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The liquid-vapor equilibria of the linear Kihara fluid with elongations L* = L / u  = 0.3,0.6, and 0.8 is studied. We compare 
the prediction of a recently proposed perturbation theory of Kihara fluids with the Monte Carlo results obtained by using 
the Gibbs ensemble simulation technique. The agreement between the theoretical predictions and the simulation results 
was found to be very good from the triple point up to 0.9 times the critical temperature. The molecular anisotropy increases 
the slope of the vapor pressure curve and provokes deviations from the principle of corresponding states. The deviations 
from the principle of corresponding states with molecular elongation found for linear Kihara fluids are similar to those found 
in previous studies for the two-center Lennard-Jones model. 

I. Introduction 
The statistical mechanics of nonspherical molecules have re- 

ceived much attention during the past decade.',z Integral equa- 
t i o n ~ ~ "  and perturbation theories7-I3 have now been developed 
for several nonspherical models. The nonspherical interaction has 
been typically described by using three different kinds of potential 
models, namely the site-site model,' the Kihara model,14 and the 
Gaussian overlap model.I5 Although these potentials models differs 
each other in the details, it is expected that any among them could 
be used to illustrate the effect of molecular anisotropy on ther- 
modynamical properties. In particular, the effects of molecular 
shape on vapor-liquid equilibria and on deviations from the 
principle of corresponding states stand as very interesting problems. 
Understanding the effect of molecular shape on phase equilibria 
should be considered as a fvst goal. Later studies, including both 
molecular anisotropy and multipolar forces, should benefit from 
this knowledge. In this context, two theoretical studies of the 
vapor-liquid equilibria of two center Lennard-Jones (2CLJ) 
molecules have recently appeared.I6*I7 Fischer et a1.16 studied the 
effect of molecular elongation on deviations of the principle of 
corresponding states by using first-order perturbation theory. 
More recently, Monson et al.17 have determined the phase 
equilibria of 2CLJ fluids by using second-order perturbation 
theory. The effect of dipolar forces has also been considered.I8 
These studies predicted similar conclusions with respect to the 
effect of molecular shape on phase equilibria. 

Although several simulation studies have been performed for 
2CLJ fluids in the liquid region,lFZ1 only a few are available 
concerning the problem of the vapor-liquid e q ~ i l i b r i a . ~ ~ - ~ ~  This 
is mainly due to the fact that the determination of liquid-vapor 
equilibria by standard simulation techniques requires a large 
number of simulations. Due to the lack of simulation data of 
vapor-liquid equilibria of nonspherical models, the predictions 
on phase equilibria of these perturbation theories could not, in 
most cases, be compared with simulation results. However, 
Panagiotopo~los~~ has recently proposed a powerful simulation 
technique (Gibbs ensemble) for the determination of liquid-vapor 
equilibria. The Gibbs ensemble simulation method has been used 
so far in the determination of vapor-liquid equilibria of spherical 
fluidszez6 and mixtures of spherical molecule f l ~ i d s ~ ~ , ~ '  and to 
a few nonspherical models.z8 It is expected that the Gibbs en- 
semble technique will provide direct liquid-vapor equilibria data 
so that the predictions of these perturbation theories can be tested. 

In the past years several studies concerning Kihara fluids have 
appeared. Two perturbation theories"J2 have recently been 
proposed and a number of simulation studies involving Monte 
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Carloz9-3z (MC) and molecular dynamics33 (MD) simulation 
techniques of linear and nonlinear Kihara models have been 
performed. The generated computer data in the liquid phase has 
allowed extensive checking of the perturbation theory proposed 
by Vega and Lago.I2 This comparison has revealed the main 
drawback of the theory and an improved version of this pertur- 
bation theory has been propo~ed.'~ This improved perturbation 
theory agreed very well with the simulation data available for 
linear and nonlinear models. The results obtained from this 
improved theory may be considered as satisfactory. However, the 
determination of liquid-vapor equilibria constitutes a severe test 
for any theory. In this work we have determined the vapor-liquid 
equilibria for several linear Kihara molecules using the improved 
version of the perturbation theory. To check the theoretical results 
we have performed Gibbs ensemble simulations to determine the 
liquid-vapor equilibria of these models. A direct comparison 
between theory and simulation for several linear molecules is then 
made. The effect of molecular shape on liquid-vapor equilibria 
is then determined from the theoretical as well as from the sim- 
ulation results. Deviations from the principle of corresponding 
states are analyzed. 

The scheme of the paper is as follows. In section I1 we briefly 
present the perturbation theory. Section I11 describes the simu- 
lation methodology, section IV presents the obtained results, and 
in section V we present the conclusions of this work. 

II. Theory 
Two of us have recently proposed12 a perturbation theory for 

Kihara (linear or nonlinear molecules). The theory can be re- 
garded as an extension to the Kihara model of the perturbation 
theory developed by Fischer' for nonspherical molecules. This 
theory is an extension to nonspherical fluids of the well-known 
perturbation theory developed by Weeks-Chandler-Andersen" 
(WCA) for spherical fluids. We shall briefly describe this per- 
turbation theory of Kihara fluids and refer the reader to refs 12.34 
for a more detailed discussion. 

The Kihara potential14 is given by 

where p(r,ul,uz) is the shortest distance between the molecular 
cores, which hereinafter will be denoted as p, t is an energetic 
parameter, and u is a size parameter. In the case of linear 
molecules the natural choice for the molecular core is a rod. Then, 
p is just the shortest distance between the two linear rods (Figure 
1). The pair potential u(p)  is then divided into a reference part 
uo(p) and a perturbation part ul(p)  according to the prescription 
of Mo and G ~ b b i n s ~ ~  so that I&) contains all the repulsive forces 
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Equations 2-7 constitute a perturbation theory (PT) for Kihara 
fluids. In previous ~ o r k ~ ~ * ~ ~  we have compared Ao, AI,  and Az 
obtained from F'T against their exact values which can be obtained 
from simulations of the reference system. The main conclusion 
of these studies is that A. and A2 as given by eqs 3 and 7, re- 
spectively, agree very well with simulation results. AI from PT 
agrees well with the simulation results at low densities and small 
anisotropies. However, as the molecular anisotropy and/or the 
density increase the theoretical prediction of AI becomes worse. 
These conclusions hold for linear and nonlinear Kihara molecules. 
The deviations in A I  between theoretical and simulation results 
have a significant effect on the calculated thermodynamic prop 
erties of the Kihara fluid.34 To make the theory a useful tool for 
the prediction of the phase diagram and EOS of Kihara fluids, 
an improvement in the determination of AI is required. From a 
purely theoretical point of view this improvement requires the 
substitution of yRAM(r) in eq 4 by some function which incorporates 
some orientational dependence, and work should be done in that 
direction. However, we have recently shown that the deviations 
AAl between calculated Al and exact AlSimulation values show a 
smooth behavior as a function of both density and anisotropy and 
may be fitted to an empirical expre~sion:~~ 

(8) 

( 9 )  

AAl = 0 otherwise (10) 

A , )   simulation - 
hAl = "0 Alsimulation 

AAl = (185.52~1 - 188.42)(~ - 0.12) CY > 1.03 v > 0.12 

Equations 8-10 allow us to correct the theoretical values of the 
first order perturbation term A I  obtained from eq 6. When the 
AI term is corrected in this way we obtain an improved pertur- 
bation theory (IPT). Although the IPT possesses some empirical 
character, it has proved to be in very good agreement with sim- 
ulation results for several Kihara models in a wide range of 
temperatures and densities.34 Thus, some confidence in the ability 
of the IPT theory to describe the liquid region of Kihara fluids 
has been gained. Its capacity to predict correctly the vapor-liquid 
equilibria will be analyzed in this work. 

The liquid-vapor equilibria of Kihara fluids was determined 
from the IPT theory as follows. For T/T,  < 0.8, where T, stands 
for the critical temperature, the densities of the vapor in equi- 
librium with the liquid are very small. Thus, we used IPT to 
describe the liquid phase while the gas phase was described with 
the second virial ooefficient. The liquid-vapor equilibria was then 
obtained by equating the pressure and chemical potential in both 
phases. For higher temperatures (T/ T, > 0.8) we used IPT theory 
for both the liquid and the vapor and phase equilibria was de- 
termined in the Gg diagram. The critical temperature and density 
obtained from the IPT theory which we call TCIpr and &Ipr were 
obtained by fitting the theoretical bubble and dew densities at 
high temperatures to the expressions 

(nI + ng)/2 = + SIT + ~ 3 T z  (11) 

Figure 1. Shortest distance p between two linear rods of length L. 

and ul(p) all the attractive forces. The residual part of the 
Helmholtz free energy of the Kihara fluid, A, is now expanded 
about that of the reference system to obtain up to second order: 

A A0 AI A2 -- +-+ -  
N k T -  NkT NkT N k T  

The residual free energy of the reference system A. is now set 
to that of a hard particle with the same length L (Figure 1) and 
with a diameter dH.  This diameter dH is obtained at every tem- 
perature T and number density n by setting to zero the first-order 
term of the BLIP expansion3' of the free energy of the hard particle 
around that of the reference fluid. The residual free energy of 
the hard particle is obtained by integrating Boublik's equation 
of state (EOS) for hard convex b o d i e ~ . ~ ~ . ~ ~  With these approx- 
imations A. is given by 

where the 
= lSa(3.  
parameter 

constants c l ,  c2, and c3 are given by cI = 6a2 - 2a, c2 
- 5a), and c3 = 6a2 - 5a - 1, a being the nonsphericity 
of the hard particle39 and q the packing fraction defined 

as v = nVH. Formulas for the evaluation of the volume VH and 
of a for hard spherocylinders may be found elsewhere.39 

To evaluate the perturbation terms AI and A2 in eq 2 the 
structure of the reference system is needed. To obtain the pair 
correlation function of the reference system go(r,wl,wz) we shall 
use zero-order RAM theory'"' for the background correlation 
function of the reference system yO(r,wI,w2),  so that go(r,wI,w2) 
is approximated as 
go(r,wl,wz) = exp(-8uo(rlw~,wz))yo(r,ol,wz) 

s= ex~(-8uo(rtwi,w~))y~~~(r) (4) 

where ymM(r) is the background correlation function of a spherical 
system interacting through the RAM potential  RAM(^). The 
RAM potential @RAM(r) is defined by 

( 5 )  

where the brackets with the subscript 12 stand for unweighted 
orientational average. The function yRAM(r) is obtained at every 
temperature and density by solving the Ornstein-Zernike (OZ) 
equation with the Percus-Yevick (PY) appr~ximation~l for the 
potential @RAM(r). The first-order perturbation term AI is then 
given by 

eXP(-B@RAM(r)) = (exp(-8uO(r@l ru2)) ) I2 

The second-order perturbation term is obtained from an ex- 
tension to molecular systems of the macroscopic compressibility 
equation. The final expression is then12 

n, - n g  = dl( 1 - 6)'" + d2( 1 - :) + d3( 1 - :)' 
Equation 1 1  is the law of the rectilinear parameters (except for 
the quadratic term). The first term on the right-hand side of eq 
12 was used so that the fit guarantees the classical exponent (/3 
= 1/2) obtained from the theory." We fitted the theoretical vapor 
pressures to the Antoine's eq~ation,"~ and then by extrapolation 
to the critical temperature Term the theoretical critical pressure 
pEIpr was determined. 

In the next section we present the simulation methodology 
followed to determine the liquid-vapor equilibria of Kihara fluids. 
111. Simulation Methodology 

To determine the liquid-vapor equilibria of linear Kihara 
molecules we shall use the Gibbs ensemble Monte Carlo (MC) 
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simulation technique. This method was developed by Panagio- 
t o p ~ u l o s ~ ~  for pure fluids and allows a direct determination of the 
liquid-vapor equilibria. It has been applied to several spherical 
models and extended to m i ~ t u r e s . ~ ~ - ~ '  The method may be used 
to determine liquid-vapor equilibria of nonspherical particles as 
well. In fact it has recently been used to obtain the liquid-vapor 
equilibria of linear Gay-Berne models.28 The Gibbs ensemble 
technique involves three different steps. In the first one, a con- 
ventional NVT MC simulation4 is performed in the liquid and 
in the vapor. In the second step, an attempt is made to change 
the volume of one simulation box by AV and the other simulation 
box by -AV. The prescription for the acceptance of the global 
move is taken from the NFT MC simulation assuming equal 
pressures for the liquid and vapor phases. However, in contrast 
with the conventional N I T  MC method there is no need to specify 
the equilibrium pressure at the beginning of the simulation. The 
third step consists of a particle exchange. A particle in one of 
the boxes (liquid or vapor) is destroyed and inserted with a random 
position and orientation in the other box. The trial move is 
accepted with a probability taken from the pVT MC simulation4 
assuming equal chemical potential in both phases. Again, it is 
not necessary to specify the value of the chemical potential at the 
beginning of the run. For a more detailed description of the 
method we refer the reader to the original  paper^.^^^^^ 

The details of our simulations are close to those of ref 28. We 
used 5 12 particles in all cases. In the original configuration we 
set 256 particles in the liquid and 256 particles in the gas phase 
in an a-N2 lattice.4 The values of the initial densities of the liquid 
and gas were taken from the perturbation theory described in the 
previous section (IFT). That makes the equilibration period 
considerably shorter. Nevertheless, for some cases we considered 
other sets of initial densities and obtained identical results. A run 
typically consist of 2000-3000 cycles for equilibration followed 
by 3000-7000 cycles for obtaining averages. A cycle consists of 
an attempt at moving each particle in the liquid simulation box 
and then in the gas simulation box, followed by an attempt at 
changing the volume, and finally N, attempts exchanging particles 
between the simulation boxes. The acceptance ratio in the 
standard NVT MC and in the volume change was kept in the 
range 3040%. The number Ne, was chosen according to Pan- 
agiotopoulos pre~cription~~ so that 1-3% of the particles were 
exchanged in each cycle. 

The pair potential was truncated at pc = 30. However, as 
indicated in ref 25, the long-range corrections were included in 
the steps involving a volume change or a particle exchange since 
these moves involve a change in the density of the system. The 
long-range corrections were obtained by assuming uniform fluid 
beyond the cutoff. Formulas for the evaluation in Kihara fluids 
of the long-range contribution to thermodynamic properties may 
be found in ref 29. 

The evaluation of the pair potential (see eq 1) requires the 
calculation of the shortest distance between two linear rods p and 
algorithms for its determination are available e l s e ~ h e r e . ~ ~ . ~ ~  

We typically studied the vapor-liquid equilibria with the Gibbs 
ensemble for TIT, > 0.70. The critical temperature TcMC and 
density qMC were estimated by fitting the bubble and dew densities 
to the expressions:*' 

(13) 

(14) 

The critical pressurepcMC was obtained by extrapolating to TcMC 
an empirical fit to the MC vapor pressures (as obtained from the 
vinal theorem in the vapor phase). We were not able to use the 
Gibbs ensemble for the determination of the phase equilibria when 
TITc <0.70. The reason was that for low temperatures the density 
of the liquid is very high and the probability of inserting/removing 
a particle becomes very small. Therefore, a huge number of 
exchange attempts N, is required to guarantee an 1-3% exchange 
of particles and that makes the simulation prohibitively time 
consuming. Maller and FischeF* using the NpT + test particle 

(nl + n6)/2 = SI + s ~ T  

113 

n, - n B  = ti,( 1 - g) 

TABLE I: Gibbs Ewmble Result8 for L * = 0.W 

T+ %* P,' nl* P1* 
1.100 0.114 (8) 0.067 (4) 0.317 (28) 0.066 (17) 
1.100 0.118 (10) 0.067 (5) 0.295 (43) 0.062 (19) 
1.085 0.115 (8) 0.064 (4) 0.337 (21) 0.063 (14) 
1.075 0.107 (8) 0.059 (4) 0.367 (21) 0.064 (21) 
1.050 0.086 (3) 0.053 (2) 0.375 (15) 0.061 (21) 
1.025 0.077 (7) 0.048 (2) 0.399 (13) 0.046 (31) 
1.OOO 0.063 (5) 0.041 (2) 0.421 (9) 0.043 (9) 
1.OOO 0.057 (4) 0.039 (2) 0.415 (12) 0.038 (30) 
0.975 0.044 (2) 0.032 (1) 0.428 (12) 0.035 (29) 
0.95 0.041 (1) 0.029 (1) 0.445 (12) 0.033 (32) 
0.90 0.028 (1) 0.020 (1) 0.470 (8) 0.020 (45) 
0.90 0.029 (1) 0.021 (1) 0.474 (9) 0.031 (42) 
0.90 0.030 (1) 0.021 (1) 0.474 (11) 0.026 (81) 
0.85 0.018 (2) 0.013 (1) 0.492 (9) 0.012 (29) 
0.85 0.019 (1) 0.014 (1) 0.497 (8) 0.020 (43) 
0.80 0.012 (1) 0.009 (1) 0.516 (8) 0.002 (34) 
0.80 0.012 (1) 0.008 (1) 0.514 (7) O.OO0 (49) 
0.706 0.563 0.OOO 
0.606 0.592 0.000 

"The results are given in reduced units, L* = L/u, Ts = T/ (c /k ) ,  n* 
= nu3, and p* = p / ( c / $ ) .  The number in parentheses is the accuracy 
of the last decimal(s), so 0.375 (15) means 0.375 i 0.015. The esti- 
mated errors were obtained from the standard deviation over blocks of 
length 100 cycles. The last two rows correspond to the zero pressure 
densities as estimated from the NVT simulations of Table IV. bZero- 
pressure densities obtained from NVT simulations (see Table IV). 

method were able to obtain the liquid-vapor equilibria for 2CLJ 
with L* = 0.505 at TIT, = 0.70. In any case it seems clear that 
the insertion in a dense system becomes more difficult as the 
molecular anisotropy increases. At low temperatures we have 
therefore followed a different approach. Instead of determining 
the liquid-vapor equilibria, we have determined the zero-pmure 
density at two different temperatures (about TIT, = 0.5 and TITc 
= 0.6) from NVT MC simulations. Since the vapor pressure is 
very small at these low temperatures, the bubble density and the 
zero-pressure density should be very close. The details of these 
MC (NVT) simulations are given in refs 29 and 30. We used 
256 particles with 3000 cycles for equilibration followed by 4OOO 
cycles to obtain thermodynamical averages. 

We have studied three different Kihara linear fluids with an- 
isotropies L* = L/a = 0.3,0.6, and 0.8. For TITc > 0.7 we used 
the Gibbs ensemble technique and from these results the critical 
point was estimated. For T / T c  = 0.5,0.6 we determined the 
zero-pressure densities and identified them with the bubble den- 
sities. 

IV. Results and Discussion 
The three studied elongations (L* = 0.3,0.6,0.8) correspond 

approximately to the molecular anisotropy presented by N2, C12, 
and C02, respectively. For L* = 0.0 the linear Kihara model 
reduces to the spherical Lennard-Jones (12-6) potential for which 
MC results for the vapor-liquid equilibria are available.2e26 By 
changing L* from 0 to 0.8 we can analyze the changes that the 
vapor-liquid equilibrium undergoes when going from a spherical 
molecule to a molecule with a C 0 2  like anisotropy. 

In Tables 1-111 the results of the Gibbs ensemble simulations 
are prwnted. We present the pressure as obtained from the virial 
theorem for the liquid and vapor phases. They mutually agree 
within the error of the simulations. However, the vapor pressure 
obtained in the vapor phase is affected by a considerably smaller 
error bar. We used these values to estimate the critical pressure. 
For a number of states we have done two independent runs dif- 
fering in the initial conditions. In general, the results of these 
independent runs agree within the statistical error. In Table IV 
we present the results of the NVT MC runs. The zero-pressure 
densities were obtained by linear interpolation (extrapolation) and 
are shown in the last two rows of Tables 1-111. The results of 
Tables 1-111 cover almost entirely the liquid-vapor equilibria range 
since they go from the critical to the proximities of the triple point 
(approximately T/T ,  = 0.50). Therefore, they constitute a severe 
test for any theory. 
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1 . 1  .. 

1.0- 

0.9-  

0 .8 -  
c 

0 . 7 -  

0.6 - 

0 . 5 -  

TABLE Ik As in Table I for L* = 0.60 
r n. * D n  nl* DI * 

..*. . . . . . . , IPT L'-0.80 

Mc r.0.80 . 
... /.... ... ...... .... ,... 

b . ...".--..., 
1 . i 
1 A, 
li i. i u., 

'*. *... 
f 
1 y 

m 

'.. . 

1 .m 
0.990 
0.975 
0.950 
0.950 
0.925 
0.900 
0.875 
0.850 
0.800 
0.750 
0.710 
0.675 
0.65" 
0.55" 

0.1 14 (36) 
0.097 (19) 
0.094 (8) 
0.068 (4) 
0.064 (5) 

0.039 (1) 
0.030 (1) 
0.024 (1) 
0.017 (1) 
0.011 (1) 
0.007 (1) 
0.0049 (3) 

0.045 (2) 

0.048 (7) 
0.046 (6) 
0.044 (3) 
0.037 (2) 
0.036 (3) 
0.028 (2) 
0.024 (2) 

0.016 (1) 

0.007 (1) 

0.0030 (2) 

0.020 (1) 

0.011 (1) 

0.004 (1) 

0.166 (24) 
0.224 (33) 
0.256 (25) 
0.287 (20) 
0.290 (16) 
0.299 (1 2) 
0.316 (10) 
0.331 (7) 
0.342 (7) 
0.365 (7) 
0.389 (5) 
0.403 (5) 
0.413 (6) 
0.424 
0.454 

0.050 (7) 
0.045 (11) 
0.041 (15) 
0.039 (17) 
0.036 (25) 
0.026 (19) 
0.022 (28) 

0.006 (36) 
0.OOO (41) 

-0.002 (36) 
0.008 (65) 

O.OO0 
O.OO0 

0.012 (22) 

0.001 (34) 

a Zero-pressure densities obtained from NVT simulations (see Table 
IV). 

TABLE IiI: As in Table I for L* = 0.80 
r 

0.940 
0.935 
0.930 
0.920 
0.910 
0.900 
0.900 
0.875 
0.850 
0.850 
0.825 
0.800 
0.800 
0.75 
0.70 
0.650 
0.60" 
0.50" 

%* 
0.091 (5) 
0.082 (6) 
0.069 (6) 
0.064 (3) 
0.049 (4) 

0.049 (3) 
0.035 (2) 
0.029 (1) 
0.028 (1) 
0.025 (1) 
0.019 (1) 
0.019 (1) 
0.013 (1) 
0.008 (1) 
0.0047 (2) 

0.044 (3) 

P'* 
0.038 (4) 
0.036 (4) 
0.034 (3) 
0.032 (2) 
0.028 (2) 
0.026 (1) 
0.027 (1) 
0.022 (1) 
0.019 (1) 
0.018 (1) 
0.015 (1) 
0.012 (1) 
0.012 (1) 
0.008 (1) 
0.005 (1) 
0.0028 (1) 

n, * 
0.211 (24) 
0.213 (21) 
0.208 (26) 
0.237 (14) 
0.230 (17) 
0.247 (13) 
0.240 (14) 
0.256 (10) 
0.279 (5) 
0.272 (13) 
0.290 (9) 
0.300 (8) 
0.301 (6) 
0.324 (7) 
0.339 (5) 
0.357 (3) 
0.372 
0.399 

PI 
0.040 (16) 
0.036 (12) 
0.033 (12) 
0.033 (16) 
0.023 (1 2) 
0.026 (14) 
0.028 (1 5) 
0.022 (1 5) 
0.018 (14) 
0.013 (21) 
0.013 (23) 
0.012 (21) 
0.014 (23) 
0.010 (22) 
0.007 (20) 
0.002 (25) 
0.OOO 
O.OO0 

"Zero-pressure densities obtained from NVT simulations (see Table 
IV). 

TABLE IV: Equation of State of Linear I(ilrrra Fluida As Obtained 
from NVT M a e  Carlo Simula-" 

L* r n* Z = D/(nkT) 
0.30 
0.30 
0.30 
0.30 
0.60 
0.60 
0.60 
0.60 
0.80 
0.80 
0.80 
0.80 

0.60 
0.60 
0.70 
0.70 
0.55 
0.55 
0.65 
0.65 
0.50 
0.50 
0.60 
0.60 

0.570 
0.585 
0.530 
0.550 
0.445 
0.465 
0.40 
0.42 
0.38 
0.40 
0.35 
0.37 

-0.977 
-0.312 
-0.617 
-0.240 
-0.623 
0.737 

-0.676 
-0.109 
-1.375 
0.090 

-0.845 
-0.072 

"These results were used to estimate the zero-pressure densities 
shown in the last two rows of Tables 1-111. Units as in Table I. 

In Figure 2 we compare the coexistence densities obtained from 
simulation with those obtained from the perturbation theory (ET) 
described in section 11. The agreement is remarkably good. The 
deviations between the theoretical and simulation bubble densities 
are smaller than 3% from the triple point up to TIT, = 0.90. 
Moreover, the quality of the results does not deteriorate when 
increasing the molecular anisotropy from L* = 0.30 to L* = 0.80. 
At low temperatures, the theory slightly underestimates the bubble 
densities for all the elongations. However, for temperatures above 
T/ T, = 0.90 the theory deviates significantly from the simulation 
results. These deviations are expected since at temperatures close 
to the critical point the convergence of the perturbation expansion 

1 1 1 1 1 

0.4 0.5 0.6 0 . 7  0.0 0.1 0.2 0 . 3  
n* 

1.2 

n* 

1 1 1 1 

0.0 0 1  0.2 0 . 3  0 4  

n* 
Figure 2. Vapor-liquid coexistence densities for Kihara fluids. The 
results are in reduced units I* = T/ (c /k )  and n* = nd. The lines 
correspond to the results of the perturbation theory (IPT) and the 
markers to the simulation results. (a) Results for L* - L/u - 0.30. (b) 
Results for L* = 0.60. (e) Results for L* = 0.80. 

deteriorates and a secondder  treatment is probably insufficient. 
Moreover, the theory predicts classical exponents" (B = 1 /2) and 
that should yield a higher critical temperature. More theoretical 
work on fluids at medium densities and in the proximity of the 
critical point is needed. Figure 3 presents the liquid branch of 
the vapor-liquid equilibria for L* = 0,0.3,0.6,0.8 as determined 
from theory and from simulation. We conclude that the I F T  
theory constitutes a reliable tool to determine liquid-vapor 
coexistence densities of linear Kihara fluids from spherical to 
highly nonspherical (C02 like) models. 
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Figure 4. (a) Vapor pressures (p* = p / ( c / a 3 ) )  as obtained from per- 
turbation theory (lines) and from simulation (markers) for linear Kihara 
fluids. The results correspond (from the top to the bottom) to L* = 0.80, 
0.60 and 0.30. (b) Deviation plot of the MC vapor pressures (markers) 
with respect to the IPT results. 

Another interesting property is the vapor pressure. Since this 
property typically changes several orders of magnitude over the 
coexistence curve it is especially sensitive to the approximations 
made in any theoretical treatment. In Figure 4a we show the vapor 
pressure as obtained from the simulation and from the theory. 
The agreement is again good for the three studied models. At 

TABLE V Critical Point of Linear Kibara Fluids Aa Estimated from 
the Gibbs Easemble Rmub of This Work (MC) and from the 
Improved Perturbation Theory (1PT)O 

MC 
L* TcMC ncMC PcMC 9cMC 

0.w 1.316 0.310 0.130 0.162 
0.30 1.114 (12) 0.219 (6) 0.073 (10) 0.166 (5) 
0.60 1.OOO (12) 0.161 (5) 0.051 (10) 0.160 (5) 
0.80 0.952 (11) 0.140 (3) 0.038 (8) 0.161 (4) 

IPT 

0.00 1.375 0.292 0.166, 0.095d 0.153 
0.30 1.215 0.214 0.103, 0.066d 0.162 
0.60 1.110 0.164 0.075, 0.045d 0.163 
0.6W 1.144 0.165 0.078, 0.044d 0.164 
0.80 1.063 0.141 0.065, 0.038d 0.162 
1.20 0.986 0.113 0.057 0.166 

"The results are given in reduced units (see Table I). The packing 
fraction at the critical point qc is given by qo = ncV, where Vis the 
volume of a hard spherocylinder of elongation L*. The MC estimates 
of the critical density and temperature for L* = 0.0 (Lennard-Jones) 
were taken from ref 50 whereas the critical pressure was estimated 
from the results of ref 25. *Results from ref 50. CThe results of this 

IPT L* T2F.T q r P T  PelPT I)C 

row correspond to IPT theory used to first order. dVapor pressure 
from IPT at T = TcMC. 

high temperatures (TIT, > 0.90) there are discrepancies between 
calculated (IPT) and observed (MC) vapor pressures, although 
the differencies are not so large as those found in the determination 
of the coexistence densities. The IPT theory may be used to obtain 
reasonable estimates of the vapor pressure in the temperature range 
Tf T, = 0.9 to Tf T, = 1. Between Tf T, = 0.7 and Tf T, = 0.90 
the theory (IPT) provides reliable results. Unfortunately, we could 
not check our theoretical results for Tf T, < 0.70 since, as already 
pointed out, we were not able to use the Gibbs ensemble technique 
successfully at low temperatures. For L* = 0.30 the theoretical 
vapor pressures are low by about 8%. We believe this is due to 
the use of second-order perturbation theory which tends in the 
case of quasi-spherical models to underestimate vapor pressure 
whereas fint-order perturbation the or^'^.^^ tends to overestimate 
it. In Figure 4b we show the deviations between the theoretical 
vapor pressures (IPT) and the ones obtained from simulation. The 
average deviation for the vapor pressures between the theoretical 
and the MC results is about 6%. The average uncertainty of the 
MC vapor pressures is of about 7%. We conclude that IPT 
constitutes a reliable tool for the prediction of vapor-liquid 
equilibria of Kihara fluids. It should be pointed out that the former 
PT systematically underestimates the bubble densities and ov- 
erestimates the vapor pressures in the case of Kihara fluids. For 
instance, for L+ = 0.60 the bubble densities are about 7% smaller 
than the MC values whereas the vapor pressures are about 30% 
too high. The improvement of the IPT over the PT version is quite 
significant for medium and large elongations. 

We now turn to analyzing the effect of molecular anisotropy 
on critical properties. Table V shows the critical properties 
(density, pressure, and temperature) as estimated from the sim- 
ulation results (MC) and from the perturbation theory (IPT). 
First, we see that the molecular anisotropy decreases the critical 
properties and thip kind of behavior is predicted by both the theory 
and the simulation results. This is more clearly illustrated in 
Figure Sa. The critical temperature decreases steeply at small 
elongations and more smoothly as the elongation increases. In 
the Kihara model the value of the well depth c dues not depend 
on the molecular elongation or on the relative orientation. The 
meaning of the decrease in the critical temperature with the 
elongation is that when two molecules of different anisotropy 
interact with the same energy (e) the one with the highest an- 
isotropy will have the smallest critical temperature. The decrease 
in the critical temperature and density as a function of molecular 
elongation has also been ob~erved '~~"9~~ for the two-center Len- 
nardJones model (ZCLJ) and for Gay-Beme fluids.28 The trends 
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Figure 5. Critical properties of linear Kihara molecules as a function of 
the elongation L*. The circles correspond to the critical values from 
perturbation theory (IPT) and the triangles correspond to the estimate 
of the critical properties from the Gibbs ensemble simulation. (a) Results 
for the critical temperature. (b) Results for the critical density. 

found for the critical properties of the Kihara model are close to 
those of 2CLJ. The values of the critical temperature obtained 
from IPT are significantly higher than those estimated from the 
MC results. The ratio of TJPr/TcMC is about 1.10 in all the case-s. 
For the 2CW fluid, Fischer et a1.16 found a ratio of the theoretical 
critical point to that of some real substances of about 1.15. More 
recently, Monson et a1.I' found for the 2CW this ratio to be about 
1.07 by using a different perturbation scheme. Our results show 
the same kind of deviation. For L* = 0.6, we have also estimated 
the critical point by using IPT theory but only to first order 
(neglecting the second-order term). As can be seen in Table 111, 
the critical temperature from second-order perturbation theory 
is closer (although still in poor agreement) to the MC value than 
the one from first-order perturbation theory. 

Table V shows the critical density as estimated from the MC 
results and from the theory (IPT). Figure 5b shows the variation 
of the critical density with the molecular elongation. The 
agreement between the theoretical and estimated (MC) critical 
densities is very good. The IPT can therefore be used to obtain 
a reasonable estimation of the critical densities. In the reduced 
units n* = n d ,  the critical densities decrease as the molecular 
elongation increases. This is due to the fact that the molecular 
volume increases with the molecular elongation L*. However, 
when the packing fraction (the fraction of space occupied by the 
molecules) is calculated at the critical point it turns out that it 
is nearly constant and in the range 0.16-0.17 for all the analyzed 
models. 

The critical pressures as estimated from (MC) and determined 
from the theory (IPT) are also shown in Table V. The theoretical 

1 0  1 5  2 0  2 5  
nln, 

F i i  6. Reduced bubble densities as a function of the reduced tem- 
perature for L* = 0.30 and L* = 0.80. T, and n, stand for the critical 
temperature and density, respectively, as estimated from the Gibbs en- 
semble simulations of this work. The lines correspond to the bubble 
densitica from perturbation theory (IPT) and the markers are the bubble 
densities from the MC results. 
critical pressures are too high due to the overestimation of the 
critical temperatures. When the theoretical va r pressures are 
calculated at TcMC, they agree better with pcz(see Table V). 
The critical pressure decreases as the molecular elongation in- 
creases. 

From the results presented so far it may be concluded that 
molecular shape has a great effect on vapor-liquid coexistence 
and on critical properties. This is also what is observed in real 
fluids. However, Gugenheim4' has shown that when the coex- 
istence properties are scaled by the respective critical values, many 
fluids obey very closely the same behavior law. This is known 
as the principle of corresponding states. Noble gases such as argon, 
krypton, or xenon conform very well to the principle of corre- 
sponding states. This is because all of them possess spherical 
symmetry. Molecules with a mild anisotropy such as N2 or O2 
present almost the same behavior (in scaled units) as spherical 
molecules. However, when the molecular anisotropy increases, 
it has been experimentally found that the reduced coexistence 
properties deviate significantly from the behavior found for 
spherical molecules. Now we shall analyze our results to study 
deviations from the principle of corresponding states due to mo- 
lecular shape. 

In Figure 6 we show the orthobaric densities as obtained from 
IPT and from MC for L* = 0.3 and t* = 0.80. We have reduced 
the results by using the critical properties estimated from the MC 
results (see Table V) which are the most reliable estimations of 
the critical properties available at present for these models. The 
molecular anisotropy increases the reduced density for a given 
reduced temperature when both magnitudes are reduced by their 
critical values. This is predicted by both the theoretical and the 
simulation results. However, the effect, although noticeable, is 
moderate. For example, at OST, the reduced density increases 
about 7% when the molecular anisotropy is changed from L* = 
0.30 (N2 like) to L* = 0.80 (C02 like). Real substances behave 
in this way. For example, the reduced densities at OST, for argon, 
ethane, propane, and isobutane take the values 2.75.2.85.2.90, 
and 2.95, respectively. Two previous theoretical studies of the 
2CLJ mod~I '~9 '~  also found an increase in the reduced densities 
at a given reduced temperature as the molecular anisotropy in- 
creases. Here we premt more evidence to support this argument, 
using both theory and simulation and a different potential model. 
We conclude that molecular anisotropy provokes an increase in 
bubble densities at a given temperature when both are scaled in 
critical units. It should however be remembered that here we are 
considering shape effects only. To study real molecults the effect 
of polarity (dipolar or quadrupolar moments) should be included. 

Now we analyze the deviations from the principle of corre- 
sponding states for the vapour pressure. In Figure 7 we show the 
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Figure 7. Reduced vapor pressures as  a function of the reduced tem- 
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temperature and pr*lsurc, rcspcctivcly, as estimated from Gibbs ensemble 
simulations (see Table V). The lines correspond to the vapor pressures 
from perturbation theory (IPT). 

vapor pressure as a function of the inverse of the temperature for 
L* = 0.00, L* = 0.30, and L* = 0.80. We show the vapor 
pressures as obtained from the IFT theory and scaled by the best 
estimation of the critical properties of the models available at 
present (MC values of Table V). The molecular anisotropy 
considerably decreases (it becomes more negative) the slope of 
the vapor pressure curve as a function of the inverse of the tem- 
perature. Note the logarithmic scale on the ordinates axes. The 
deviations are quite important. At TIT, = 0.50 the deviations 
in the vapor pressure in reduced units between L* = 0.30 and L* 
= 0.80 are about 30%. The effect of molecular anisotropy on 
deviations from the principle of corresponding states seems to be 
more pronounced for vapor pressures than for bubble densities. 
The molecular anisotropy increases the steepness of the vapor 
preasure curve with respect to that of a spherical fluid. The same 
conclusion was obtained by Fischer et a1.I6 and Monson et al.” 
from their perturbation theories for the 2CLJ model. This kind 
of behavior is also found experimentally and is the basis of the 
definition of the acentric factor.51 

v. coaclwioos 
The critical temperatures and pressures of linear Kihara fluids 

decreases with molecular elongation while the critical packing 
fraction takes an almost constant value of about 0.165. The 
liquid-vapor coexistence properties of linear Kihara fluids for 
temperatures up to TIT, = 0.90 can be obtained with a great 
degree of ~ccuracy with a recently propod perturbation theory’~” 
of Kihara fluids. The theory prwides good estimates of the critical 
densities but systematically overpredicts the critical temperature 
and pressure. More theoretical work on fluids at medium densities 
is therefore madad. The molecular anisotropy provokes deviations 
from the principle of corresponding states. When scaled by the 
critical values, the anisotropy increases the bubble density and 
reduces the vapor pressure at a given temperature. This is also 
what is found in real fluids. The trends with molecular elongation 
of Kihara fluids found in this work are the same as those found 
for the two-center Lennard-Jones model as determined from two 
previous theoretical studies.I6J7 
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