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A generalized van der Waals theory of solid-fluid equilibria for non- 
spherical molecules 

By E. P. A. PARAS, C. VEGAt  and P. A. MONSON 

Department of  Chemical Engineering, University of  Massachusetts, Amherst, MA 
01003, USA 

(Received 7 September 1992; accepted 14 December 1992) 

By making use of recently obtained theoretical and Monte Carlo simulation 
results for solid state thermodynamics and solid-fluid equilibria for systems of 
hard dumbbells a generalized van der Waals theory of solid-fluid equilibria has 
been formulated. The theory predicts how the temperature dependence of the 
solid-liquid (and vapour-liquid) equilibrium is influenced by non-spherical 
molecular shape for diatomic molecules. Two regimes of behaviour are identi- 
fied, depending on whether the underlying hard dumbbell reference system free- 
zes into a plastic crystal or an orientationally ordered crystal. The theory 
correctly predicts a decrease in the triple point temperature and density 
change on freezing between spherical molecules, such as argon, and slightly 
non-spherical molecules which freeze into plastic crystal phases such as nitro- 
gen. An extension of the theory which includes a simplified treatment of the 
influence of quadrupolar interactions provides a plausible explanation for the 
relatively high reduced triple point temperature of carbon dioxide. 

1. Introduction 

Some time ago Longuet-Higgins and Widom [1] suggested that an equation of  
state of the van der Waals form could be applied to the freezing of  argon. The key 
feature of  their approach was to replace the equation of  state for hard spheres 
implied by the original van der Waals equation with a more accurate one based 
on results from molecular simulations. Since the simulation results for hard spheres 
exhibit a solid-fluid phase transition at high pressure, any generalized van der Waals 
equation of  state that incorporates these results for the hard-sphere equation of  state 
will likewise exhibit such a transition. In this way Longuet-Higgins and Widom were 
able to obtain quite accurate results for the freezing properties of  argon near its triple 
point [1]. 

In this paper we explore the possibility of  extending the Longuet-Higgins and 
Widom approach to the solid-fluid equilibria of diatomic molecules. Extensive 
results for the properties of  solid phases formed by hard-sphere models of  diatomic 
molecules (hard dumbbells) for several bond lengths L* (= L/tr where L is the bond 
length and cr is the atom diameter) using both Monte Carlo simulation results [2, 3] 
and cell theory [4] are now available. This work together with an accurate equation 
of  state for hard-dumbbell fluids provides a reference system for a generalized van 
der Waals treatment of  solid-fluid equilibria for diatomic molecules. We have 
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1064 E . P . A .  Paras e t  al.  

assumed that the stable crystal structure to be used in the generalized van der Waals 
theory is that of the hard-dumbbell reference system. Monte Carlo simulation work 
has shown that two types of solid phase are important in the freezing of hard 
dumbbells. For mildly anisotropic molecules [2, 3] (L* < 0.38) the stable phase on 
freezing seems to be a cubic (fcc or hcp) plastic crystal, resembling to some extent the 
13-phase of nitrogen. The freezing properties show a strong dependence upon L* in 
this regime [2, 3]. The coexistence densities and pressure increase sharply between 
L* = 0.2 and L* = 0.38. Also the density change on freezing into the plastic crystal 
decreases sharply with L* in this range and vanishes at the limit of stability of the 
plastic crystal phase. Freezing into the plastic crystal phase of hard dumbbells seems 
to provide a good structural model of the freezing of liquid nitrogen into I~-nitrogen, 
which is also accompanied by a small density change. For more anisotropic mole- 
cules [2] (L* > 0.38) the stable solid phases on freezing are orientationally ordered 
base-centred monoclinic structures which allow the dumbbells to achieve their max- 
imum packing densities and which are closely related to the structures formed by the 
solid halogens [5]. In this range the freezing properties show a much less strong 
dependence upon L*. Both the coexistence densities and pressure show a slight 
maximum in the range L* ,~ 0-6. The density change on freezing is comparable to 
that for hard spheres. 

One of the principal results of this work is a prediction of a variation of the 
reduced triple point temperature (defined as the triple point temperature as a fraction 
of the critical temperature) with molecular anisotropy. When the stable solid phase is 
a plastic crystal the reduced triple point temperature decreases with increasing 
molecular anisotropy. This is consistent with the observed behaviour for nitrogen 
and oxygen, both of which freeze into plastic crystals. When the stable solid phase is 
orientationally ordered, the triple point temperatures show a slight increase with 
increasing molecular anisotropy. This is to some extent consistent with the observed 
behaviour for the halogens. An adaptation of the approach to systems with quad- 
rupolar interactions offers a plausible explanation for the especially high reduced 
triple point temperature of carbon dioxide. 

2. Generalized van der Waals theory 

The basic equation of the generalized van der Waals theory is 

A = A o - ap ,  (2.1) 

where A is the Helmholtz free energy per molecule, A0 is the Helmholtz free energy 
per molecule of the reference system, p is the molecular density and a is a parameter 
which measures the strength of the attractive intermolecular forces in the system. 
Differentiation gives the equation of state 

P = P o ( P ,  T )  - a p  2. (2.2) 

In our work A 0 and P0 are calculated for fluids from the equation of state developed 
by Tildesley and Streett [6] for hard-dumbbell fluids (which for hard spheres reduces 
to the Carnahan-Starling [7] equation of state), and for solids from Monte Carlo 
simulation results [2] and the cell theory [4] obtained recently for hard dumbbells. 
We should point out that although to our knowledge this is the first application of 
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Solid-fluid equilibria 1065 

Table 1. Triple point properties for argon as determined from application of the Longuet- 
Higgins and Widom (LHW) theory based on Monte Carlo (MC) and cell theory (CT) 
data as compared with experiment [26]. A is defined as apep/kT. Pep stands for the close 
packing density of hard spheres. The reduced densities are defined as p* =pd  3 where d is 
the diameter of the hard sphere, a and ~3 are the thermal expansion coefficient and 
isothermal compressibility respectively. The subscript f denotes properties of the fluid 
phase. The original results of (LHW) [1] are also included. 

X p~ P*s Pf/Ps ln(pVf/NkT) AS/Nk UfNkT Tar NkTflf/Vr 

MC 16"8 0"897 1"093 1"218 -6"85 2"20 -9-99 0"52  0"0505 
CT 16"2 0"883 1"102 1"248 -6"96 2"51 -10"11 0"51 0"0518 
LHW 14-7 0"83 0"99 1"19 -5"9 1"64 -8"6 0"50 0-058 
Exp. - 0"841 0-937 1'114 -5'88 1"69 -8"53 0"366 0"0495 

equation (2.2) to solid-fluid phase equilibria for non-spherical molecules it has 
previously been applied to vapour-liquid equilibria by Rigby [8] and also to 
the study of  nematic-isotropic equilibria in liquid crystals by Barboy and Gelbart 
[9]. 

As a starting point we have repeated the calculations of Longuet-Higgins and 
Widom [1] for the case of spheres. Our calculations differ in some respects from those 
of Longuet-Higgins and Widom and this does affect the results obtained. The 
principal difference is that the estimates of the solid-fluid coexistence pressure and 
densities used by Longuet-Higgins and Widom are too low, since they were based on 
the early estimates by Ree and Hoover [10] which have since been superseded by 
more accurate results by the same authors [11]. For the hard-sphere solid we used the 
equation of state of Hall [12] which gives a good fit of the molecular dynamics data 
[13] and also the cell theory [4]. Table 1 gives a comparison with experiment for some 
properties of argon at the triple point as calculated by us and by Longuet-Higgins 
and Widom [1]. Our results differ from those of Longuet-Higgins and Widom 
because of the different estimates of the hard sphere freezing properties used. 
Evidently our results, which represent a more correct implementation of the theory, 
are in most cases in somewhat poorer agreement with experiment than those of 
Longuet-Higgins and Widom. Nevertheless, the agreement is still good given the 
simplicity of the theory, and are sufficiently good to warrant investigation of the 
influence of the molecular shape within the context of  the theory. Also the results are 
not significantly changed when the cell theory is used to determine the properties of  
the hard-sphere solid. 

3. Influence of molecular shape on solid-fluid equilibria 

We begin with a general discussion of the phase diagrams produced from 
equation (2.1) for various values of L*. Figure 1 shows reduced temperature 
versus reduced density for values of  L* = 0-0, 0.3, 0-6, 1.0, showing both vapour-  
liquid and solid-liquid equilibria. In these calculations the cell theory was used 
to determine the properties of the hard-dumbbell solids. Notice the broadening 
of the vapour-liquid coexistence region with increasing anisotropy. Plots of the 
logarithm of the reduced vapour pressure versus the reciprocal of the reduced 
temperature for different values of L* show that the reduced vapour pressure 
decreases with increasing L* at a given value of the reduced temperature, and 
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Figure 1. Coexistence curves for diatomic systems. The lines correspond to: solid, L* = 1.0; 
dashed, L* = 0'6; dotted, L* = 0-3; dot-dashed, L* = 0.0. 

provide a theoretical basis in terms of molecular shape effects for the acentric 
factor correlation of Pitzer [14]. These effects were first studied in the context of a 
generalized van der Waals theory by Rigby [8] and are qualitatively similar to those 
observed in a more sophisticated theoretical study of the two-centre Lennard-Jones 
model [15] and in experiments [16]. 

The variation of the solid-fluid coexistence densities with L* at any temperature 
is related to that in the underlying hard-dumbbell system [2] and for the systems 
shown here the densities increase with L* when reduced by the critical density. The 
coexistence densities increase sharply with L* when the dumbbells freeze into a 
plastic crystal and more slightly when the dumbbells freeze into an orientationally 
ordered structure. There is a slight difference in the observed behaviour when the 
freezing densities are plotted as volume fractions rather than as densities reduced by 
the critical density as we have done here. In the former case a slight maximum is 
exhibited in the coexistences densities for freezing into an orientationally ordered 
structure [2], as we described earlier. This is because in our model the critical volume 
fraction is a decreasing function of L*. Notice that the solid-fluid coexistence region 
is especially narrow for L* = 0"3. This is due to the sharp decrease in the density 
change on freezing for a hard-dumbbell system for values of L* close to that where 
the plastic crystal solid phase becomes unstable with respect to an orientationally 
ordered structure [3, 17]. The fractional density change observed is similar to that 
seen in the freezing of nitrogen. 

The variation of the reduced temperature at the triple point with L* can 
be interpreted in terms of a balance between two effects: the broadening of 
the vapour-liquid coexistence region with increasing L* and an increase in the solid- 
fluid coexistence densities with increasing L*. For small values of L* where the 
hard-dumbbeU reference system freezes into a plastic crystal the latter effect is more 
significant and the reduced triple point temperature decreases sharply with increasing 
L*. For larger values of L* where the hard-dumbbell reference system freezes into an 
orientationally ordered crystal the former effect is more significant and the reduced 
triple point temperature shows a slight increase with increasing L*. 
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Figure 2. The reduced triple point temperature versus L* for diatomic systems. The solid and 
dashed lines refer to the GVDW theory as applied on MC simulation and cell theory 
results, respectively. The points are experimental data for several systems [18]. 

Figure 2 shows the variation with L* of the reduced triple point temperature 
calculated from the theory using both the cell theory and the simulation results for 
the properties of the hard-dumbbell solids. Experimental results [18] for various 
molecules are also shown using values of L* based upon treating the molecule as a 
two-centre Lennard-Jones system [5, 19, 20]. For L* = 0"0 we see that the value of 
Tt/T c from the theory is somewhat lower than that for argon. This may be prin- 
cipally a consequence of the effect of the mean field approximation. Thus for 
L* < 0.4 variation of Tt/Te with L* from the theory seems to be roughly consistent 
with the experimental results for nitrogen and oxygen which both freeze into plastic 
crystals. It is interesting to point out that if one assumes that the error introduced by 
the use of the mean field approximation does not depend on L* then the theory 
would predict quite nicely the reduced triple point temperatures of Ar, N2 and 02. 
For L* > 0.4, Tt/Tc shows a slight increase with L*. The data for the halogens are to 
some extent consistent with this although the increase of Tt/Tc with molecular 
anisotropy is somewhat steeper in this case. Again we note that the use of the 
cell theory for the hard-dumbbell solid properties does not affect significantly the 
observed results, 

We have also shown results for methane and ethane. The good agreement 
between the value of Tt/Tr for methane and the theory for L* = 0-0 is surely for- 
tuitous since a united atom model for methane may be too drastic a simplification in 
the solid phase. In any case the theory is roughly consistent with the decrease in 
Tt/T r seen in passing from methane to ethane. 

Figure 3 shows solid-fluid equilibria on a pressure versus temperature plot at 
higher temperatures and the influence of molecular shape upon the slope of the 
equilibrium line is clearly exhibited. Some experimental results [21, 22] are shown 
in figure 4 and the qualitative similarities with the theoretical results in figure 3 are 
striking. The slight nonlinearity in the experimental solid-fluid equilibrium lines are 
presumably due to effects such as pressure dependence in the heat capacity which are 
neglected in the van der Waals treatment. The influence of molecular shape on the 
slope of the solid-fluid equilibrium line as it arises in the theory can be understood in 
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Figure 3. High pressure solid-fluid equilibria for diatomic systems. The lines correspond 
to: dashed, L* = 0.6; dotted, L* = 0.3; dot-dashed, L* = 0.0. 

terms of  the Clapeyron equation: 

dP AH A U + P A V  
d T -  T A V  T A V  

= ~  + P = P + aplps) 

= ~ [P~ + e~ - a(Ap)2], (3.1) 
2T 

where P~ and P~ are the contributions to the pressure of  the coexisting liquid and 
solid phases from the hard-dumbbell reference system, and the last equality shows 
that these quantities dominate the slope of  the melting line. Generally we should 
expect that p1 and P~ should show roughly the same dependence upon L* as the 
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Figure 4. 
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Experimental [21, 22] data for the solid-fluid equilibria of diatomic systems. The 
lines correspond to: dashed, C12; dotted, N2; dot-dashed, Ar. 
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solid-fluid coexistence pressure for hard dumbbells. Indeed they both approach this 
value in the limit of high temperature. The coexistence pressure for hard dumbbells 
increases with L* but exhibits a slight maximum at around L* = 0-6. Thus we expect 
the slope of the solid-liquid equilibrium line to increase as L* increases from zero 
and this is what is seen in figure 6. 

4. A simplified treatment of the influence of quadrupolar interactions 

In order to investigate the influence of quadrupolar interactions we have formu- 
lated a simple extension of the theory described above. Such interactions cannot be 
treated in a simple mean field approximation since the orientation average of the 
quadrupole-quadrupole interaction vanishes. For the solid phase the simplest 
approximation to the contribution from these interactions to the free energy is just 
the static lattice (zero temperature) sum of the quadrupole-quadrupole interaction. 
Thus we write 

A = A o - ap + U Q Q ( T =  0), (4.1) 

where UQQ(T : 0) is the static lattice sum per molecule of the point quadrupole- 
quadrupole interaction for the crystal structure of interest. This expression neglects 
the influence of thermal fluctuations upon the quadrupolar free energy, as well as the 
coupling between the molecular shape, dispersion force and quadrupole-quadrupole 
effects. Nevertheless it is consistent with the overall level of approximation used in 
this work. The value UQQ may be evaluated by performing lattice summation at the 
close-packing density of the considered solid structure for a unit value of the reduced 
quadrupole. Then it can be readily computed at any arbitrary density and quad- 
rupole moment by noting that UQQ scales as Q2(p/pcp)5/3 where Q is the value of the 
quadrupole and Pcp is the closest-packing density of the considered solid structure. 
We used of the order of 103 molecules to estimate UQQ and this exhibited good 
agremeent with the values obtained by using 104 molecules. In implementing 
equation (4.1) we used only the cell theory for the hard-dumbbell solid properties. 
For the liquid we used an expression of the form 

A = A o - ap + AQQ, (4.2) 

where AQQ is the quadrupolar contribution to the free energy per molecule of a 
system of quadrupolar hard dumbbells which can be approximated quite well using 
expressions developed recently by Vega [23]. This equation reduces to equation (2.1) 
for zero quadrupole moment. In order to apply the theory we need to choose a ratio 
for the relative strength of the dispersion and quadrupole-quadrupole interactions. 
We define a dimensionless parameter R as: 

a = ( Q 2 / a s ) / ( a / a 3 ) ,  (4.3) 

where 

d3 = or3( 1 + 3L* -- 11"3~2~ / '  (4.4) 

and d is the diameter of a sphere with the same volume as the dumbbell. R provides a 
measure of the ratio of quadrupolar to dispersion forces. To estimate an adequate 
value of R for CO2 we proceeded as follows. By using the experimental critical 
temperature and quadrupole moment [24], as well as the collision diameters from 
the Lennard-Jones 12-6 model of CO2 suggested by Singer et al. [19] and a choice of 
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Figure 5. Coexistence curve for diatomic systems with quadrupolar interactions. The lines 
correspond to: solid, L* =0.8, R =0.0; dashed, L*= 0-8, R=0.109; dot-dashed, 
L* = 0.0, R = 0-0. 

L* which was taken in this work as L* -- 0.80 (which is close to value of  L* = 0.79 
*2 = from [19]), one can compute Qc,exp Q2/(kTcd5) where the subscript c stands for 

critical values. Then a trial value of  R was chosen and the vapour-l iquid equilibrium 
was computed from (4.2) so that the reduced critical temperature % = kTcd3/a is 
obtained. We then computed .2 Qc,theo = R/'rc. We proceeded in this way until the 
theoretical value matched the experimental one. 

In figure 5 we show results in the form of  a reduced temperature versus reduced 
density plot. Also shown are results without the quadrupolar interaction for both 
L * =  0.8 and L * =  0. In the solid the presence of the quadrupolar interaction 
stabilizes the u-nitrogen structure (freezing into which occurs at much lower 
densities) relative to the base-centred monoclinic structure. The quadrupole-  
quadrupole interaction also leads to a significant broadening of the vapour-l iquid 
coexistence curve. These two effects in combination give rise to the considerable 
increase in the value of Tt/T~ relative to the non-quadrupolar case. We find that 
Tt/Tr = 0.74 which compares quite favourably with the experimental value of 
Tt/Tc = 0.71. Although we can only expect this calculation to be qualitatively 
accurate, we believe that to a large degree this explains the high value of Tt/T~ seen 
experimentally for CO2, Notice also the large density change on freezing, which is 
comparable with the roughly 30% increase in density seen experimentally for CO2 at 
its triple point [25]. 

5. Summary and conclusions 

We have presented a generalized van der Waals theory for the influence of  
molecular shape upon solid-fluid equilibria in diatomic molecules. Although the 
approach is a very simple one, and in some respects oversimplified, it does offer 
an interesting picture of  the influence of molecular anisotropy on phase equilibria. 
The theory predicts variations of  both vapour-l iquid and solid-liquid equilibria 
with molecular shape. Two regimes of behaviour are apparent, depending upon 
the bond length. For  short bond lengths, where the hard-dumbbell reference system 
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freezes into a plastic crystal, the theory predicts a decrease in the reduced triple point 
temperature and density change on freezing with increasing bond length. It provides 
a plausible explanation for the change in these properties in passing from argon to 
nitrogen. For longer bond lengths, where the hard-dumbbell reference system freezes 
into an orientationally ordered crystal, the theory predicts a slight increase in the 
reduced triple point temperature, and a density change on freezing which is compar- 
able with that for spherical molecules. This behaviour is somewhat similar to that of 
the halogens but the predicted change in the triple point temperature with bond 
length is less than that seen experimentally. 

We have implemented the theory using both results from cell theory and 
from Monte Carlo simulation for the properties of hard-dumbbell solids. Our 
results indicate that the use of cell theory does not significantly alter the results 
obtained and offers a useful approach to extending these results to more complex 
systems. 

We have extended the theory to the case of quadrupole-quadrupole interactions 
by assuming that the quadrupolar energy of the solid is simply that of  the static 
lattice. This leads to results which provide a plausible explanation for the high triple 
point temperature and large density change on freezing for CO2 [25]. 

This work was supported by a grant from the US Department of  Energy, 
Office of Basic Energy Sciences. One of us (C.V.) would like to thank the 
North American-Spanish Fulbright committee for the award of a post-doctoral 
grant. 
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