cf for each simulation method. The number we
report for Ref. 8, where the capillary fluctuation method was
used, is an average over all systems employed. In terms of
computational cost, the capillary fluctuation method is expen-
sive. Moreover, it requires the evaluation of the spectrum of
capillary waves for at least three different crystal orientations
in order to provide a value of γ cf. The method based on Clas-
sical Nucleation Theory also requires a large number of parti-
cles because such theory works best for large cluster sizes.20

The cleaving method used in Ref. 35 used relatively small
systems, but the results were not accurate enough to distin-
guish between different crystal orientations. Many more par-
ticles were used in Ref. 13 in order to gain accuracy. Both the
Metadynamics method and our mold integration method are
capable of producing accurate results for systems of less than
2000 particles. We have checked that there are no significant
system size effects present in our simulations. In Table II, we
show that a calculation with 6480 particles gives the same re-
sult as one with 1960. Therefore, the possibility of using small
systems is a positive aspect of our method.

Another advantage is the simplicity with which it deals
with different crystal orientations (one simply has to use a
mold coming from the corresponding lattice plane). Also the
cleaving and the capillary fluctuation methods easily deal with
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FIG. 10. Crystallinity degree, XD, as measured by the parameter ξ (see main text) as a function of simulation time for several values of the radius of the mold
potential wells (a)–(g), r

w
/σ , as indicated inside each plot. The well depth is in all cases 7.5kBT. For a given r

w
, 10 trajectories differing in the seed for the

random number generator are started from a fluid configuration. The mold is switched on at the beginning of the simulation. The plot corresponds to the PHS
potential and the 100 crystal orientation.

the anisotropy of γ cf. In both methods, the fluid is brought
into contact with the crystal at the desired orientation. For the
capillary fluctuation method, the problem is not so straightfor-
ward, though. What is obtained from the analysis of the cap-
illary waves spectrum is the interfacial stiffness, and several
orientations must be combined with a cubic harmonic expan-
sion in order to obtain estimates of γ cf. The way to deal with
the anisotropy of γ cf is more complex for the other methods.
In the Metadynamics method, for instance, an order parame-
ter has to be devised in order to induce the growth of the crys-

tal in the desired orientation. Finding a good order parameter
may be a non-trivial task for crystal structures whose com-
plexity goes beyond that of simple fcc or bcc lattices.36 The
classical nucleation method also requires an order parameter
to measure the size of the embedded clusters.

C. γ cf for the pseudo hard-sphere potential

A system composed of HS is arguably the simplest
non-trivial model having fluid, crystal, and glass phases.37, 38
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Therefore, this model is widely used by researchers on a di-
verse range of problems like the glass transition,39 crystal
nucleation,40 or granular matter.41 There is great interest in
finding a continuous potential whose kinetic and thermody-
namic behaviour reproduces that of the discontinuous poten-
tial of pure HS. Finding such potential would allow to ex-
plore the physics of the HS system with simple MD simula-
tions. This is important because MD simulation packages like
GROMACS are nowadays accessible to a large scientific com-
munity. For instance, having a continuous version of the HS
potential would be of great help for the investigation of the
crystallization of hard spheres, where large discrepancies be-
tween experimental and simulation measures of the nucle-
ation rate have been reported (see Ref. 42 and references
therein).

Quite recently, Jover et al. have proposed a continuous
potential that at reduced temperature 1.5 behaves very much
alike a system of pure HS in terms of the equation of state and
the diffusion coefficient.26 We refer to the potential proposed
by Jover et al.26 at reduced temperature 1.5 as the pseudo
hard-sphere potential, PHS. Later on, Espinosa et al. showed
that the coexistence pressure and densities for the PHS model
are also very similar to those of the pure HS system.43

The PHS potential is a good candidate for the inves-
tigation of the crystal nucleation rate of HS given that, as
mentioned before, both models have a very similar thermo-
dynamic coexistence, diffusion coefficient, and equation of
state. Nothing is known, however, about the γ cf of the PHS
potential, a crucial parameter in crystal nucleation.3 If γ cf was
also similar to that of pure HS, then the PHS model could be
reliably used in MD simulations to obtain predictions about
the crystallization behaviour of HS. Here, we use the mold
integration method to obtain γ cf for the PHS model.

We evaluate the interfacial free energy for the 100 crystal
orientation in order to compare with our results for the pure
HS model. We use a two-layer mold with 128 particles in each
layer. The system size is summarized in the bottom row of
Table I. All simulations are performed with the GROMACS
MD package.

To determine ro
w, we monitor XD as a function of time for

several trajectories and for several rw’s. To monitor XD, we
use the parameter ξ defined in Eq. (8). The results are shown
in Fig. 10. As explained above for the HS and LJ cases ro

w will
be comprised in between the largest value of rw that shows no
indication of the presence of a minimum in the free energy-
XD profile and the smallest rw that does show it. In Fig. 10,
rw/σ = 0.42 clearly corresponds to the presence of a deep
minimum (one that cannot be overcome by thermal activa-
tion for any of the 10 trajectories). By contrast, rw/σ = 0.36
and 0.37 show no presence of a minimum because XD can
grow and evolves in a different way for different trajectories.
rw/σ = 0.38 − 41 correspond to a shallow minimum because
in all cases there are trajectories for which XD fluctuates for a
significant period around typical values for the deep minimum
case (XD ≈0.05). Therefore, we set ro

w/σ = 0.375(5).
Once we get ro

w we perform thermodynamic integra-
tion for values of rw > ro

w and obtain the solid points shown
in Fig. 11. The extrapolation of these data to ro

w gives γ cf

= 0.588(8)kBT/σ 2, that is, within the error bar, the same value
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FIG. 11. Solid symbols: interfacial free energy versus the well radius for
the PHS model. Dashed line: linear fit to the solid symbols. Empty symbol:
extrapolation of the linear fit to ro

w .

we find for the pure HS system. This result implies that the
PHS model can be used with confidence for the study of the
behaviour of HS. The simulation details and results for the HS
and PHS models are compared in Table I.

IV. SUMMARY AND CONCLUSIONS

We propose a novel simulation methodology for the cal-
culation of the crystal-fluid interfacial free energy. The main
idea of the method is the use of a mold of potential energy
wells to induce the formation of a crystal slab in a fluid at
coexistence conditions. The coordinates of the mold’s wells
are given by the lattice positions of the crystal plane whose
interfacial free energy is evaluated. The interaction between
the wells and the fluid particles is square-well like. The free
energy difference between the fluid and the fluid having the
crystal slab induced by the mold is obtained by means of ther-
modynamic integration along a reversible path in which the
wells are gradually filled. The method consists in four basic
steps: (i) preparation of the mold and of the initial configura-
tion of the fluid; (ii) estimation of the optimal radius of the
wells; (iii) calculation of the interfacial free energy as a func-
tion of the well radius by thermodynamic integration; (iv) ex-
trapolation of the function obtained in step (iii) to the optimal
radius to get the final estimate of the interfacial free energy.

We validate our methodology by calculating the interfa-
cial free energy of systems composed of hard spheres and
Lennard-Jones particles. In both cases, we find a very good
agreement with previous estimates. Moreover, we show that
our methodology is accurate enough to discriminate between
different crystal orientations of the Lennard-Jones system. We
also use the new method to calculate the interfacial free en-
ergy for a continuous version of the hard sphere model for
which, to the best of our knowledge, the interfacial free en-
ergy had not been previously calculated. Within the statistical
uncertainty of our calculations we obtain the same interfa-
cial free energy for both the continuous and the discontinuous
potentials.

One of the main advantages of our method with respect
to existing ones is that no local-bond order parameter is re-
quired to either detect the interface or induce the growth of the
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solid.16, 17, 20, 44 The cleaving method does not require an order
parameter either,8 but it entails following a rather cumber-
some thermodynamic route. Our method, gives accurate re-
sults even for relatively small systems (about 2000 particles),
which cannot be achieved with the capillary fluctuation44 or
the classical nucleation20 methods. Moreover, it can poten-
tially deal with complex crystal lattices with no extra method-
ological complexity. The method can be easily implemented
either in Monte Carlo or in standard Molecular Dynamics
packages such as GROMACS. Therefore, we hope it will be
appealing to the scientific community interested in investigat-
ing the properties of the crystal-melt interface.
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APPENDIX A: MEASURE OF XD

Here, we show that the simple order parameter ξ used to
quantify XD is totally equivalent to a more sophisticated one
based on counting the number of particles in the largest clus-
ter of solid-like particles. Solid-like particles can be identified
by means of a local-bond order parameter based on the local
coordination of the particles.28 The specific parameters we
use in this work are those given in Ref. 45. The largest cluster
of solid-like particles corresponds to the crystal slab induced
by the mold at coexistence conditions (e.g., the 6-7 crystal
planes that can be seen around the mold in Fig. 1, bottom).
In Fig. 12, we show the equivalent to Fig. 4 but using the

FIG. 12. Crystallinity degree as measured by the number of particles in the biggest cluster of solid-like particles, ns as a function of simulation time for several
values of the radius of the potential wells, r

w
/σ , as indicated inside each plot. The well depth is in all cases 7.5kBT. For a given r

w
, 10 trajectories differing in the

seed for the random number generator are started from a fluid configuration. The mold is switched on at the beginning of the simulation. The plot corresponds
to the HS system and the 100 crystal orientation.
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number of particles in the biggest cluster of solid-like parti-
cles, ns, instead of ξ as the parameter to follow the forma-
tion of the crystal. By comparing both figures it is clear that
the simple parameter ξ provides the same information as the
more sophisticated ns.

APPENDIX B: FREE ENERGY PROFILES

By analysing the trajectories where XD is monitored
(e.g., Fig. 4 or 12) the free energy profile along the XD co-
ordinate can be estimated as

�G/(kBT ) = − ln P (XD) + constant, (B1)

where P(XD) is the probability that the system takes a certain
value of the order parameter, XD. Then, by simply making a
histogram of XD for all trajectories performed for a given well
radius it is possible to get an estimate of the corresponding
free energy profile. In Fig. 13, we show the free energy pro-
file thus calculated for the 111 plane of the LJ system using
both ξ and ns as measures for XD. The conclusions that can be
drawn by examining either order parameter are the same: for
rw ≥ 0.29σ there is a minimum whereas for rw ≤ 0.28σ there
is not. Consequently, we set the optimal radius ro

w for this sys-
tem to 0.285 ± 0.005σ .

Equation (B1) does not give absolute free energies (there
is a missing constant) but allows to determine whether there
is a minimum present or not. In any case, in order to com-
pare all curves in the same free energy scale we have shifted
each minimum to the work needed to fill the wells for the
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FIG. 13. Free energy profile as a function of XD for the 111 plane of the
LJ system as measured by ξ , (a), and by ns, (b) for different well radii (as
indicated in the legend in σ units).

corresponding well radius (calculated by thermodynamic in-
tegration via Eq. (6)). For the cases where the minimum is
absent (rw = 0.28), we have shifted the plateau of the curves
to the work needed to fill a mold of wells with rw = ro

w =
0.285σ , given by the dashed horizontal line. The statistics of
the free energy given by Eq. (B1) are reasonably good when
the system repeatedly samples configurations in the vicinity
of a free energy minimum but become poor when it quickly
moves along the free energy plateau. Therefore, one has to
be cautious and restrict the use of Eq. (B1) to small values
of XD.

With the degree of accuracy we got in the present study
we were able to distinguish the anisotropy between the 111
and 100 faces of the LJ system. One could in principle try to
further improve the accuracy by decreasing the range within
which ro

w is enclosed (by launching trajectories for more val-
ues of rw). This is certainly a possibility worth exploring.
However, it may require a substantial amount of trajectories to
detect a minimum shallower than 1kBT, which is the depth of
the shallowest minimum we could probe (curve correspond-
ing to rw = 0.29 in Fig. 13).
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