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We present a new simulation method for the calculation of crystal nucleation rates by

computer simulation. The method is based on the use of molds to induce crystallization

in state points where nucleation is a rare event. The mold is a cluster of potential

energy wells placed in the lattice positions of the solid. The method has two distinct

steps. In the first one the probability per unit volume of forming a sub-critical crystal

cluster in the fluid is computed by means of thermodynamic integration. The

thermodynamic route consists in gradually switching on an attractive interaction

between the wells and the fluid particles. In the second step, the frequency with which

such cluster becomes post-critical is computed in Molecular Dynamics simulations with

the mold switched on. We validate our method with a continuous version of the hard

sphere potential and with the sodium chloride Tosi–Fumi model. In all studied state

points we obtain a good agreement with literature data obtained from other rare event

simulation techniques. Our method is quite suitable for the study of both crystal

nucleation of arbitrarily complex structures and the competition between different

polymorphs in the nucleation stage.
1. Introduction

Below the melting temperature a crystalline solid is thermodynamically more
stable than the uid. However, many liquids, such as water, can be substantially
supercooled in experiments where the presence of impurities is carefully avoi-
ded.1,2 Fluids can be supercooled because the initial stage of the transition to the
solid phase, called crystal nucleation, is a rare event. Crystal nucleation consists
in a uctuation of local order in the metastable liquid that gives rise to a crys-
talline nucleus whose size and structure are such that it can keep growing.3

Fluctuations leading to small or poorly structured clusters are not successful in
nucleating the crystal phase.4
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The nucleation stage determines in many cases the structure of the solid ob-
tained by crystallization, which may or may not be that of the most stable crystal
phase. In 1897 Ostwald published his famous “step rule” stating that the nucle-
ating phase is that with closest free energy to the uid.5 This rule was reinter-
preted in 1933 by Stranski and Totomanow, who claimed that nucleation follows
the path with the lowest free energy barrier.6 Be it as it may, it is quite important to
control which solid phase is formed given that different polymorphs have
different physical and chemical properties (solubility, melting temperature,
bioavailability, catalytic activity, etc.). Therefore, the commercialization of crys-
talline solids, such as drugs, requires a precise control on polymorphic selection.

The importance of polymorphic selection has motivated intense research
activity aimed to understand crystal nucleation. Experimentally it is rather diffi-
cult to have access to molecular insight on such a process. Due to its stochastic
character, it is not possible to predict when and where in the sample it will take
place. It may not occur for a long time but, when it happens, it develops quickly
and involves only a small number of molecules. Nonetheless, important efforts
have been devoted to observe nucleation experimentally. For instance, colloidal
systems, whose constituents are visible with confocal microscopy, have been used
to visualize crystal nucleation and growth.7 With high-resolution in situ trans-
mission electron microscopy (TEM) it has been recently possible to visualize
crystal nuclei with an atomic scale.8–11 Although promising,12 these experiments
are still far from providing a detailed molecular description of the whole crystal
nucleation process.

Computer simulations are an appealing alternative, given that they are cheap
as compared to experiments and that they give information at the single-particle
level. Although very important advancements have been made in computational
studies of crystallization during the past two decades, the work performed so far
is mostly limited to simple systems.13–15 Rare event methods, like Umbrella
Sampling,16–30 Forward Flux Sampling,21,22,30–34 Metadynamics,35,36 or Path
Sampling,4,37,38 have been used in combination with an order parameter39–41 to
simulate crystal nucleation. The order parameter labels a tagged particle as solid
or as uid-like based on its local environment and it is required to monitor the
growth of the crystal nucleus. This approach works well for solid structures like
fcc,19 bcc42 or diamond-like,43 where the local environment is the same for all
particles. However, it is not easy to extend this approach to systems with complex
symmetry like those typically encountered in industrial or technological appli-
cations. For instance ice-V has a monoclinic unit cell of 28 molecules and not all
of them have the same environment. Devising a local-environment-based order
parameter to study its nucleation with standard rare-event simulation techniques
would be extremely complicated.

Here we propose a new methodology for the study of crystal nucleation that
bypasses the local-bond order parameter problem. Our approach, which we call
Lattice Mold (LM), is based on the use of molds to induce the formation of the
crystal nucleus. We have recently shown that the crystal–uid interfacial free
energy can be computed by inducing the formation of a crystal slab in a uid at
coexistence conditions with the aid of amold of potential energy wells.44–46 We use
a similar idea here to compute nucleation rates. We validate our method with two
systems previously investigated: a system composed of pseudo-hard spheres47 and
sodium chloride modelled with the Tosi–Fumi interaction potential.48,49
Faraday Discuss. This journal is © The Royal Society of Chemistry 2016
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2. The lattice mold method

The main idea of our method, sketched in Fig. 1, is to use a mold to promote
crystallization in a metastable uid. The formation of a crystal cluster is induced
with the aid of a mold formed by potential energy wells (represented by empty
circles in Fig. 1). When the mold is turned off (wells drawn with dashed lines)
particles do not feel the presence of the mold. When it is turned on (wells drawn
with solid lines) there is one particle inside each well and a crystal cluster is
formed.

By gradually switching on the mold, the reversible work to form the cluster can
be computed. If the interaction between the particles and the wells is square-well
like with well depth 3m and well radius rw, the free energy difference between the
uid and the uid with the structure generated by the mold is given by:44

DG* ¼ 3mNw �
ð3m
0

d3
�
Nfwð3Þ

�
(1)

where Nw is the number of wells and hNfw(3)i is the average number of lled wells
for well depth equal to 3. This integral is computed numerically by calculating the
integrand in several points by means of NpT simulations keeping xed the mold
position and orientation.

The asterisk in DG* highlights the fact that both the orientation and the center
of mass of the mold are xed. However, unconstrained clusters are free to rotate
and translate. We correct the effect of the constraint on the free energy difference
as:

DG/(kBT) ¼ DG*/(kBT) � ln(1/(rfVw)) � ln(8p2) (2)

where kB is the Boltzmann constant and the second and the third terms in the
right hand side account for the translational and orientational free energies of the
unconstrained cluster (rf is the uid number density and Vw the volume of a well,
computed as 4/3prw

3).
The probability per unit volume to nd a crystal cluster in the uid such as that

generated by the mold is given by:
Fig. 1 Schematic representation of how a mold of potential energy wells (empty circles)
can induce the formation of a crystal cluster.

This journal is © The Royal Society of Chemistry 2016 Faraday Discuss.

http://dx.doi.org/10.1039/c6fd00141f


Faraday Discussions Paper
Pu

bl
is

he
d 

on
 1

1 
O

ct
ob

er
 2

01
6.

 D
ow

nl
oa

de
d 

by
 C

or
ne

ll 
U

ni
ve

rs
ity

 L
ib

ra
ry

 o
n 

18
/1

0/
20

16
 0

0:
20

:0
8.

 
View Article Online
P ¼ rfe
�DG/(kBT). (3)

In our scheme it is crucial to choose themold (Nw and rw) in such a way that the
induced cluster is sub-critical. This implies that when the mold is fully switched
on there is an induction period required for the system to crystallize, t. The
average induction time, hti, can be obtained by averaging t over several inde-
pendent NpT simulations with the mold xed and fully switched on. Combining P
with hti we obtain the crystal nucleation rate J as:

J ¼ P/hti (4)

In the “Results” section we give more details on the way the method is
implemented in practice by describing the calculation for one particular case.
3. Simulation details

One of the models we use to test our method is the pseudo-hard spheres (PHS)
potential, which is a continuous version of the hard sphere potential.47 The PHS
potential has been shown to closely reproduce the equation of state,47 dynamics,47

phase diagram,50 crystal–uid interfacial free energy44 and crystal nucleation
rate19,22,51,52 of pure hard spheres. Here we use the same simulation details for PHS as
in ref. 44, 50 and 51. To report quantities pertaining to this systemwe use the particle
diameter, s, as unit of length and as unit of time s2/(6Dl), whereDl is the self-diffusion
coefficient of the uid. s2/(6Dl) is then the “diffusive time”, or the average time
a particle takes to diffuse a distance of s. Pair interactions are truncated at 1.175s.

We also validate our method with the Tosi–Fumi (T–F) model48,49 for NaCl,
whose nucleation rate has been previously calculated by Umbrella Sampling21 and
by seeding.46,51 For this model, the melting temperature at 1 bar is 1082 K.53 The
simulations details for this system are the same as those given in ref. 46 and 51.
We use Particle Mesh Ewald Summations54 to deal with electrostatic interactions.
The cut-off radius for dispersive interactions and for the real part of electrostatic
interactions is 14 Å.

In the Molecular Dynamics simulations carried out in GROMACS55 for the
NaCl and PHS systems pressure is kept constant using an isotropic Parrinello–
Rahman barostat56 with a relaxation time of 0.5 ps. To x the temperature we
employ a velocity-rescale thermostat57 with a relaxation time of 0.5 ps. The time
step for the Verlet integration of the equations of motion is 2 fs in all cases.

To implement the well–particle interaction, ywp, in Molecular Dynamics we use
a continuous version of the square-well potential:44–46

ywp ¼ � 1

2
3

�
1� tanh

�r� rw

a

��
; (5)

where r is the distance between the well and the particle centers, and a is
a parameter that controls the steepness of the well's walls. a cannot be too large
to avoid strong forces acting on the particles trapped inside the wells. We use
a ¼ 0.017 Å and a ¼ 0.005s for the NaCl and PHS systems respectively.

The number of particles used to simulate the PHS system was 5324, 2916 and
2048 for p ¼ 15, 16 and 17kBT/s

3 respectively. For the NaCl system we run
simulations with 4096 ions.
Faraday Discuss. This journal is © The Royal Society of Chemistry 2016
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4. Results

We use the calculation of the nucleation rate for the PHSmodel at p¼ 16kBT/s
3 as

a worked example to illustrate our method. For this system we use a mold with 32
wells placed in the lattice positions of a cluster taken from the equilibrium fcc
solid at p ¼ 16kBT/s

3 (see Fig. 2). In Fig. 3 we show the integrand of eqn (1) for
three different well radii. Each point in Fig. 3 corresponds to an NpT Molecular
Dynamics simulation of 33 diffusive times (s2/(6Dl)) in which the mold is kept
xed and interacts with the particles via the quasi-square well potential given in
eqn (5). Integrating these curves and using eqn (1) and (2) we obtain DG for each
well radius, as reported in Table 1. We then obtain hti by running typically 10 NpT
Molecular Dynamics simulations with the mold switched on with the wells at
their maximum depth, 3m. By monitoring the density we can easily identify the
time at which each trajectory crystallizes to obtain hti as the average over all
trajectories. The trajectories corresponding to p ¼ 16kBT/s

3 and rw ¼ 0.35s are
shown in Fig. 4. In this case we obtain a hti of 3140s2/(6Dl), a much larger time
than the 33s2/(6Dl) required to perform thermodynamic integration.

In order for the LM method to work, hti should be as long as one can afford in
terms of computational time. In practice this means using molds with the
smallest Nw and the largest rw for which the system crystallizes in the computa-
tional time one can afford. On the one hand, the longer the hti the larger the free
energy difference between the state induced by the mold and the top of the barrier
separating the uid from the crystal. Thus, the effect of constraining the crys-
tallization path with a mold is reduced by increasing hti. On the other hand, hti
must be much larger than the time required to compute a point of the integrand
Fig. 2 Big spheres: 32-well latticemold used for the calculation of J in the PHS system at p
¼ 16kBT/s

3. Small spheres: fluid particles (scaled down to make the mold visible) of the
fluid in which the mold is embedded.

This journal is © The Royal Society of Chemistry 2016 Faraday Discuss.
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Fig. 3 Number of filled wells (Nfw) versus the well depth (3/kBT) for the PHS model at
p ¼ 16kBT/s

3 and three different values of the well radius, rw, as indicated in the legend.
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in eqn (1) so that thermodynamic integration can be safely performed without the
interference of crystallization. One typically needs tens of diffusive times
(1 diffusive time ¼ s2/(6Dl)) to obtain an integrand point. As a rule of thumb we
advise the use of molds for which hti is 1 or 2 orders of magnitude larger. By
tuning both Nw and rw we could get molds that satisfy this requirement (Table 1).
As one can expect, molds with small Nw and large rw give large hti's, and vice versa.

Once both DG and hti have been obtained we compute J using eqn (4). In Fig. 5
we show log10(J) versus rw for all pressures studied for the PHS model. The
employed molds have the same Nw and different rw for a given pressure, but
different Nw’s are used for different pressures (see Table 1). The larger the pres-
sure the lower the nucleation free energy barrier and the smaller the mold
required to induce crystallization. For all studied pressures the logarithm of the
nucleation rate increases with rw and we obtain smaller rates than those predicted
in the literature (see Fig. 5 and Table 1). This suggests that we need to extrapolate
Table 1 Nucleation rate, and variables involved in its calculation, for the PHS state points
investigated in this work. Pressure p is given in (kBT/s

3) units and hti in diffusive times,
s2/(6Dl). In the last row of each pressure we report the linear extrapolation of log10 J to
rew, which is the definite value of the LM method

p Nw r/s DG/(kBT) log10[J/(6Dl/s
5)] rf/(s

�3) hti

15 83 0.35 43.0 �22.2 1.02 3137
15 83 0.375 39.3 �20.9 1.02 6863
15 83 0.40 36.2 �20.1 1.02 22 745
15 0.485 �16.6

16 32 0.325 24.0 �13.2 1.01 664
16 32 0.35 22.0 �13.0 1.01 3140
16 32 0.375 19.8 �12.2 1.01 3568
16 0.485 �10.0

17 14 0.33 10.4 �7.7 0.995 1008
17 14 0.34 10.1 �7.6 0.995 1734
17 14 0.35 10.0 �7.4 0.995 1585
17 0.485 �5.4

Faraday Discuss. This journal is © The Royal Society of Chemistry 2016
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Fig. 4 Density versus time for 10 independent NpT Molecular Dynamics simulations for
the PHS system at p ¼ 16kBT/s

3. A 32-well mold with rw ¼ 0.35s is permanently switched
on with 3 ¼ 3m ¼ 10kBT.
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our results to a larger value of rw, r
e
w. We try extrapolating to the largest rw that can

be used without having multiple occupancy in the wells. Thus, rew will be given by
half the distance at which the inter-particle interaction potential is 3m (10kBT).
This gives rew ¼ 0.485s for the PHS system. For rw > rew two particles could gain
energy by tting into the same well. Directly calculating the rate at rw¼ rew in order
to avoid extrapolations would be prohibitively expensive given that hti would be
too long. We nd that by linearly extrapolating our results to rew we get a good
Fig. 5 Solid symbols: nucleation rate computed for different rw's for three different
pressures of the PHS model as indicated in the legend. Dashed lines: linear fits to
log10 J(rw). Horizontal orange, brown and cyan lines: literature values from US simulations
for p ¼ 15, 16 and 17kBT/s

3 respectively (thickness is comparable to the estimated error
bar).19,22,52 Empty symbols with error bars correspond to our estimates of the nucleation
rate. We give two orders of magnitude error bars. One order comes from the arbitrariness
in the determination of rew and another one from the statistical uncertainty of our calcu-
lations and the extrapolation to rw ¼ rew.

This journal is © The Royal Society of Chemistry 2016 Faraday Discuss.
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agreement with previously reported values of J for the three studied pressures
(see Fig. 5). The fact that we need to extrapolate our results suggests that for
rw < rew we are articially restricting those nucleation paths that do not comply
with the mold constraint. This does not seem to happen at rew, where we get the
right nucleation rate. We acknowledge that the choice of rew is somewhat arbitrary.
However, it is worth noting from Fig. 5 that J changes by one order of magnitude
(which is a typical error in calculations of the nucleation rate21,22) by changing
rw by 0.03s. Therefore, we would have given a reasonable value of J by extrapo-
lating to 0.47 < rew < 0.50s. To compensate for the arbitrariness in the choice of
rew we increase by one order of magnitude our error bars in J. As discussed below,
we also get good results for the Tosi–Fumi sodium chloride model using this
criterion to establish rew.

Following the same procedure we compute the nucleation rate for the
Tosi–Fumi sodium chloride model at 800 K and 1 bar. The nucleation rate for
such a model at this thermodynamic state was previously computed in ref. 21. In
Table 2 we give details of our calculation of J for this system. The runs for the
computation of each integrand point in eqn (1) lasted 1 ns. In Fig. 6 we show the
nucleation rate as a function of rw. The value we get for the nucleation rate at
rew (1.4 Å) is not in principle in agreement with that reported in ref. 21, which is
represented by a horizontal brown line in Fig. 6. There are about 4 orders of
magnitude difference between both values, which is beyond the statistical
uncertainty. The result of ref. 21 was based on the method developed by Auer and
Frenkel19 that combines a calculation of the nucleation free energy barrier via
Umbrella Sampling with that of the attachment rate of particles to the cluster, f +,
to obtain the kinetic prefactor. The free energy barrier reported in ref. 21 has been
recently corroborated in the context of a work that combines Hybrid Monte Carlo
with Umbrella Sampling to compute nucleation free-energy barriers.59 By
inspecting the PhD thesis58 that led to the publication of ref. 21 we realised that f +

is 1.3 � 102 ps�1 rather than 1.3 � 10�2 ps�1 as reported in ref. 21 (see Fig. 4.5,
Chapter 4, in ref. 58), which accounts for the 4 orders of magnitude difference.
The value of ref. 21 corrected by 4 orders of magnitude is shown with a horizontal
orange line in Fig. 6. The agreement with our calculation is very satisfactory.
Therefore, our method has served to correct the nucleation rate published in
ref. 21.

To summarize our results we show in Fig. 7(a) and (b) the nucleation rate
versus the volume fraction f and the supercooling DT ¼ Tmelting � T for the PHS
and the Tosi–Fumi NaCl systems respectively. We compare our nucleation rates
Table 2 Nucleation rate, and variables involved in its calculation for the Tosi–Fumi NaCl
model at 800 K and 1 bar (rf ¼ 3.345 � 1028 ions per m3). In the last row we report the
linear extrapolation of log10 J to rew, which is the definite value of the LM method. A mold
with 18 wells (9 for each ion type) is used for these calculations

Nw rw/Å DG/(kBT) log10 J/(m
�3 s�1) hti/ns

18 1.1917 15.0 29.9 12.8
18 1.2769 14.4 30.0 16.8
18 1.3620 13.4 30.2 35.4
18 1.4 30.2

Faraday Discuss. This journal is © The Royal Society of Chemistry 2016

http://dx.doi.org/10.1039/c6fd00141f


Fig. 6 Solid symbols: nucleation rate computed for different rw's for the Tosi–Fumi model
of sodium chloride at 1 bar and 800 K. Black solid line: linear fit to log10 J(rw). Horizontal
brown line: literature value (including the error bar) of the nucleation rate.21 Horizontal
orange line: literature value corrected as discussed in the main text. Empty symbol with
error bar corresponds to our estimate of the nucleation rate. We give 1.5 orders of
magnitude error bar. 0.75 orders come from the arbitrariness in the determination of
rew and the rest from the statistical uncertainty of our calculations and the extrapolation to
rw ¼ rew.
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with previously published results based on Umbrella Sampling (US),19,21,22

Forward Flux Sampling (FFS),21,22 Seeding46,51 and brute force (BF) calculations.22,46

Our results are in excellent agreement with either US or BF calculations in both
cases. The seeding technique (red dashed curve) provides a t based on Classical
Nucleation Theory to simulation data obtained by embedding a large crystal
cluster in the uid.51,60,61 Despite being an approximate method it captures within
3 orders of magnitude all data from other rigorous techniques. The strength of
the seeding method is that it provides an estimate of the nucleation rate over
a range of hundreds of orders of magnitude.51 FFS is in good agreement with US,
BF and our method for hard spheres at high densities, but seems to underesti-
mate J for low densities. Also for the NaCl system FFS seems to underestimate J
with respect to US, BF and our method.
5. Summary and discussion

In this paper we propose a new method for the calculation of crystal nucleation
rates in computer simulations. The method is based on the use of molds to
induce crystallization in state points where crystal nucleation is a rare event. The
method, which we call Lattice Mold, is divided into two steps. In the rst step the
probability per unit volume of forming a sub-critical crystal cluster in the meta-
stable uid is computed by means of thermodynamic integration. The thermo-
dynamic route consists of gradually switching on an attractive interaction
between the mold and the uid particles. In the second step, the frequency with
which such a cluster becomes post-critical is computed in Molecular Dynamics
simulations with the mold switched on. We validate our method with a contin-
uous version of the hard sphere potential and with the sodium chloride Tosi–
Fumi model. In all studied state points we obtain a good agreement with litera-
ture data.
This journal is © The Royal Society of Chemistry 2016 Faraday Discuss.
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Fig. 7 (a) Nucleation rate for the PHS (this work) and the hard sphere systems (other works
as indicated in the legend) as a function of the volume fraction, f. (b) Nucleation rate as
a function of the supercooling for the Tosi–Fumi NaCl model at 800 K and 1 bar. The US
value from Valeriani et al. has been corrected as explained in the main text.
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As discussed in the main text, the second step of the calculation is the most
computationally demanding since simulations of hundreds/thousands of diffu-
sive times are required. Such simulation times are rather accessible, particularly
so because our method can be implemented in efficient Molecular Dynamics
simulation packages like Gromacs. As an example, it took us ve days to obtain
the nucleation rate for a state point of the pseudo-hard sphere model using about
60 CPU nodes. The Lattice Mold is perhaps more demanding than Umbrella
Sampling, particularly since it has been shown that the latter can be used in
combination with Molecular Dynamics59 instead of Monte Carlo. However, we
expect Forward Flux Sampling to be more expensive than Lattice Mold, given the
huge number of attempts required to estimate the probability to reach the critical
cluster.22 The Seeding method is the most efficient way to obtain the nucleation
rate in a wide supercooling range,51 although, unlike Lattice Mold, Umbrella
Faraday Discuss. This journal is © The Royal Society of Chemistry 2016
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Sampling or Forward Flux Sampling, it relies on the validity of Classical Nucle-
ation Theory.

In Umbrella Sampling simulations it has been observed that the structure of
the cluster core is different from that of the interface in systems like Lennard-
Jones or water.25,42 This sort of effect could also be captured by the Lattice Mold
method given that the induced cluster generates a crystalline halo in such a way
that the interfacial structure is not expected to be affected by the presence of the
mold in the critical cluster's core. In this respect, it is desirable that the mold is
signicantly smaller than the critical cluster. For example, the mold used for the
calculation of the nucleation rate of pseudo-hard spheres at a reduced pressure of
16 contains 32 wells whereas the critical cluster is expected to have around
120 particles.19 One knows that the employed mold is sufficiently small if it takes
a long time to crystallize the system in the second step of the calculation
(hundreds/thousands diffusive times).

In our approach the nucleation pathway is dictated by the mold structure. This
issue may be seen as a drawback, but it actually has several advantages over other
approaches that rely on the use of local-bond order parameters to detect the growth
of crystal clusters. On the one hand, the use of molds enables the study of crystal
nucleation through arbitrarily complex structures. It may be quite challenging to
nd local-bond order parameters for complex solid structures where the local
environment changes between different positions of the unit cell. On the other
hand, our method enables to rationalise polymorphic selection by comparing the
nucleation rate with molds having the structure of all possible polymorphs. For
instance, it would be interesting to compare the nucleation rate for fcc and bcc
molds in the Lennard-Jones system given that US predicts bcc-like sub-critical
nuclei, whereas the stable phase is fcc.18 Also for the case of water there are different
ice polymorphs (ice Ih, ice Ic and ice 0) whose roles in ice nucleation are currently
under debate.25,62,63 The Lattice Mold method is quite suitable to tackle this sort of
problem. Of course, our method would fail in predicting nucleation paths through
clusters whose structures are not conceivable a priori. In this work we have used
molds with the equilibrium structure of the thermodynamically stable solid. The
fact that we got a good agreement with other simulationmethods suggests that this
is a good approximation for the systems here investigated.

Methods like Umbrella Sampling or Forward Flux Sampling are not exempt
from making a priori assumptions on the nucleation path either. These methods
rely on a local-bond order parameter to identify particles belonging to the crystal
phase. Such an order parameter is able to discriminate between the uid and a set
of solid structures a priori considered as possible candidates for being respon-
sible for crystal nucleation. In Umbrella Sampling or Forward Flux Sampling the
structure with the highest nucleation rate among all those consistent with the
selected order parameter emerges naturally in the calculations. However, this
does not guarantee that a faster nucleation path invisible to the order parameter
does not exist.

Our work may inspire experimental groups interested in self-assembly or
crystallization. Taking advantage of the fact that nano/micron-sized particles can
be trapped by optical tweezers,64 small crystalline clusters of colloids have been
built up with a lattice mold of optical traps.65,66 Optical tweezers could play the
role of the potential wells used in this paper to experimentally conne particles
and induce crystal nucleation.
This journal is © The Royal Society of Chemistry 2016 Faraday Discuss.
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