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Abatraet-We present a fast algorithm to evaluate the shortest distance between rods of either the same 
or different length. The presented algorithm speeds up considerably the evaluation of the shortest distance 
with respect to other previously reported algorithms. As an application, this algorithm has allowed a fast 
development of the statistical mechanics of molecular fluids interacting through potentials depending on 
the shortest distance as, e.g. the Kihara model. The. reported algorithm has proved to be very useful to 
study the liquid state either by simulation (Monte Carlo or Molecular Dynamics) or by perturbation 
theory and to obtain thermodynamic properties of Kihara-like fluids. 

INTRODUCTION 

Kihara proposed in 195 I an intermolecular potential 
model in which the interaction energy between a pair 
of molecules only depends on the shortest distance p 
between the molecular cores. The molecular cores are 
chosen to reproduce the molecular shape. The Kihara 
potential model has been mainly applied to evaluate 
the second virial coefficient B2 because analytical 
expressions are known (Kihara, 1982; Maitland et al., 
198 1). Its application to the study of molecular fluids 
in liquid state, however, has not been carried out until 
recently. The reason is that it is difficult to find a 
computationally efficient algorithm to evaluate p. 
Furthermore, the computation of p is a usual prob- 
lem in a lot of problems of quantum chemistry and 
statistical mechanics. In the application familiar to 
us, the natural choice of the core for a linear molecule 
(i.e. Nz, CO,) is a linear rod. Hence the importance 
of finding fast algorithms to evaluate p between linear 
rods of the same or different length, able to model 
pure liquids or mixtures, respectively. The algorithm 
should be fast so that it is possible to carry out 
simulation studies (Allen & Tildesley, 1987; Ciccotti 
et al., 1987) of liquid state by Monte Carlo (Vega & 
Lago, 1988; Kantor % Boublik, 1988) or Molecular 
Dynamics (Vega & Lago, 1990) techniques or by 
perturbation theory (Hansen & McDonald, 1986; 
Vega & Lago, 1991a, b). In these kinds of studies the 
evaluation of p is typically performed many millions 
of times and, therefore, it is absolutely necessary to 
fmd fast algorithms to obtain p. The method can be 
extended to non-linear rigid molecules as for instance 
ozone, propane, ciclo-propane, iso-butane that can 
be treated as a set of rods of uniform length (Vega 
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ef al., 1992). When the length to breadth ratio of the 
molecule is very high the evaluation of p allows to 
perform studies of phase transition to liquid crystal 
by computer simulation (Stroobants er al., 1987; 
Frenkel, 1988). 

Previously, two algorithms to evaluate p between 
linear rods have been reported. The first applied to 
the evaluation of p between rods of the same length 
(Sevilla & Lago, 1985) and the second extended the 
method to consider the rods of different length (Lago 
& Vega, 1988). In this work we present an algorithm 
to evaluate the shortest distance p between linear rods 
of either the same or different length. This algorithm 
is approximately four times faster than the other two 
previously proposed (Sevilla & Lago, 1985; Lago & 
Vega, 1988). We believe that the proposed algor- 
ithm will contribute to the statistical mechanics of 
molecular systems which interact through poten- 
tials depending on the shortest distance between 
the cores. 

The scheme of the paper is very simple. In the 
following section we shall present the details of 
the algorithm and in the Appendix we shall supply 
a FORTRAN subroutine to evaluate the shortest 
distance between linear rods of different length. 

ALGORITHM 

We shall start by describing the algorithm to find 
the shortest distance p between rods of the same 
length and later we shall show how it can be extended 
to rods of different length. 

Let us define r as the vector connecting two 
arbitrary points of the lines denoted as 1 and 2 
respectively (see Fig. 1). The rod numbered as 1 is 
contained in the straight line labelled as 1 and the 
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rod 2 in the straight line 2. We can write the vector 
r as: 

r = ru + p u2 - I u, (1) 

where II, II, are unit vectors contained in the lines 1 
and 2, respectively, ru is the vector connecting the 
centre of the rod 1 with the centre of the rod 2 and 
p and I are two arbitrary parameters which range in 
the interval (-co, + co). Let us define 1 as the length 
of the rod. Then when 1 and fi simultaneously range 
in the interval [-l/2,1/2] the vector I connects a 
point of rod 1 with a point of rod 2. Thus, the 
evaluation of p reduces to the evaluation of the 
absolute minimum of the modulus of r in the range 
p = [-I/2,1/2] rl = [-l/2,1/2]. Let us now construct 
a new map by representing in the abcissa axis the 
values of the parameter Iz and in the ordinate axis the 
values of n, and let us denote this plane as the 
(A, p) plane. From the definition, every point in the 
(A, p) plane represents a vector connecting a point 
of line 1 with a point of line 2 in the real space (See 
Fig. 1). Then the area enclosed by the intervals 
p = r--1/2, f/2] 1 = [-I/2,1/2] is a square in the (1,~) 
plane whose sides are also included [see Fig. l(b)]. 

The minima of the function ]r] and ti occur at the 
same point of the (12, p) plane or conversely between 
the same pair of points of the real space. For 
mathematical convenience we shall look for the mini- 
mum of r2, From equation (1) 6 is given by: 

?=r:,fn2+~*+2fir,*-llz 

- 2 I rlz. ul - 2 1 fi u, . u2. (2) 

Let us first evaluate the shortest distance between 
the lines I and 2. That can be done by setting to zero 
the derivative of equation (2) with respect to 1 and ,u. 
If we define 1’ and p ’ as the values minimizing ? in 
the equation (2) then its values are given by: 
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rods are embedded occurs at (A ‘, p’). The elhpses show 
contours where the function ? [see equation (211 takes the 

same value. 

A’-_ Ur12 . u,)-(u,~u*)@12~u2)) 
(1 - (u, * UZY) 

~, = (-_(r12. ~2) + (u, . ~2) (r12 4)) 
(1 -(u1 . ud2) 

(3) 

(4) 

By substituting these values of 1’ and p ’ in equation 
(1) the square of the shortest distance between the 
lines 1 and 2 is obtained. If the point (d ‘, /J ‘) is inside 
the square mapping the two rods on the (1, p) plane, 
then the shortest distance between the rods p is equal 
to the shortest distance between the lines and the 
problem of the evaluation of p is then solved. When 
the point (L ‘, p ‘) is not inside the square then the 
following discussion explains how to determine p. 

The interior part of the square of Fig. l(b) corre- 
sponds to interior points of rod 1 and rod 2. The sides 
of the square correspond to an interior point of a rod 
and an extreme of the other rod. Finally, the corners 
of the square correspond to an extreme of one of the 
rods and an extreme of the other. Let us now study 
the mapping on the (d, p) plane of all the pair of 
points of lines 1 and 2 which are at the same distance. 
For that purpose let us set the value of r* to a positive 
constant which we shall call d*. Equation (2) is then 
written as: 

+ 2 fl r,2 u, + (r:, - dz) = 0. (5) 

The general equation of a conic in the plane (x, , x2) 
is given by (Apostol, 1980): 

and has the same form as the equation (5) with the 
constants LX, j?, y, 6, 6, C$ being given by: 

a=1 /I=-2u,*u2 y=l 

6 = -2 r,r u1 L = 2 rIz. u2 4 =0$-d*). (7) 

It is easy to show that equation (5) is the equation 
of an ellipse in the plane (,a, p). The centre of the 
ellipse, namely, the point where the two principals 
semi-axes cross, has (n ‘, p ‘) as coordinates where 1’ 
and p ’ are given by equations (3) and (4) respectively. 
It can also easily be shown that the direction of the 
two main semi-axes of the ellipse bisects the angle 
determined by the I and p axes independently of the 
value of B, and, therefore, independently of the 
relative orientation of lines I and 2. The eccentricity 
of the ellipse, however, depends on the relative orien- 
tation between the lines 1 and 2. Therefore, all the 
pair of points of lines 1 and 2 in real space at a given 
distance d2 map onto an ellipse centred on 
(A’, c ‘),whose main principal axes form and angle of 
45”to the axes a and ,V in the (I, p) space. This is 
illustrated in Fig. l(b). Finally, it is also easy to show 
that the length of the ellipse axes increases when d 2 
increases. 

Let us now divide the (1, p) plane into four differ- 
ent regions and let us assign a side of the square to 
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Fig. 2. The four areas or regions in which the (A, cc) plane 
is divided for rods of equal length. The areas are labelled 
from 1 to 4 according to the number of the square side. 

a given region as it is shown in Fig. 2. Let us assume, 
for example, that for a pair of rods in a given relative 
orientation the point (L ‘, p ‘) falls inside the region 
labelled as 3. Furthermore, let us consider the set of 
ellipses centred on (A ‘, /r ‘) (each mapping equidistant 
pair of points in real space) and whose principal 
semi-axes form an angle of 45” with the axes L and 
I(. Obviously, one ellipse of this set is tangent to the 
square in the side labelled as 3 because their semi-axes 
are parallel to the bisecting lines of quadrants. This 
is so regardless of the eccentricity of the ellipses. The 
contact point of the side 3 of the square correspond 
to the coordinates of a point P of rod 1 and a point 
P’ of rod 2 in real space. Therefore, the shortest 
distance between the rods p that we are looking for, 
occurs between the points P and P’. In the same way 
if for another given relative orientation of rods 1 and 
2, the point (A ‘, p ‘) falls in the region iabelled as 1 
then an analogous argument drives us to the con- 
clusion that the shortest distance between the rods 
occurs on a point of the side 1 of the square of the 
(1, p) space and so on. In general, if (A’, p ‘) falls 
inside the regions labelled as i, then the shortest 
distance between the rods occurs on a point of the 
side i of the square. In previous algorithms the four 
sides of the square were explored to find p regardless 
of the value of (A ‘, p ‘). Now, once we know in which 
region falls (A ‘, p ‘), we shall only look for p in the 
corresponding side of the square. Thus, the present 
algorithm is about four times faster because only one 
side of the square is investigated. 

Let us explain now how to determine p on the side 
of the square of interest. For that purpose, we take 
again the above example where (L ‘, p ‘) falls in region 
3. From the preceding argument, p is given by a pair 
of points of real space represented by a point n ’ on 
the side 3 of the square in the (1, p) plane. We want 
to determine the coordinates of that point A ’ of side 

3. Let us recall that the side 3 of the square represents 
a given extreme of the rod 2 and any point of rod 1. 
The side of the square labelled as 3 is along the line 
p = -i/2 of the plane (12, p). This line corresponds in 
the real space to a given extreme of the rod 2 (the 
obtained as r, - l/2 u2) and any point of the line 1. 
Let us first calculate the minimum of the function 
given by equation (2) in the range represented by the 
line p = -l/2. This can be done from elementary 
analytical geometry since it is just the problem of 
finding the shortest distance of a point to a straight 
line. Let us assume that the shortest distance of the 
extreme 2 of rod 1 to the line 1, occurs in the point 
(A “I -l/2) of the (1, p) plane. Then according to the 
value of I” there are three different cases: 

1” < -112 (8) 

-l/2 < 1” < 112 (9) 

1” c l/2. (IO) 

Let us now remark that the function ti defined by 
equation (2) has only a minimum (the shortest dis- 
tance of the extreme 2 of rod 2 to the line 1) along 
p = -l/2. The coordinates of that minimum are 
(A “. -J/2). The function given by equation (2) in- 
creases monotonously when we move away from the 
point (A V, -l/2) on the line p = -l/2. Consequentiy 
if the condition given by equation (9) is satisfied then 
the shortest distance between the extreme 2 of rod 2 
to line 1 is also the shortest distance between the rods 
1 and 2, p. By the same reason, if the condition given 
by equation (8) is satisfied the shortest distance 
between the rods occurs in the point (-l/2, -l/2) of 
the (A, p) plane. This point of the (1, p) plane rep- 
resents the extreme 2 of molecule 2 (cc = - 112) and 
the extreme 2 of molecule 1 (A = -l/2). Finally, if the 
condition given by equation (10) is satisfied then the 
shortest distance between the rods p occurs in the 
point (l/2, -l/2) of the (2, p) plane. 

In other words, the conclusion of the last para- 
graph is that if equation (8) is satisfied then the 
shortest distance between the rods p occurs between 
the pair of extremes of rods 1 and 2 represented by 
the point (-l/2, -212) of the (d, ~1) plane. If equation 
(9) is satisfied then p occurs between the extreme 2 of 
rod 2 and an interior point of rod 1 represented by 
the point (L”, -l/2) of the plane (1, p). Finally, if 
equation (10) is satisfied then p occurs between the 
pair of extremes represented by the point (l/2, -1/2) 
of the (A, p) plane. 

For the sake of clarity we have illustrated the 
algorithm assuming that the point (A’, I’) falls in the 
area 3. The same arguments can be applied when the 
point (A ‘, fl ‘) falls in any of the other areas (i.e. 1, 2 
or 4) but now we have to change the side of the square 
to consider. 

The preceding arguments enable us to create a fast 
algorithm to calculate the shortest distance between 
rods of the same length. The scheme of the algorithm 
is shown in Table 1. 
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Table I. Scheme of tbc algorithm for the calculation of the shortest distance between linear rods of the same length 

I. 
2. 

3. 

4. 
5. 

6. 
7. 

Evaluation of (1’) p ‘) according to equations (3) and (4) 
Is (A ‘, p ’ ) in the square A = [ - I/2, //2]. p = [ - l/2,1/2]? 

Yes: go to stop 8 with (A, p) = (1’. /I ‘). 
No: determine the region (I, 2, 3, or 4) where (A’, I( ‘) falls. 

Select the side of the square (see Fig. 2) corresponding to the region found in step 2. The chosen side corresponds to a given 
extreme of one rod and all the points of the other rod. 
Calculate the shortest distance of the considered extreme to the line where the other rod is contained. 
Evaluate the coordinates in the (A, p) plane corresponding to the step 4 and label them as (A “, p “). (Either )A”1 = I/2 or Ip “I = l/2 
but not simultaneously.) 
Label 1 the coordinate whose absolute value is different from I/2. 
Is -r/zcv <l/2 

Yes: go to step 8 with (I, &) = (1”. @ “). 
No: q < -l/2: 

if q = p” go to the step 8 with (I, p) = (1”. -//2) 
if r( =I”go to the step 8 with (1.p)~(--1/&p’) 

rt > 112 

8. 

if 11 = p * go to the step 8 with (A, p) = (A “, //2) 
ifq=I”go to thestep8with(d.~)=(Z/2,~“). 

Evaluate pz given by equation (2) of the main text by substituting the values of 1. and p found in the above steps 1-7. 

The generalization of the algorithm to rods of 
different length is straightforward. The domain which 
contains all the pair of points of the two rods is now 
represented by a rectangle instead of a square in the 
(A, p) plane. The length of the sides of this rectangle 
is just the length of the rods. The algorithm shown in 
Table 1 holds also for rods of different length with 
minor changes. The definition of the areas should be 
modified as is illustrated in Fig. 3. This is so because 
the direction of the main semi-axes of the ellipse of 
the equi-distant pair of points does not depend on the 
lengths of the rods. The second change is that f/2 
should be substituted by Z,/2 when associated to 
the coordinate Iz (rod 1) and f/2 should be modified 
by 1,/2 when associated to the coordinate ~1 
(rod 2). 

We give as an Appendix a FORTRAN sub- 
routine to evaluate the shortest distance between 
a pair of rods of different length. It can also be 
applied to rods of the same length by setting the 
length of the two rods to the same value. 

/ -\ / , \ 
, \ 

/ Area 3 \ \ / 

Fig. 3. The four areas or regions in which the (A, p) plane 
is divided for the case of rods of different length. Note that 
now the pair of rods corresponds to a rectangle instead of 
a square. The lengths of the sides of the square are I, 

and 12. 

Program avuifuMity-The computer program is 
available from the authors upon request. 
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APPENDIX 

A FORTRAN subroutine called SDM to evaluate the 
shortest distance between rods of different length is given 
below. The input and output variables are: 

R12 = Cartesian coordinates of the vector connecting 
the centrc of rod 1 with the centre of rod 2. 

Ul = Cartesian coordinates of a unit vector along the 
rod 1. 

U2 = Cad?yian coordinates of a unit vector along the 

XLlD2 = Half bf the length of rod 1 @LID2 = 1,/2). 
XLZD2 = Half of the length of rod 2 (XL2D2 = 4/Z). 

RO2 = Output of the subroutine being the square of the 
shortest distance between the. rods. RO2 = p I. 
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SUBROUTINE TO EVALUATE THE SHORTESI DISTANCE BKIWEEN TWO RODS 
OF DIFFERENT LENGTH 
R12r VECTOR CONNECTING THE GEOMETRICAL CENTERS OF THE TWO RODS 
Ul = UNITARY VECTOR DEF’INIG THE ORIENTATION OF ROD1 
U2 = UNITARY VECIOR DEFINIG THE ORIENTATION OF ROD2 
XLID2= HALF OF THE LENGTH OF ROD1 
XL2D2- HALF OF THE LENGTH OF ROD2 
R02 - SQUARE OF THE SHORTEST DISTANCE BETWEEN TRE TWO RODS 

SUBROUTINE SDN(RlZ,Ul.U2.XLlLl2.XL2D2,RO2l 
DIMKNSION R12(3),Ui(3).U2(3I 
R122-R12(1hr2+R12~21~~2+R12(31+~2 
R12EU1-R12UIRUl(ll+Rl2(2MJl(2i+R12~3l~Ul(31 
Rl2EU2=Rl2(ll*U2Ul+R12(2l~U2~2l+Rl2~3i*U2~3~ 
UlEU2=Ul(lI*U2~11+U1(21*U2(2l+u1(J1*u2[3l 
CC=l.-u1EU2**2 
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C CHECKING WHETHER THE RODS ARE OR NOT PARALLEL 
IF (CC.L’i-J.E-61 THEN 

IF (RI~EUI.NE.O.~ THEN 
XLANDA=SlGN(XLlD2,Rl2EUI) 
GO TO 10 

ELSE 
XLANDA=O. 
XMU=O. 
GO TO 20 

ENDIF 
ENDIF 

C STEP 1 (SEE TABLE I ) 
XLANDA=(Rl2EUl-UlEU2*R12EU2l/CC 
XMU=l-Rl2EU2+UlEU2+Rl2EUll~CC 

C STEP 2 (SEE TABLE 1 1 
IF ((ABStXLANDA).LE.XLlD2l.AND.(ABS(XMU).LE.XLZDZ)) GO TO 20 
AUXil-ABS(XLANDA)-XLIDZ 
AUXI2=ABS(XMUl-XL2D2 

CSTEPS3TO7 [SEE TABLE II 
IF ( AUXIl.GT.AUXIZ) THEN 

XLANDA=SIGN(XLID2.XLANDA) 
10 XMU=XLANDA*UlEU2-R12EU2 

IF ( ABSCXhW.GT.XL2D2) XMU=SIGN(XL2D2.XMU) 
ELSE 

XMU=S1CN(XL202,XMU~ 
XLANDA=XMU*UlEU2+Rl2EUl 
IF ( ABS(XLANDA).GT.XLlDZl XLANDA=SIGNlXLlD2.XLANDA) 

ENDIF 
CSTEPS lSEE TABLE I) 

20 RO2=Rl22+XLANDA**2+XMU**2-2.*XLANDA~XMUWJlEU2 
1 +2.*XMU~RI2EU2-2.*XLANDA*Rl2EUl 
RETURN 
END 
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