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Monte Carlo study of rod-like molecules 

A test of perturbation theory for the Kihara model 

by CARLOS VEGA and DAAN F R E N K E L t  

F.O.M. Institute for Atomic and Molecular Physics, P.O. Box 41883, 
1009 DB Amsterdam, The Netherlands 

(Received 20 December 1988; accepted 24 January 1989) 

We report a Monte Carlo study of fluids of linear, rod like molecules 
interacting either through a Kihara potential, or its soft repulsive potential 
counterpart. The internal energy, equation of state and a number of static 
correlation functions were obtained from the simulation. We compare the MC 
results with the predictions based on a perturbation theory due to Boublik. 

1. Introduction 
The non-central interactions of molecular fluids can be modeled in several ways. 

Best known among these is probably the multi-centre (interaction site) model El]. A 
rather different model that can be used is the Kihara potential. In the latter model 
the intermolecular interaction between two molecules is assumed to depend exclu- 
sively on the shortest distance p between the convex hard cores of the molecules (e.g. 
spherocylinders or ellipsoids). Although the Kihara potential is probably not partic- 
ularly useful to model real molecules (after all, equipotential surfaces of polyatomic 
molecules are never really convex) the model has the great advantage that it can be 
used to test thermodynamic perturbation theories on fluids of hard, convex bodies. 

The Kihara potential was first proposed some 40 years ago [2] but it has most 
often been used to model not too dense gases, because the evaluation of the second 
virial coefficient can be performed analytically [3]. 

In the few last years there has been an increased interest in simulating convex 
hard-cores fluids in particular prolate spherocylinders [4, 5, 6], ellipsoids [7], discs 
[8]. However thus far only one simulation on non spherical convex particles inter- 
acting through a Kihara potential has been reported [9]. 

Boublik has proposed a perturbation theory for convex bodies interacting via a 
Kihara potential [10]. In the absence of simulation data this theory was compared 
with experimental data on N2. However such a comparison is ambiguous because 
both the theory and the potential used are tested at the same time. Clearly a 
comparison of the theoretical predictions with the result of computer simulation 
using the same potential would be preferable. To this end we carried out numerical 
simulations of a system of rod-like particles interacting via a Kihara potential which 
can be regarded as an extension of the Lennard-Jones (12-6) potential to non- 
spherical cores. 

Due to the fact that the properties of the reference system, both structural and 
thermodynamical, must be known in the perturbation scheme, we have simulated 

I Permanent address: Physical Chemistry Department, Chemistry Faculty, Complutense 
University, 28040 Madrid, Spain. 
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the reference system (a soft repulsive model based on the WCA division for the 
Kihara potential), thus supplying information that may be used to improve the 
perturbation scheme. 

A simulation at larger L/a  (=  L*) was also carried out in order to find the effects 
of the non-sphericity on the static correlation functions. Because Kihara potentials 
depend only on p, the shortest distance, the form of algorithm and the expressions 
for the evaluation of U and p as well as their tail contribution assuming uniform 
fluid for large values of p, are applicable to any (short-ranged) Kihara model, as 
long as the molecular core is convex. 

2. Theoretical background 
The Kihara (12-6) potential is given by the expression 

u(p) = 4e [(alp) 12 - (alp)6],  p > O, 
u(p) = oo ,  p <~ o ,  (1) 

where e and o- are characteristic intermolecular parameters and p denotes the short- 
est distance between two convex bodies. Obviously p(r12 , wi2) is a function of the 
relative centre of mass vector r12 and the relative orientation of molecule 2 ~olz 
once the orientation of molecule 1 has been fixed. Since the potential is a function of 
the shortest distance, it is useful to transform to variables characterizing the convex- 
body geometry. So rather than r lz ,  the set O, qb, and p is commonly used. In terms 
of these coordinates we can express d1'12 as [11] : 

dr12 = H. ((6rz2/60) x (6rx2/6~b)) dO d(a dp (2) 

where la denotes the unit vector perpendicular to the supporting plane, and 0 and ~b 
are the polar angles of the supporting plane (see in Figure 1). Following Boublik's 
treatment we can express an average correlation function gay(P) as 

g,v(P) ~ g(p, O, d~)la . ((6ra2/60) x (6r~2/6c~)) dO dr d ~ , 2  

- ~ I a . ((6r12/60) x (6r12/6qb)) dO dq~ dtox2 (3) 

The denominator in equation (3) is just So +o +o the surface averaged over all the 
relative orientations, traced by the centre of one core when it moves around another 
core at constant distance p 

Se+o+ ~ = f I 1 . ((6ra2/60) x (c~1'12/c~)) dO d~b d w 1 2  . (4) 

So+p+ r can be expressed in terms of a few simple geometrical quantities character- 
izing the convex bodies, the surface area S~, and the mean radius of curvature of the 
respective cores R~, and the distance p: 

Sc+p+r = 2S~ + 8nRZo + 16rcR~p + 4np 2 . (5) 

The mean radius of curvature and the mean value of the 'excluded volume'  
generated using this procedure can be expressed in terms of So, Re and V~ (volume of 
the convex core) [12] 

Rr162 = 2Rr + p , (6) 
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Figure 1. Visualization of the quantities that are used to specify the relative position and 
orientation of two convex bodies. Meaning of symbols: p, distance of closest approach 
between the two convex surfaces, p, unit vector perpendicular to the supporting plane. 
(0, ~b), Polar and azimuthal angles specifying the orientation of la in a coordinate 
system fixed to molecule I. 

V~+p+ c = (2Vr + 2ScR~) + (2S~ + 8~zR2)p + (8nRr 2 + (4rc/3)p 3 . (7) 

The excess internal energy can be expressed in terms of  the average correlation 
function as [11] 

Uex/u = n/2 f u(p)Oav(p)S~+o+ c dp (8) 

where n is the number  density and N is the number  of  particles. Similarly the 
equat ion of state can be expressed in terms of the virial expression as [11] 

Z = PV/NkT  = 1 -- 1 /3NkT(~  ~ r u . Vuuo{ou)), (9) 
i<j  

where the bracket  means ensemble average and V u denotes the gradient operator.  
For  a Kihara  potential this gradient  can be expressed easily as: 

% , , / p O  =  ,  du,/dpO . (10) 
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The equation of state can be also written in terms of the average correlation 
function as 

= 1 - n/6kT f ( r l 2 .  Pi2)~"gajp)Sc+p+c(du/dp) dp (11) Z 

where the bracket denotes ensemble average over all the configurations keeping the 
shortest distance between the cores constant. In the absence of structural correla- 
tions the evaluation of ( r 1 2  �9 [ . t i 2 )~  n reduces to a geometrical problem. For convex 
bodies: 

(rl2 ., ,,g~o 3V~+e+c (12) 
�9 ~12/p = Sc+p+c 

The second virial coefficient of a Kihara-like potential is given by: 

where f(p) denotes the Mayer function. This expression can be evaluated numeri- 
cally or, for the Kihara (12-6) potential, analytically as a series of gamma functions. 

Boublik [10] has proposed a perturbation scheme for fluids interacting through 
a Kihara (12-6) potential along the lines of the well-known WCA theory for simple 
liquids 1-21]. The potential is split into a reference part: 

uO(p) = u(p) + g,  p < 21/60 ",~ 
(14) u~ = 0 ,  p > 21/6o ' 

and a perturbation term: 

Ul(P) = --/~' P < 21/60" "'~S 
(15) ui(p) = u(p) , p > 2i/60" 

With this division a first order perturbation expansion can be formally written as 
follows: 

= A ~ + Nn/2 f ui(p)o~ tai2 ) drl2 dtal2 (16) A 

or using equation (3) 

A A ~ + Nn/2 .f ul o S = (P)Oav(P) r162 dp. (17) 

It is clear now that a knowledge of OOajp) is necessary for evaluating the first 
term of the perturbation expansion. For molecular liquids such as N2, Oz a reason- 
able choice for the core is to take a linear rod along the line joining the atomic 
centres. With this choice of the core, the geometrical parameter Re, V~ and Sr take 
the values: 

Rc = L/4, (18) 

S~ = 0, (19) 

V~ = 0, (20) 

where L denotes the length of the linear rod. 
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3. Method 

Simulations were carried out for the reference potential defined in equation (14) 
and for the Kihara potential equation (1) using linear rods as cores. During our 
simulation, a number of structural and thermodynamical properties were evaluated. 
These are briefly described below. 

3.1. Structural properties 

Let ( N ( r ) )  and ( N ( p ) )  denote the average number of pairs of molecules with a 
distance between the centre of mass between (r - Ar/2, r + Ar/2), respectively with a 
shortest distance between the cores lying in the range (p - Ap/2, p + Ap/2). Then g(r) 
and g,v(P) are computed as follows [13]: 

(U(r ) )  
g(r) = 2 Nn4/3n((r + Ar/2) 3 - (r - Ar/2)3) ' (21) 

( N ( p ) )  

gav(P) = 2 X n ( V  c + p + cap/z) +r - V~ + p_ cap/2) + ~)' (22) 

where r denotes the centre of mass distance, and p refers to the shortest distance. 
Typically, a value of 0.04a was chosen for both Ar and Ap. 

The expansion in spherical harmonics of the pair correlation function for an 
isotropic system of linear molecules is given by [14] 

g(r, tox, I[,id12) = 4n ~ glt,m(r)Ylm(tOa)Yv_m(lJ02) , (23) 
l ,  l ' ,  m 

where to I and Go 2 express the orientations of molecules 1 and 2 in a frame where rlz 
is along the z axis. The coefficients gll,,,(r) of this expansion were evaluated using the 
expression [15] 

gu,m(r) = 4no(r)( Y*m(t~l)Y~,_,,(w2))she n , (24) 

where ( )sh,n denotes ensemble average over all the relative orientation with the 
distance between the centres of mass in the range (r - Ar/2, r + At/2). In order to 
test whether the Monte Carlo averages were evaluated over isotropic equilibrium 
configurations the overall orientational order parameter of the systems was also 
calculated [16]. 

3.2. Thermodynamical properties 

The excess internal energy U ex and the equation of state (compressibility factor, 
(Z) were evaluated for the reference and the Kihara potential. 

3.2.1. Reference potential 

As this is a finite range potential, it does not pose special problems. The poten- 
tial energy was evaluated during the runs and the pressure was calculated using the 
virial equation equation (9) together with equation (10). 
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3.2.2. Kihara potential 

I t  seems clear that for the Kihara  potential p is the natural variable to be used in 
any cutoff of the intermolecular interactions because the potential energy is a func- 
tion of p only. Moreover, the tail contribution takes a simple form with this choice 
of the cutoff (equation (8) and equation (11)). We did the runs with a cutoff at 
Pc = 2.5a. As the oscillations of gay(P) were still appreciable at p = 2.5a, we used the 
actual values for the pair correlation function gay(P) obtained with Pc = 2.5a for 
values of p up to p = 3.5a and assumed uniform fluid for p > 3.5a. We verified that 
the numerical results for gav(P) were hardly affected when the cutoff value of the 
potential was increased from 2.5a to 3"0cr. The contribution of the tail was obtained 
assuming that:  

g(p) = 1, p > 3.5a. (25) 

Assuming a uniform fluid we can use (rx2 .. ,,geo given by equation (12) instead of �9 P X 2 / p  

( r ~ / .  la~2)~" to obtain the tail correction to equation (11). It was observed that 
g,v(P) typically differed less than 2 per cent, from the value of 1 beyond p = 3.5a. 
This provides an estimate of the relative error in the tail contribution. 

The expression for the tail contribution to the internal energy and to the com- 
pressibility factor take the simple form: 

folu(p)Se+p +c UeXtan/N = n/2 dp (26) 

and 

~ oo 

Zta u = --n/(6kT) (du/dp)3V~+p+ c dp. (27) 
u n i  

In equations (26) and (27) P,.i denotes the first value of p in which uniform fluid 
can be assumed. 

The tail contribution to the internal energy was about 2 per cent of the total 
value, and in the range (2-30 per cent) to the total pressure. The contribution of the 
30 per cent was only obtained when the total pressure itself was close to zero. 

4. Simulation conditions 

A reference system of 108 rods with L* = 1 and T* = T/(e/k) = 1 was studied at 
several values of t h e '  packing fraction ', defined as 

~/= nV~, (28) 

where V~ denotes the volume of a spherocylinder of a diameter and length La given 
by: 

V~ = nail6(1 + 3/2L*). (29) 

Also, a system of 216 linear rods at T* = 1.075 was studied for both the refer- 
ence system and the Kihara  fluid at several values of the packing fraction. 

The L* in the latter case was taken as L* = 0.2899 which follows from the 
parameter of N2, L = 0"93/~ and a = 3.2072/~ taken from [17]. We studied the 
isotherm for the reduced temperature T* = 1.075 because this allows us to compare 
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Oo I [ 

g220 

0 ~ ~  t 

639 

g200 

-1 I I I I 
1 1.5 2 2.5 rJi, 

Figure 2. Spherical harmonics gooo, g20o, g2zo for linear rods with L* = 0.2899 and 
T* = 1.075, at packing fraction r/= 0.40. Solid line shows the results of MC for the 
reference system. Dots and squares are the MC results for the Kihara potential 
(r* = r/,~). 

with two both the results of Boublik's theory [10] for this system and the experi- 
mental results for the N 2 at 126 K. 

Constant volume Monte Carlo runs were carried out by the method of Metro- 
polis et al. [18]. In all the simulations the initial configuration was a crystalline 
lattice of parallel linear rods in a cubical box. Periodic boundary conditions were 
used. New configurations in the MC run were generated by simultaneous random 
trial moves in both the position and the orientation of single molecules. 

The number of configurations used for equilibration was usually about half 
million (=  5000 trial moves/particle for the 108 particle system) and thermodynami- 
cal averages were obtained over typically half million configurations sampling every 
20 trial moves per particle. The acceptance ratio was always kept in the range 
(30--70 per cent). A typical run took about 4 hours of CPU time on a Cyber 990. An 
estimate of the statistical error was obtained by dividing the estimated standard 
deviation of the property under consideration by the number of independent 
samples. This latter quantity is defined as the number of samples divided by the 
'correlation length '. This correlation length was estimated following [19]. 

As a test, a run was done with L* = 0 which was in good agreement with results 
for the Lennard-Jones potential given in [20]. 

5. Results and discussion 

The success of perturbation theories for simple liquids has clearly demonstrated 
that the repulsive forces are the determining factor for the fluid structure [21] at 
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1 I I 

~ o 

2 -- �9 # 

�9 �9 �9 ~ e ~  ~  - -  - -  

o l I i 
2 2 

(a) 0 / o (b) 

Figure 3. Average correlation function gay(P) for linear rods with L* = 0.2899 and 
T* = 1.075 for the reference potential (solid line) and for the Kihara potential (dots). 
(a) packing fraction t /= 0.20. (b) packing fraction r/= 0.40. 

high densities. However, for molecular liquids is not, a priori, obvious that repulsive 
forces determine both the positional and orientational structure of a dense fluid. For 
molecules interacting with a Kihara potential, the reference system defined by the 
equation (14) contains all the repulsive forces, as is clear from equation (10). This 
division of the potential corresponds therefore to the WCA choice of the reference 
system. It would be interesting to know whether the structure of the reference 
system given by equation (14) reproduces the structure of the fluid interacting 
through the full Kihara potential given by equation (1). 

In figure 2 the first 3 spherical harmonics of the expansion of the equation (23) 
are shown, for both the reference and the Kihara potential. It is clear from this 
figure that the positional structure 9ooo as well as the orientational one given by the 
g2oo, g220 of the reference system are very close to those of the Kihara fluid, for the 
systems studied. Since all the thermodynamical properties of the Kihara fluid can be 
expressed in terms of the average correlation function gay(P) defined in equation (3), 
it is interesting to compare the behaviour of this average function for the reference 
and Kihara system. Such a comparison is shown in figure 3. This figure shows gay(p) 
for the reference potential and Kihara potential at two packing fractions (r/= 0.20 
and ~/= 0.4). At low densities the structure of the reference and Kihara system are 
seen to be quite different. This is to be expected as the low density limit of this 
correlation function is not the same for these two systems. However at high densities 
(r/= 0.40)g,v(p ) of the two systems is very similar. In fact, the resemblance between 
the ga,,(P) for the Kihara and reference fluid at r /=  0.40 is closer than that of the 
radial correlation function gooo(r) (see figure 2 and figure 3(b)). Figure 3(b) provides 
information about the convergence of the perturbation series, which is given by 
equation (17) to first order. The Gibbs-Bogoliubov inequality applied to Kihara- 
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r *  

(b) 
Figure 4. Spherical harmonics for a reference system with L* = 1, T* = 1 (solid line), and 

for a reference system with L* = 0.2899, T* = 1.075 (dashed line) both at a packing 
fraction r / =  0.35. (r* = r/a). (a) Spherical harmonic  #200. (b) Spherical harmonic #220. 
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2.5 

0.0 

2.0 

1.5 

1.0 

0.5 

0.0 
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

d* 
Figure 5. Average correlation function gay(P*) (solid line) and radial distribution function 

9(r*) (dashed line) for the Kihara potential with L* = 0.2899, T* = 1.075 at packing 
fraction r/= 0.25, where d* refers to both p*(p/a) or r*(r/cr). 

like potentials yields [14]: 

A ~ + ~ ul(p)g,,(p)Sr dp < A < A ~ + ~ ul(p)g~162 dp. (30) 

Clearly if 9av(P) is similar to gO(p), as is shown in figure 3(b) then the perturbation 
expansion may be expected to converge rapidly and we may expect quite reasonable 
results by trunacting after the first-order term. Not surprisingly 9av(P) is seen to be 
somewhat larger than g~ in the range where ul(p) is negative (cf. equation 30). 

For more anisometric molecules where the orientational structure becomes 
stronger and longer ranged (see figure 4) the agreement between gav(P) and gO(p) is 
expected to be worse. 

The relationship that exists between the average correlation functions 9(0 = 
9ooo(r) and 9~v(P) is illustrated in Figure 5 where both are plotted for the reference 
system. 

Let us continue with the analysis of the assumptions underlying in Boublik's 
perturbation theory. In Boublik's theory [10] 

Ar ~ = A . . . .  ISPTHsp(dBH)'  (31) 

where Ar~ refers to for the residual Helmholts free energy of the reference system 
and Are~, iSPTHsp(dnH) to the Helmholtz free energy of a hard equivalent system of 
spherocylinders (HSP) the diameter of which is computed using the BH criterion 
[22] 

P 

= _ j fO(p) dp. (32) d 

Actually the free energy of the HSP is approximated by integration of an 
improved scaled particle theory (ISPT) equation of state. The free energy A may be 
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2 �84 . ~ "  

\ 
> 

v �9 , . v �9 i �9 i �9 I �9 i , i . 

0 . 0 0  0 . 0 5  0 . 1 0  0 . 1 5  0 . 2 0  0 . ~  0 .30  0 .35  

q, 
Figure 6. Compressibility factor for the reference system with L* = 1 and T* = 1 (dashed 

line) and for hard spherocylinders (solid line). The hard spherocylinder data were 
taken from reference [5]. 

ob t a ined  f rom the s imula t ion  by  t h e r m o d y n a m i c  integrat ion.  However ,  here we only 
cons ider  differential  version of equa t ion  (31) 

Z O = Z I S P T H s P ( d B H  ) (33) 

where the mean ing  of the symbols  is the same as in equa t ion  (31). Z~SPT is given by  

ZISPT ~--- 1/(1 - r/) + 3~r//(1 - r/) 2 + 0 ~ 2 r / 2 ( 3  - / 7 ) / ( 1  - -  ~)3 ,  (34) 

R c S~ 
ct = a v e "  (35) 

Table 1. Simulation results of the compressibility factor Z~ m and excess internal energy U~i x 
for soft repulsive linear rods with L* = 1 at T* = 1. ZlSPT stands for the compress- 
ibility factor of the reference system as given by Boublik approach of equation (33). Z 2 
stands for the compressibility factor of the reference system as given by equation (36) 
with a Verlet-Weiss like choice of the hard spherocylinder diameter. 

q Zsim ZISPT Z2 Ue~.~m/NkT 

0"065 1'37 +___ 0"015 1'37 1'38 0"030 + 0.001 
0"098 1"62 __+ 0'02 1"62 1"59 0"049 __+ 0.002 
0.131 1'90 ___+ 0.02 1"93 1'94 0"072 ___+ 0'001 
0.164 2"31 _____ 0'02 2"30 2"31 0'107 +___ 0.002 
0"196 2'67 __+ 0"04 2"73 2"74 0"136 + 0.004 
0"256 3"75 _____ 0'03 3"83 3"81 0'226 __ 0.004 
0"289 4"45 _____ 0-03 4"64 4"58 0"283 _____ 0.003 
0"314 5"21 __ 0"03 5"38 5"28 0"353 __ 0.003 
0.348 6"25 + 0"04 6"63 6'43 0"452 + 0.004 
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Table 2. Simulation results of the compressibility factor Zsi m and excess internal energy U~i~, 
for soft repulsive linear rods with L* = 0.2899 at T * =  1.075. Z~SeT stands for the 
compressibility factor for the reference system as given by Boublik approach of equa- 
tion (33). 

/~  Z s i m  ZIseT U'~i~ / N k T 

0"125 1"058 _+ 0'003 1"055 0"00556 _+ 0'00001 
0'025 1'108 _+ 0"005 1"113 0'0103 _+ 0'0005 
0"05 1"246 + 0'007 1'242 0"024 _+ 0"001 
0"10 1'57 _ 0"01 1'56 0'055 + 0'001 
0'15 1'98 +_ 0"02 1"98 0'095 +_ 0'002 
0"20 2"54 + 0'03 2'53 0"150 + 0"004 
0"25 3'30 _+ 0"03 3"28 0'226 _+ 0'003 
0'30 4"23 +_ 0'03 4"30 0'320 +_ 0'005 
0"35 5.59 __+ 0-03 5.73 0.460 +_ 0-004 
0'40 7.47 ___ 0.04 7.76 0.661 + 0.006 

First we compare the behaviour of the compressibility factor Z of the reference 
system with L* = 1 (L* = L/a) at several packing fractions with Z of a hard core 
system with L* = 1 (L* = L/d) where d is the hard diameter (see figure 6). The 
compressibility factor of these two systems is found to be nearly the same. The 
compressibility factor of the soft repulsive system is slightly larger than that of the 
hard system over the density range studied. 

| O  I I i I . i , I , i , i , I 

0 ~ 3 ""L~'/ 

4 

2 

�9 , , , , , , , , , , , �9 , �9 , �9 

O.O0 0 . 0 6  0 . 1 0  O . I S  0 . . 2 0  0 . 2 5  0 . 3 0  0 . 3 5  0.40 

Figure 7. Compressibility factor for a reference system (solid line) with L* = 0.2899, 
T* = 1.075. The dashed line denotes the compressibility factor as given by the second 
virial coefficient of this system evaluated numerically from equation (13). The insert 
shows the behaviour of the function (Z - 1)In at low densities. The horizontal solid 
line indicates the value of the second virial coefficient. Note that a weighted least- 
squares fit to the MC data very nearly coincides with B z at t /=  0. 
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The quality of the approximation expressed by equation (33) is shown in Tables 
1 and 2. In these tables the present simulation results for the reference system are 
compared with the predictions based on equation (33) (Z~sPT). It turns out that 
equation (33) works well for short rods at low and intermediate packing fractions, 
but less so at high densities and for less spherical particles. At high densities equa- 
tion (33) overestimates the compressibility factor of the reference system. This effect 
is probably due to the fact that equations of state derived from scaled particle 
theory tend to overestimate the compressibility factor of hard core fluids. At high 
densities equation (31) leads therefore to an overestimate of the residual part of the 
Helmholtz free energy of the reference system. It has been suggested [23] that a 
better estimate of the compressibility factor of the reference system could be 
obtained using the following convex body equation of state 1-24] 

Z -- 1/(1 - / ] )  + 30~/]/(1 - 1])2 _[_ (30C2/]2(1 __ 2/]) + 5~/]3)/(1 - - / ] ) 3  (36) 

together with a Verlet-Weiss like choice of the diameter of the hard spherocylinder 
[10]. The result of this approach is shown in the fourth column of table 1. 

Figure 7 illustrates the simulation results of Z of the table 2. Note that for 
/] < 0.05, Z is adequately represented by the value computed using only the second 
virial coefficient. It is also found that, in this same density range, there is good 
agreement betwen the computed excess internal energy and the one calculated using 
the low density limit for gay(P) (i.e. the Boltzmann factor). 

Boublik assumes that g~ is adequately described by g~SP(p) of a equivalent 
hard spherocylinder system. Of course it is interesting to know whether g~ does 
in fact resemble 9~SP(p). In figures 8 and 9 we compare these two functions for two 
different length-to-width ratios. The figures clearly demonstrate that the long-range 

3.0 

2.5 

?.0 

,.x 

0. 
v 1.5 ) 

1.0 

0.5 

00  Ji 
o.o o'.5 1.o 1'.5 2'.o 2'.5 3.0 

Figure 8. Comparison of gay(P*) for a reference system with L* = 1 and T* = 1 (solid line) 
and for a system of hard spherocylinders with the same L* and at the same packing 
fraction ~/= 0'348 (dashed line). 
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Figure 9. Comparison of gay(P*) for a reference system with L* = 0.2899 and T* = 1.075 
(solid line) and for a system of hard spherocylinders with the same L* and at the same 
packing fraction r /=  0.40 (dashed line). 

I I 1 

I 0 
1 

646 

1.5 1.5 
(a) p/o  (b) 

Figure 10. Average correlation function g~ of the WCA reference system. The solid line 
stands for the MC results and the dots for the zeroth order expansion of the function 
yO.,(p) (see text equation (37)). (a) For  the L* = 1 T * =  1 and packing fraction 
~/= 0.348. (b) For the L* = 0.2899 T* = 1.075 and packing fraction r /=  0.40. 
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behaviour, of the WCA reference system and the corresponding hard-core system 
are almost equivalent, except for values of p around p = a. However, as u 1 is 
constant for p < 21/6o ", the only thing that affects the value of the integral (equation 
(17)) in the range between p = 0 and p = 21/6o ", is the difference in the integrals of 
g~ and _HSP Yav in this range. Figures 8 and 9 suggest that although g~ and gHSP(p) 
may differ somewhat, there will be a strong cancellation of errors in the integral. It 
should be pointed out however that Boublik did not use simulation results for 
gaHSP(p) but a semiempirical expression [10] which overestimates the value of 
gHSi,(p = 0). This results in an underestimate of the integral in equation (17). As the 
sign of this error is opposite to the one introduced by using the approximate 
expression for Ar~ (equation (31)), one may expect an additional (fortuitous) cancel- 
lation of errors. 

We have also tried to reproduce the results of g~ using a zeroth order expan- 
sion of the average background function y~ around the hard prolate spherocylin- 
der system. The zeroth order expansion of yO(p) yields 

g~ = exp (--fluO(p))yaaSP(p ). (37) 

The results are shown in figure 10. The agreement is quite good, although in the two 
cases studied the zeroth order y expansion of y~ gives a lower first peak than the 
simulations results. Comparison of figures 8 and 9 with the figure 10 shows that the 
structure of the reference system (WCA type) is better reproduced by a zeroth order 
expansion of yO(p) around the hard spherocylinder system, than by the zeroth order 
expansion of g~ around the hard spherocylinder system. 

In Table 3 we compare the results of Boublik's perturbation theory with the 
simulation data for the Kihara potential. The data in table 3 apply to a system with 
L* = 0.2899 (nitrogen. Figure 11 shows the computer compressibility factor for 
Kihara 'N2 '  together with experimental data for real nitrogen from [25]. In the 
same figure we also show the predictions of Boublik's perturbation theory. From 
the figure it is clear that Boublik's theory is in fair agreement with the Monte-Carlo 
equation of state. The agreement is least satisfactory at low densities, as is to be 
expected for thermodynamic perturbation theories. This is understandable in view 
of the fact that the virial coefficient that follow from Boublik's theory is in disagree- 
ment with the exact expression equation (13). The agreement between the MC 
equation of state and experimental results is quite acceptable over the density range 
of packing fractions studied up to 3 Perltieal" This result is not a priori obvious 

Table 3. Simulation results of the compressibility factor Zsi m and excess internal energy U~i~m 
for Kihara linear rods with L* --- 0.2899 at T* = 1'075. Zth e and Uth e denote the results 
obtained with Boublik's theory [10]. 

/~ Zsi  m Zth e Usinv/Nk T Uthe/Nk T 

0"05 0'70 + 0'02 0'78 -0'664 + 0.005 --0'40 
0'10 0-44 _ 0'03 0"55 -1"24 _ 0"008 -0"84 
0'15 0.30+0.02 0"33 -1"79 +0.02 -1 '33 
0'20 0"27___0-03 0"16 -2'27 • -1 '85 
0"25 0'16 +__ 0"05 0'10 -2 '76 _ 0"01 --2'41 
0"30 0'24 • 0'03 0'26 -3"27 • 0.01 --2"99 
0"35 0"75 • 0"06 0"81 -3 '80 ___ 0.01 --3"57 
0'40 1"74 _ 0"08 2"02 -4'34 • 0"01 --4'12 
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q, 
Figure 11, Compressibility factor of the N 2 at T = 126K. Solid line: Experimental data 

taken from [25]. Squares: Boublik's perturbation theory. Triangles: Simulation results 
with the Kihara potential with L* = 0.2899 and T* = 1.075. The insert shows the 
low-density behaviour of the function ( Z  - 1 ) /n  for this system. Triangles: Simulation 
results with the Kihara potential with L* = 0.2899 and T* = 1.075. Squares: Boublik's 
perturbation theory. Horizontal solid line: Second virial coefficient B 2 for the Kihara 
potential with parameters of [17] evaluated numerically from the equation (13). Note 
that a weighted least-squares fit to the MC data very nearly coincides with B 2 at 
t /=0.  

because the Kihara potential parameters were fitted to second virial coefficient data 
only. Figure 12 shows the excess internal energy for N 2 and for the Kihara model as 
estimated by the perturbation theory and Monte Carlo simulation. It appears that 
the perturbation theory systematically predicts a higher value for this property than 
the simulations. At low packing fraction the simulation results approach the correct 
low density limit (as they should) but, again, the perturbation theory fails in this 
limit. The agreement between theory and the experimental data at higher densities is 
probably fortuitous, because the simulation results show that the Kihara potential 
actually underestimates the value of U ex. 

6. Canelusions 

MC simulations have been carried out for systems interacting via a Kihara 
potential and a reference potential of the WCA type. For L* = 0.2899 (' N 2 ') it is 
clear that the repulsive forces determine the positional and orientational structure of 
the fluid at high densities. Furthermore for this length-to-width ratio, the pertur- 
bation WCA series appears to converge rapidly at high densities (this follows from 
figure 3(b) and equation (30)). This would justify the truncation of a WCA-like 
perturbation expansion after the first order term. Comparison of the simulation 
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Figure 12. Excess internal energy of the N 2 at T = 126K. Solid line: Experimental data 
taken from 1-25]. Squares: Boublik's perturbation theory. Triangles: Simulation results 
with the Kihara potential with L* = 0.2899 and T* = 1-075. The insert shows the 
behaviour of this quantity at low densities. Dashed line: Boublik's perturbation 
theory. Dashed~lotted line: Simulation results. Solid line: Estimate of U ~ ..... given by 
equation (8) assuming the Boltzman factor for gay(P). 

results with the results of a perturbation theory due to Boublik [10] shows fair 
agreement over a rather wide density range. The theory is found to be wanting in 
two respects. First of all, it appears that the Boublik theory overestimates Ar~ at 
high densities. Moreover this overestimate becomes worse as the length-to-width 
ratio of the molecule increases. The second problem with Boublik's theory is that it 
fails to give an accurate representation of 9~ of the WCA reference fluid. 
Although this correlation function is very similar nsP to gay (P) of a hard spherocylinder 
system for large values of p, the approximation clearly breaks down close to p = a. 
The zeroth order expansion of the average background function of the WCA refer- 
ence system yO(p) around a system of hard spherocylinders gives with high accuracy 
the structure of the reference fluid in the whole range of p values. 

Comparison of the simulation results with experimental equation of state data 
for N 2 shows that the present Kihara potential reproduces the experimental results 
with acceptable accuracy over a much wider density range than it was designed for. 
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