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A new theory to study isotropic-nematic transition is proposed. This theory requires a good 
knowledge of the thermodynamic properties of the isotropic phase. It allows to study nematic 
formation in systems possessing attractive forces. We determine isotropic-nematic equilibria for a 
number of hard linear models as hard spherocylinders, hard ellipsoids, and hard tangent spheres in 
a linear configuration. The theory predicts quite nicely the transitions when compared to simulation 
results. We also study the effect of an ideal dipole or quadrupole on nematic formation. Dipolar or 
quadrupolar forces favor the presence of a nematic phase although the effect is moderate. However, 
for large multipole moments no stable nematic phase was found. 

I. INTRODUCTION 

During the last decade, significant progress has been 
made in the understanding of liquid crystals.’ Computer 
simulations of hard ellipsoids* (HE), hard spherocylinders3*4 
(HSP), and of Gay-Berne mode15*6 have been performed and 
nematic or even smectic order was found. The seminal work 
of Onsager showed that for very long models the second 
virial coefficient is enough for predicting an isotropic- 
nematic transition. For shorter molecules it is necessary to go 
beyond the second virial coefficient approximation. Parsons’ 
and Lee”” incorporated in an approximate way the rest of 
the virial coefficients of the series. Tjipto-Margo and Evans” 
evaluated rigorously up to the third virial coefficient and 
estimated the rest of the virial coefficients of the series fol- 
lowing the procedure of Barboy and Gelbart.‘* Another way 
of approaching the problem is by using the formalism of 
density functional theory.13 In these treatments, it is neces- 
sary to know the direct correlation function (DCF) of the 
system which is in general unknown. Thus, DCF is usually 
related to that of a hard sphere system. Most of these theo- 
retical treatments relate the properties of the isotropic phase 
to those of a hard sphere system. It is clear that this proce- 
dure will not always be in general satisfactory and it will 
face important problems when attractive forces are also 
present. In fact, most of the theoretical work’-4*7-‘1 (with a 
few exceptions’4) is focused on the study of liquid crystal 
formation in models of hard bodies. 

During the last two decades significant progress has been 
made in development of theories of the isotropic phase of 
molecular fluids.15 Integral equations have now been solved 
for a number of molecular fluids’6-20 and perturbation 
theories2’-24 have provided a very useful route to the ther- 
modynamic properties of those systems. Success has been 
especially significant with nonpolar molecular fluids25 and 
some very promising results have been obtained for polar 
fluids.26-28 It would be desirable to have a theory of the 
isotropic-nematic transition incorporating a correct descrip- 
tion of the isotropic phase. Moreover, it is important that this 
theory could be applied to systems having not only a hard 
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core but attractive forces as well. In this work, we propose a 
theory which satisfy both these two conditions. It is similar 
in spirit to the theories proposed by Parsons’ and Lee.‘*” 
However, it differs from them in that no mapping to a hard 
sphere system is attempted and it allows to use some of the 
more recent theories of liquid state. Furthermore, for very 
long molecules the Onsager limit is recovered. 

We shall apply this new theory to the study of nematic 
formation in HE, HSP, and in a model of tangent hard 
spheres in a rigid linear configuration which will be denoted 
as HLTS. Then, we shall study the effect of a dipole or quad- 
rupole moment on the formation of the nematic phase. In the 
case of a dipolar fluid the possibility of a ferroelectric 
nematic29*30 phase is also considered. 

II. THEORY 

Let us consider a system of N molecules in a volume V 
at temperature T and with the number density p = Nl V. The 
coordinates of the center of mass of molecule i are repre- 
sented by ri and the orientation of the molecule i is repre- 
sented by a set of orientational coordinates Oi. The normal- 
ization condition for such a set of coordinates is 

I dwi= 1. (1) 

For instance, for a linear molecule dwi may be written as 
sin /3d13&#/(4~), where 8 and 4 are the polar angles of the 
molecular axis. We shall denote the set of translational and 
orientational coordinates as di=dr, dwi . The free energy of 
the homogeneous phase of such a system may be written as 

A Aided AE‘es 

NkT =NkT +NkT ’ (2) 

A ideal 

E =ln(qidea’p)- 1, (3) 

A res 

I 

Yz-1 
- = 
NkT - dy’, o y’ (4) 

where y denotes the packing fraction defined as y=p V, 
being V, the molecular volume. The ideal molecular parti- 
tion function is denoted as qideal and it has units of volume. 
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In case the virial expansion given by Z = 1 + Z~c2B~ 
Y ‘- ’ converges, the residual part of the Helmholtz free en- 
ergy may be written as 

way of obtaining A=‘. In density functional theory (DFT) 
treatments,32-34 approximations are made on Eq. (8), namely 
on the DCF of the isotropic or of the nematic fluid. In gen- 
eral, the nematic DCF is related to that of an homogeneous 
fluid. In the generalized Onsager theories,8’9”’ emphasis is 
made on the virial expansion of Eq. (8). In fact, if virial 
expansion converges then it is possible to write down an 
equation for AreS of the nematic fluid analogous to Eq. (5), 

A res 

NkT 
= 5 B,*yk-’ 

k=2 (k-1) ’ 
(5) 

where Bt = Bk/Vke ’ and Bk stand for the kth virial coeffi- 
cient. A”’ represents the contribution to the free energy of 
the system due to the forces between molecules and accounts 
for the nonideality of the system. Liquid state theory of the 
last decades has been focused in the determination of A”’ by 
developing integral equations, perturbation theories or com- 
puter simulations which allow to determine A”’ for a number 
of molecular fluids. 

Let us now focus on a system with a nonuniform density. 
The free energy may be written in the absence of an external 
field as3’ 

p(l)dl 

-kT/;(l-h)dkJ j- p(l)p(2>c(l,2,Ap)dld2, 

(6) 
where c( 1,2,Xp) is the DCF of the system when the density 
of the system is given by Xp being p the equilibrium density 
distribution. The last term in Eq. (6) accounts for the pres- 
ence of intermolecular forces and will disappear for an ideal 
gas. Equation (6) provides a natural way of extending the 
division of Eq. (2) to a nonuniform system. In fact, we can 
write 

A ideal 

E =kT p( l)ln[qide’p( l)]dl- 
I I 

kTp( l)dl, (7) 

& =-kT/ol(l-X)dX/ 1 p(l)p(2)c(l,2,Xp)dld2. 

(8) 
For a uniform fluid p(l)=p and Eq. (7) reduces to Eq. (3) 
and Eq. (8) becomes the compressibility route to the residual 
part of the Helmholtz free energy. In case of a nematic phase, 
p(l) may be written as p( 1) = pf( w,), where the angular 
distribution function f( w ,) satisfies 

I 
f(o,)dw,= 1. (9) 

Then, we obtain from the previous equations a general 
expression for the free energy of a nematic or an isotropic 
fluid, 

Al(NkT)=ln(qidea’p)- 1+ 
I 

f(w,)lnlf(w’)]do’ 

+Areslf(o)]l(NkT), (10) 

where A”“Lf( o)] indicates that Am’ is a functional off(w). 
When the fluid is isotropic f(o) = 1 and by substituting into 
Eq. (lo), Eqs. (2) and (3) are recovered. Wo kinds of theo- 
retical treatments are found in the literature depending on the 

A res 

NkT 
=g b:yk-’ 

k=2 (k-1) * 
(11) 

In what follows Bt denotes the kth virial coefficient of the 
isotropic fluid, whereas bz is the kth virial coefficient of the 
nematic phase. The first two virial coefficients, b, and b, , of 
the nematic phase may be written as 

bZ=; Flw(l,2)f(w,)f(02)dld2, I (12) 

b3=$ F,(1,2)F,(1,3)F,(2,3)f(w,)f(o,) I 
Xf(03)dld2d3, (13) 

where FM( 1,2) =exp[ -pu( 1,2)] - 1 is the Mayer function 
of molecules 1 and 2 interacting trough the pair potential 
u( 1,2). Formulas for B, and B3 may be obtained by substi- 
tuting f(o) = 1 in Eqs. (12) and (13). Onsager treatment of 
isotropic-nematic equilibrium can be obtained from Eq. (5) 
and Eq. (11) by truncating the series of Ares at first order in y. 
Thus, only B2 and b, need to be considered. This is justified 
for very long molecules because the rest of virial coefficients 
(when scaled by the appropriate power of the second virial 
coefficient) decays to zero. Moreover, nematic appears at a 
vanishing small density. So, truncation of the series at the 
first order power seems justified. Therefore, Onsager theory 
becomes exact for infinitely long molecules. However, it has 
ever since been accepted that for molecules with moderate 
elongations truncation of the virial series at the first order is 
not completely justified and other virial coefficients should 
be included. Some attempts to incorporate the third virial 
coefficient have been performed1’Y35 and although results im- 
prove respect to the Onsager limit, they are not completely 
satisfactory for medium elongations. It seems that in that 
case incorporation of the rest of the terms of the series of 
Eqs. (5) and (11) is needed. 

Let us now assume the following approximation: 

bk=Bkb2/B2. (14) 

Then, assuming the convergence of virial expansion for 
isotropic and nematic phase and substituting Eq. (14) into 
Eq. (11) and in Eq. (lo), one obtains 

AI(NkT)=ln(qidea’p)-l+ f(o,)lnlf(w’)]dw, 
I 

+AnslXd= 11 Mf(w)l 
(NkT) B2 ’ (15) 
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where the notation !+Lf(w)] reminds us that b2 is a func- 
tional off(o) [see Eq. (12)]. For the particular case of the 
isotropic fluid v(o) = I] Eq. (15) reduces to 

Al(NkT)=ln(qidea’p)- 1 +AnSLf(~)=l]l(NkT). (16) 

C. Vega and S. Lago: Isotropic-nematic transition 6729 

keep Eq. (15) as our basic equation although now Eq. (15) 
cannot probably be inferred from Eq. (14) when the virial 
series is not convergent. So, it must be recognized that Eq. 
(15) presents some ad hoc character. We shall explore this 
approach, although admitting that further work on its justifi- 
cation is needed in case that satisfactory results were ob- 
tained. 

According to Eq. (16) if we would dispose of an accurate 
route to Am of the isotropic fluid then our description of the 
isotropic branch should be exact. Equation (15) is only an 
approximation to the nematic branch even if we know ex- 
actly A”“lf( w) = 11. 

Let us now focus on the study of hard models. In that 
case, the second virial coefficient is just an average of the 
excluded volume so that we can write 

Instead of the approximation of Eq. (14) let us assume 
that bk is given by 

bk=Bk.n&2IB2,ns 9 07) 

where BL,HS denotes the kth virial coefficient of a fluid of 
hard spheres. Then, substituting Eq. (14) into Eq. (11) and 
Eq. (10) we obtain 

4=; Vexc(64 ,W2)f(W*)fto2)dWldo2, I (1% 
where Vexc(wl ,q) is the volume excluded to the center of 
mass of molecule 2 with orientation w2 when molecule 1 is 
fixed with orientation o 1. Equation (15) reduces then for 
hard bodies to 

AI(NkT)=In(qide”‘p)- 1+ 
s 

f(ol)ln[f(ol)]dw, Al(NkT)=In(qidea’p)- lf 
s 

f(ol)ln[f(wl)]dw, 

Ai% hI.f(~)l 
+tNkT) B~,Hs ’ 

where A;: is the residual part of the Helmholtz free energy 
of a fluid of hard spheres. Equation (18) is identical to the 
one proposed by Lee’*” in his treatment of the isotropic- 
nematic transition of hard ellipsoids (HE) and hard sphero- 
cylinders (HSP). There are two important differences be- 
tween Eq. (15) and Eq. (18). The first is that in Eq. (15) the 
fluid phase is exactly treated whereas in Eq. (18) the treat- 
ment of the isotropic branch is only approximate. For most 
of molecular fluids, the exact value of AEs is not known yet 
and, therefore, some approximation has to be made to obtain 
it. Furthermore, Q. (15) can be used with any kind of treat- 
ment whereas Eq. (18) implies the use of Parsons’8 approach. 
The second difference is that with Eq. (15) the incorporation 
of systems with attractive forces is straightforward. In gen- 
eral, Eq. (18) will provide a poor description of an isotropic 
fluid with attractive forces. From the previous discussion, we 
see that Eq. (18) can be obtained as a particular case of Eq. 
(15) if the Parsons approximation is used to describe the 
isotropic fluid. However, Eq. (15) is more general and allows 
for the incorporation of more successful theories of the iso- 
tropic phase than the Parsons approach. So, Eq. (15) can be 
regarded as a generalization of the successful approach pro- 
posed by Lee.‘.” 

(18) 
+A’=[f(w)= l]I(NkT) 

x s vexct Wl ,W2)f(qMW2mJldW2 

SVexc(~l ,%)dMW2 . (20) 

In this work, we shall use a parametric form’ for f(w), 

f(w) = C exp[ - t2 sin2( f3)], (21) 

where C is a normalization constant which guarantees that 
Eq. (9) is satisfied and 8 is the angle of the molecular axis 
with the nematic vector. According to Eq. (21) and Eq. (20), 
AINkT is a function of the parameter t for a given p and T. 
The stability criterion requires that A be a minimum so that 

d(A’NkT) 0 at =. (22) 

At low densities the only solution of Eq. (22) is t=O which 
corresponds to the isotropic phase. At higher densities two 
local minima of Eq. (22) appear (t=O and t = tnemati,) being 
one of them marginally stable respect to the other. At still 
higher densities t= 0 becomes a maximum and the only 
minimum correspond to t = t,e,,tic so that only the nematic 
phase is stable. This behavior has been described in detail in 
Ref. 32. 

Equation (15) is the central equation proposed in this 
work. It can be summarized by saying that properties of the 
nematic branch are related to those of an isotropic fluid at the 
same density by a simple scaling argument. 

It may be argued that in our derivation of Eq. (15) con- 
vergence of the vi&l series was assumed. For hard bodies 
the virial expansion works surprisingly well (for instance, for 
HS very good results are obtained by summing the first ten 
virial coefficients”6). However, limits of convergence of the 
virial expansion are not quite clear even for hard spheres. 
When attractive forces are present the situation is even worse 
and the virial series is probably not convergent at all for most 
of the conditions of physical interest. In that case we still 

The working expression of this paper for hard bodies is 
Eq. (20). We shall assume that A”“lf( o) = l] is known and 
shall use the parametrization given by Eq. (21). Pressure p 
and compressibility factor Z are then obtained from 

Coexistence between isotropic and nematic phases is ob- 
tained by equating the pressure and chemical potential of 
both phases. Three kinds of hard linear fluids will be ana- 
lyzed, hard ellipsoids (HE), hard spherocylinders (HSP), and 
a model of hard tangent spheres in a linear arrangement 
(HLTS). For HSP with cylindrical length L and breadth (+ the 
excluded volume VE:’ can be exactly being calculated and is 
given by’ 
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V ,H,sp=2L2g sin(6i2)+2mLu2+4rra3/3, (24) 

where 13,~ is the angle formed by the symmetry axes of the 
two rods. Equation (24) holds for prolate and oblate sphero- 
cylinders. For hard ellipsoids, we shall use the hard Gaussian 
overlap approximation37 (HGO) so that V,“,“, will be taken 
from the corresponding HGO model,38 

p,[l-x 
2 cosy e,2)]1’2 

exe 
(1 -x2Y2 

8v 

mr 

where x=(k2-l)l(k2+1) and k is the length to breadth 
ratio. The approximation given by Eq. (25) becomes worse 
as the elongation of the molecule increases as has been 
shown by Tjipto-Margo and Evans.” However, it possesses 
the advantage of its simplicity. Moreover, since the approxi- 
mate formula of Eq. (25) is used in the numerator and de- 
nominator of the last term on the right-hand side of Eq. (20) 
we can expect some cancellation of errors. Since we are 
trying to describe the behavior of a HE (although with an 
approximate formula for the excluded volume coming from 
the HGO approximation) we shall take for A”“Lf( w) = 1 ] the 
free energy of hard ellipsoids and not of the HGO model. 
Our description then corresponds to a HE although an ap- 
proximate formula for the excluded volume of HE has been 
used. 

Finally for HLTS we shall use the approximation 

+49=rc3/3. (26) 

This approximation was first proposed by Boublik36,39 and it 
provides reasonable estimates of B2 (although slightly high) 
for the HLTS model. Again, it has a simple form and since it 
is used in the numerator and denominator of Eq. (20) some 
cancellation of errors might occur. The integrals on the right- 
hand side of Eq. (20) were evaluated numerically by using 
the Gaussian quadrature.40 

The only remaining question is the kind of approxima- 
tion that will be used to describe the behavior of the fluid 
phase, namely A”“Lf( w) = I]. If Zlf( w) = 1 ] is known then 
the integration of Eq. (4) yields A”“lf( w) = 11. There are 
several proposed equations of state (EOS) for hard elongated 
molecules. Analytical EOS have been proposed by Boublik 
and Nezbeda36 or in the case of HLTS by Wertheim4’ and 
Chapman et a1.42 There are also some attempts to build up an 
EOS from the knowledge of the first virial coefficients as 
those proposed by Barboy and Gelbait’* and Wojcik and 
Gubbins.43 By analyzing the behavior of the first virial coef- 
ficients we have recently proposedU a new EOS for prolate 
and oblate hard linear models. This EOS requires a knowl- 
edge of Bz, Bt, B* 4 , and Bt of the molecule. Then, the 
EOS reads for prolate molecules Zpro as 

ZP’O= 
1+k,y+k2y2+k3y3 

WY13 

+[B,*-(k3+3k2+6k,+ 10)]y3, (27) 

where the coefficients k i , k2 , and k3 are obtained to fit the 
values of Bz, B:, and Bz (see Ref. 44 for details). For 
oblate molecules Zob’ the EOS reads 
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TABLE I. Isotropic-nematic transition of hard spherocylinders (HSP). y 
stands for the length to breadth ratio, so that y is L* + 1, where L* is the 
reduced bond length L* = l/a. p * stands for p V,,,/(kT). Packing fractions 
of isotropic and nematic phases are denoted as ylsO and y,, , respectively. p 
is the coexistence chemical potential with the ideal part given by In($)- I 
[see Eq. (3)]. The results labeled as Lee refer to the theory of Ref. 9. Monte 
Carlo (MC) results are from Ref. 3. 

Source Y  YlsO Ynem P* plkT 

Tbis work 4 0.528 0.54 1 11.08 21.43 
Lee 4 0.525 0.536 12.74 30.67 
This work 5 0.449 0.467 6.79 19.49 
Lee. 5 0.454 0.468 7.71 21.35 
This work 6 0.388 0.407 4.87 15.68 
Lee 6 0.399 0.417 5.36 16.54 
MC 6 0.40 4.90 
This work 7 0.339 0.358 3.82 13.48 

zobl= 1 +k;y+k;y2+k;y3 

(1 -Y13 

+[B;-(3kj+6k;+ lOk;+ 15)]y4, (28) 

where the coefficients ki , k;, and kj are chosen to match 
the known values of Bz , Bz , Bz . L 

Ill. RESULTS FOR HARD LINEAR MODELS 

We have determined the isotropic-nematic transition for 
HSP, HE, and HLTS of several elongations. We shall define 
y as the length to breadth ratio which for HSP is given by 
y= L* + 1, for HE is just y= k and for HLTS is y= m + 1, 
where L” = lla is the reduced bond length and m is the num- 
ber of tangent spheres. We show the results for HSP in Table 
I. For HSP with y=6, Frenke13 has determined the transition 
by computer simulation. The densities are quite well pre- 
dicted by the theory of this work [Eqs. (20)-(23)] and by the 
previous version of Lee.’ The pressure at the transition is 
better predicted in this work. For y=4, we predict a transi- 
tion when the density of the fluid is y = 0.5 28. Veerman and 
Frenke14 found a fluid-solid transition when y = 0.500. The 
nonexistence of a fluid-nematic transition for HSP with y=4 
is then due to the fact that the fluid-nematic transition is 
pre-ended by the fluid-solid transition. Properties of coexist- 
ence as densities, pressures, and chemical potentials decrease 
as molecular elongation increases. We show the results for 
HE in Table II. The theory of this work agrees remarkably 
well with the simulation results2’45 and seems to be superior 
to other previously proposed theories. Trends with elonga- 
tions are similar to those found for HSP. This is further illus- 
trated in Figs. 1, 2, and 3, where we show the coexistence 
properties as a function of y for several hard models. Hard 
ellipsoids and HSP differ significantly in their coexistence 
properties for a given value of y. Nematic phase appears at 
lower densities for HE. According to Eq. (20), 
A”“Lf( w) = I] and Vexc(wl ,%) are the two ingredients of the 
theory. HSP and HE present very similar virial coefficients, 
equation of state, and free energy A”“lf( o) = I] for the iso- 
tropic phase.@ Differences in their phase diagram are due to 
differences in Vexc(q ,w2). In Fig. 4, we show V,,J(2B,) as 
a function of the relative orientation for HE and HSP with 
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TABLE Il. As in Table I, but for hard ellipsoids. y is the length to breadth 
ratio which for ellipsoids is given by the axes ratio, k. Results labeled as Lee 
refer to the theory of Ref. 10, TME to Ref. 11, CWXB to Ref. 32, and HP to 
Ref. 55. MC results are from Ref. 2 and 45. The order parameter S of the 
nemaric phase is defined by S = (P,(cos 19)). where the brackets denote en- 
semble average and P, is the second order Legendre polynomial. 

12 

10 - 

0- 

6- 

4- 

2- 

Source Y Yso YllEXIl P* ,ulkT S 

This work 3 0.519 0.529 
TME 3 0.465 0.48 1 
CWXB 3 0.472 0.484 
HP 3 0.454 0.474 
MC 3 0.507 0.517 
This work I/3 0.499 0.508 
TME l/3 0.428 0.437 
MC 113 0.498 0.509 
This work 4 0.419 0.438 
This work 5 0.347 0.371 
TME 5 0.388 0.426 
CWXB 5 0.321 0.342 
MC 5 0.37 
This work 115 0.322 0.341 
TME 115 0.335 0.359 
This work 6 0.298 0.323 
This work 7 0.262 0.287 
This work IO 0.192 0.214 
TME 10 0.199 0.233 
CWXB 10 0.179 0.204 
HP 10 0.244 0.279 
MC 10 0.21 

9.90 
8.11 
7.76 
4.68 
9.79 
9.98 
6.08 
9.15 
4.70 
3.08 
3.01 
2.78 

24.61 0.52 
0.64 
0.56 
0.48 
0.53 
0.54 
0.46 

* 
P 

. . 

. . . 
25.50 

. . . 
14.24 
10.64 

. . . 

. . . 

0.61 
0.64 
0.68 
0.64 o! I I I I 

3 4 5 6 7 a 
Y 3.02 

2.30 
2.32 
1.88 
1.25 
1.16 
1.03 
1.27 

11.07 0.63 
0.55 
0.66 
0.68 
0.71 
0.75 
0.72 
0.66 

8.77 
7.64 
5.91 

FIG. 2. As in Fig. 1, but for the coexistence pressure (p * =p V,,,IkT) Sym- 
bols are the results from Tables I-III and the lines are only a guide to the 
eye. 

. . . 

. . . 

ellipsoids of revolution. Equation (25) will be used for the 
excluded volume since this property has indeed prolate- 
oblate symmetry (see Ref. 11). Differences in behavior of 
prolate-oblate HE are then due to differences in the behavior 
of the isotropic phase. Equation (28) will be used.for describ- 
ing the isotropic phase. We see in Table II that the isotropic- 
nematic transition is very similar for prolate and oblate HE 
although for oblate molecules it appears at slightly smaller 
densities in good agreement with simulation results.2’3 In Fig. 

y=6. We see that V,,, changes more rapidly with orientation 
for HE than for HSP so that a nonuniform f( w) will stabilize 
more a HE nematic phase than a HSP nematic phase. Con- 
sequently, the nematic phase appears at lower densities for 
HE than for HSP. We can also analyze the case of oblate 

I- 

S- 

3( 

2c 

22 

=L 18 

14 

10 

6 
‘3 

0.2 1 I I I I I 
3 4 5 6 7 8 

Y 
9 I I I I 

4 5 6 7 8 
Y 

FIG. 1. Packing fractions of the isotropic and nematic phases at coexistence 
as a function of the length to breadth ratio y. Results are for hard molecules. 
Solid lines on the top correspond to HSP and on the bottom to HLTS. The 
dashed line stands for prolate ellipsoids HE. 

FIG. 3. As in Fig. 1, but for the chemical potential at coexistence. The 
chemical potential p is given in units of kT. Symbols are the results from 
Tables I-III and the lines are a guide to the eye. 
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2.01 on the HSP model with L * = 5. The dipole-dipole uDD or 
quadrupole-quadrupole uQQ potentials are given by15 

UN 
>” Pi I 

0.8 - 

0.4 - 

FIG. 4. Excluded volume V,,, of hard linear molecules as a function of the 
cosine of the angle formed by the molecular axes u, ‘us. Excluded volume is 
given in units of the second virial coefficients of the isotropic phase and 
divided by two so that the area under the curve is one half. The solid line is 
for HSP with L* =5 (y=6) and dashed line is for prolate HE with k=6 
(74). 

5 we present the EOS for HE with k = 3 and k = l/3 as 
obtained from simulation and from the theory of this work. 
The agreement is quite good. The behavior of the order pa- 
rameter S of the nematic phase as a function of the density 
for HE is illustrated in Fig. 6. 

We show the results for HLTS in Table III. In this case, 
we used two different determinations of Vexc(q,c&. The 
first is the approximation given by Eq. (26) which, although 20 
not exact, is reasonable and simple to use. In the second 
atproach we determine Vexc(q ,(~)2) numerically. Equation 
(26) overestimates the excluded volume of HLTS for any 
relative orientation but errors are small. Transitions deter- 
mined from these two routes to V,,, are very similar. The 
theory of this work predicts an isotropic-nematic transition 
for HLTS. We see in Fig. 1 that the densities at coexistence 
of HLTS and HE for a given y are quite similar. An impor- * 

a 
tant point to establish the presence of a nematic phase for 
HLTS is to be sure that the isotropic-nematic transition is not 
pre-ended by a fluid-solid transition. Unfortunately, little 
knowledge on freezing of HLTS is available except for the 
case m = 2. In that case the fluid-orientationally ordered solid 
transition appears46 for y = 0.5 5 so that the isotropic-nematic 
transition which would occur at y 2 0.7 2 is pre-ended by the 
fluid-solid equilibria. Equation (15) is not limited to hard 
bodies but it may be used for systems with attractive forces 
as well. In the next section we shall study the effect of a 
dipole or a quadrupole on the isotropic-nematic transition. 

(b) 

IV. HARD POLAR FLUIDS 

In this section we shall study a linear hard model (HSP) 
with an embedded point dipole or quadrupole. We shall focus 

2 
uDD=S (s,syz-2clc2), (29) 

3Q2 .QQ=G [1-5(C;+C;)-15~;~;+2(s~S2C-4C,C2)~], 

(30) 
where p and Q stand for the dipole and quadrupole moment, 
C~=COS Bi, si=sin 8,) and c=cos(~$,-A). In Eqs. (29) and 
(30) the polar axis is the one connecting the center of mass of 
both molecules. We shall use reduced multipole moments 
defined as p*2 = ,u2/(kTa3) and Q*2=Q2/(kTa5). The 

FIG. 5. Equation of state for HE obtained from the theory of this work 
(solid line). The symbols are Monte Carlo results of Ref. 2 for the isotropic 
phase (open squares) and for the nematic phase (open circles). The tie lines 
represent the coexistence densities as obtained from the theory of this work 
and from computer simulations (Ref. 2). (a) Results for prolate HE with 
k = 3. (b) Results for oblate HE with k = 113. 
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FIG. 6. Order parameter of the nematic phase S=(P,(cos 8)) of HE as a 
function of the packing fraction y. Open and filled symbols stand for simu- 
lation results (Ref. 45) of oblate and prolate HE, respectively. Lines corre- 
spond to the theory of this work. 

breadth of the spherocylinder is denoted as cr. Therefore, the 
total pair potential is given for a quadrupolar hard spherocyl- 
inder HSPQ by 

JfSW= $SP+ .QQ 

and for a dipolar hard spherocylinder (HSPD) by 

(31) 

UHSPD= UHSP+ UDDs (32) 
The ideal dipole or quadrupole is situated on the center 

of mass of the molecules and is aligned with the molecular 
axis. All our discussions and conclusions refer to that case. 
According to Eq. (20), we first need to know the thermody- 
namic properties of the isotropic HSPQ or HSPD. This is not 
a trivial problem. However, Boublik has recently developed 
a perturbation theory for hard ellipsoids with quadrupole26 
(HEQ) or dipolez7 (HED). This perturbation theory has been 
extended to HSPQ fluids with good results.28 We briefly 
summarize the theory and refer to the reader to the original 
papers for details.26-28*47 In this perturbation theory the HSP 

TABLE IlI. As in Table I, but for hard linear tangent spheres (HLTS). y 
stands for the length to breath ratio, so that y=m+ 1, where m is the 
number of hard spheres forming the linear molecule. 

Y P,w Yncm P* plkT s 

4’ 0.417 0.429 8.20 25.71 0.64 
4b 0.432 0.443 9.35 28.54 0.64 

;‘, 0.346 0.359 0.360 0.373 4.96 5.57 20.24 18.45 0.65 0.67 
8: 0.295 0.309 0.310 0.326 4.11 3.54 14.94 16.83 0.72 0.67 

;I 0.261 0.255 0.270 0.276 2.96 2.75 13.72 12.88 0.67 0.67 

‘Excluded volume from the approximation of Eq. (26). 
%xcluded volume by numerical integration. 

100 Aylj 

0.71 
0.63 

0.99 0.96 
1.34 1.24 

1.43 1.40 

TABLE IV. Geometrical constants I, J, K (see main text) of hard spherocyl- 
inders with a point dipole HSPD (I, J, ,K,) or a point quadrupole HSPQ 
(IQ 7 JQ, and KQ). No value is given for I, and K, since they are identically 
zero. 

L* JD IQ I JQ KQ 

0 0.666 66 o.ooo 000 4.977 77 4.179 59 
1 0.206 11 -0.024 64 0.522 47 0.204 84 
2 0.127 45 -0.024 12 0.287 89 0.188 76 
3 0.102 10 -0.016 57 0.239 72 0.178 18 
4 0.09144 -0.011 18 0.224 53 0.173 37 
5 0.087 11 -0.007 80 0.218 19 0.170 95 
6 0.082 58 -0.005 67 0.215 02 0.169 55 
8 0.080 46 -0.003 31 0.212 08 0.168 18 
9 0.079 72 -0.002 65 0.211 31 0.167 74 

10 0.079 21 -0.002 16 0.210 79 0.167 50 

is taken as the reference system and the perturbation terms 
up to third order are evaluated. To accelerate the conver- 
gence of perturbation series a Pade approximant is used.48 
Structure of the hard reference fluid is needed to evaluate the 
perturbation terms. This is, in general, unknown or difficult 
to obtain so that the Parsons* approximation is used. That 
means that the pair correlation function g( r, w 1 , o2 ,y) is ap- 
proximated by gHs[ rld( o1 , w2),y], where gHs is the radial 
distribution function of hard spheres and d( w1 ,w,) is the 
distance between the centers of mass when the two mol- 
ecules are at contact for the relative orientation wl, 02. That 
uncouples orientational and radial coordinates and each per- 
turbation term reduces to an orientational average of a cer- 
tain function and a radia126-28 integration of a certain func- 
tion of gHs . Free energy for the isotropic phase of HSPQ is 
given by2s 

AHSPQ=AHSP+A&+A&[ 1 -(A&+A&)lA&]-‘. 
(33) 

Defining Xz = 3/4Q *2andp*=pdthenAf-a,A~*,A3e,A~a 
are given by 

AfAINkT=2mp*X$IQ(shape)aQ(y), 

A&lNkT= - 7rp*Xg2Jn(shape)bg(y), 

v* 
A&INkT=F 

3 
Xg Kp(shape)cQ(y), 

(34) 

(35) 

(36) 

A&INkT=; rr2px2X”3 
1 

Q [( Vml(r3)l( 7r/6)]’ zQ(y)’ 
(37) 

where IQ, JQ , and KQ are geometrical quantities obtained by 
integration and depending on the particular shape of the con- 
sidered mode1.28 Expressions for uQ(y), bQ(y) cQ(y), and 
zQ(y) are given in Eqs. (32)-(34) of Ref. 28. These func- 
tions can be obtained by numerical integration of radial dis- 
tribution function of hard spheres divided by the appropriate 
power of the distance between the centers of mass. We 
present dues of IQ, Q  J , and KQ for HSP with longer elon- 
gations in Table IV since in our previous work28 only short 
molecules were considered. Conroy integration method49’50 
was used in the determination of IQ, JQ , and KQ , 
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The theory may be extended to HSPD fluids. Now I, 
and K, are zero so that AlA and A,, vanishes. AHSPD is 
given by 

AHSPD=AHSP+A,~(l -A&/A$-‘. (38) 

Defining X$ = ILL*’ then AzA and A,, are given by 

A&INkT= - rrp*Xz*Jn(shape)b&y), (39) 

4 1 
A!i'dNkT=~ ,'P*~X;' [("&3),(&j)]7 Q(Y). 

(40) 
Values of J, determined by Conroy method are shown in 
Table IV. Functions b,(y) and z&y) are defined, respec- 
tively, by 

b,(y) = I g,sWx4 dx, (41) 

q)(y)= 
I 

l/9( 1 f3 cos (Yt cos “2 cos as) 

xgHS(x,2)gHS(x13)gHS(x23) 
2 2 2 

x12x13x23 
dx12 dx13 dx23v 

(42) 
where al, a2, and a3 are the internal angles of the triangle 
formed by the center of mass of molecules 1, 2, and 3. Fur- 
thermore, we have fitted b,(y) and zD(y) to the empirical 
expressions 

bD(y)=0.332 751+0.431 728y+O.249 496y2, 
(43) 

zn(y)=[O.202 065+0.548 44y+O.103 006~~1 $. 

(44 
Equations (33)-(44) constitute the route to obtain 
A&a,HspDLf(ti)= 11. We also need to ~IIOW b21f(w)] for 
HSPQ or HSPD. Let us first extend the concept of excluded 
volume to HSPQ and HSPD by defining 

Vexc(wL,ti2)=- (exp{-llkTCuHSP(r,~1,~2) 
I 

+u~~,~~(~,o, ,02)]}- 1)dr. (45) 
With this definition of V,,, the second virial coefficient 

b2 is still given by Eq. (19). Note that in the integration of 
Eq. (45) the orientation of molecules 1 and 2 is fixed and the 
integration is over the center of mass positions. For HSPQ 
and HSPD, V,,, is a function of (u,.u2), where ut and u2 are 
the unit vectors situated along the molecular axes. For 
HSPQ, Vex is symmetric around (ut .u,)=O but not for 
HSPD. In Fig. 7 we represent V,,, for HSP with L* = 5 for 
several values of p*2 and Q *2. Presence of a quadrupole or 
dipole reduces the second virial coefficient of the isotropic 
phase (which is just the half of the area under the curve). For 
elongated HSP quadrupolar forces favor parallel configura- 
tions with (ut .u2)=l. We see that dipolar forces favor anti- 
parallel configurations*’ with (ut +u2)’ - 1 for elongated hard 
spherocylinders. We emphasize that these conclusions hold 
for long polar molecules. If molecular hard core is rather 

0; 
01) 0.2 0.4 0.6 0.8 1.0 

(a) 
"1."2 

5 

4 

3 

g>E2 
I >Q 

1 

0 

-1 I I I I 
-1 .o -0.5 0.0 0.5 1.0 

04 
“1. “2 

PIG. 7. Excluded volume [see Eq. (45) of the main text] in 4V, units for 
multipolar HSP with L* = 5 as a function of the cosine of the angle between 
the molecular unit vectors ut~uz. (a) Results for quadrupolar hard sphero- 
cylinders. The solid line stands for Q **=O and the dashed line stands for 
Q ** = 4. (b) Results for dipolar hard spherocylinders. The solid line stands 
fork . **=O the upper dashed line on the left-hand side stands for ~**=2 
and the other dashed line stands for ~**=4. 

spherical then these conclusions may be modified. In fact, we 
evaluated numerically Vexc(q ,u& for dipolar hard spheres 
with ,~*~=6.66 and we found Vexc(uI .u2)I(4Vm) = - 8 1, 
-226, -2683 for (u,.u,)=-1, 0, 1, respectively. We see 
how in that case dipole favors parallel configurations of the 
dipoles (in contrast with what was found for dipolar hard 
spherocylinders). That may explain the tendency of hard 
spheres with high dipole moments to form ferroelectric 
phases29*30 (solid or nematics). 

In Tables V and VI, we show the isotropic-nematic tran- 
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TABLE V. Isotropic-nematic transition of HSP with L* = 5 for Q ** = 0, 2, 
4, 6. Q*2 is defined as Q*/(kTo’). For Q*‘=6 no transition to a nematic 
phase was found. Aylj stands for 20,“,,-yi~)/O,,,,+yi,). 

Q *2 Slso Y “cm P* /.dkT S 100 Aylj 

0 0.388 0.407 4.87 15.68 0.67 1.19 
2 0.379 0.400 4.52 14.75 0.69 1.35 
4 0.355 0.380 3.73 12.61 0.71 1.70 
6 . . . . . . 

sition for HSPQ and HSPD fluids. The effect of a dipole or 
quadrnpole on the isotropic-nematic transition is quite simi- 
lar. Equilibrium densities, pressures and chemical potentials 
decrease as the quadrupole or dipole moment increases. One 
may conclude that a dipole or quadrupole moment stabilizes 
the nematic phase with respect to the isotropic phase so that 
the transition appears at smaller densities. Transition is first 
order. In Fig. 8 we present the EOS and the isotropic-nematic 
transitions for HSP with L* = 5 when no multipole moment 
is present and when Q*2=4 or ~*~=4. The EOS of the 
isotropic phase is hardly affected by the presence of the mul- 
tipole moment in contrast with the behavior of the nematic 
branch. Poniewierski and Sluckins2 found for HSPQ that the 
quadrupole decreases the densities at which appears the nem- 
atic phase. This is in agreement with our results. Unfortu- 
nately no comparison is possible for HSPQ between both 
theories since transition properties were not reported.52 Den- 
sity jump and order parameter of the nematic phase at the 
transition increase with strength of polar forces. Overall, the 
effect of polar forces is relatively small. For instance when 
L* = 5, the density of the isotropic phase at the transition 
shifts from y=O.388 to y=O.355 when ,u*~ changes from 
0 to 4. Increasing molecular elongation from L*=5 to 
L* = 6 (‘y”6 to y=7) with zero dipole moment changes the 
density at the transition fromy=0.388 toy=0.339. So, the 
effect of elongation seems to be more important than that of 
dipolar of quadrupolar forces. We were unable to find an 
isotropic-nematic transition when Q*2=6 or ,LL*~=~. Nem- 
atic phase becomes now unstable and its pressure decreases 
as the density increases. This may be due to a failure of the 
theory for high multipole moments. For HSP with L* = 5 
and p*=p d=0.07 the theory predicts for F*~=O and 
P *2=6 p*=2.55, 2.41 and simulation53 yields p*=2.58, 
2.14 [p*=pl(kT/V,), where V, is the molecular volume]. 
For ,LL,*~=~ the predicted internal energy is lJINkT= -0.67 
to be compared with the simulation results UINkT= - 1.39. 
Although the agreement is not very good, it is at least quali- 
tatively reasonable given the large values of L* and ,u*~. 

TABLE VI. Isotropic-nematic transition of HSP with L* = 5 for p**=O, 2, 
4.6. c(** stands for p*/(kTo’). For ,U **=6 no transition to a nematic phase 
was found. 

P *2 .sso Ym P* /dkT s 100 Ayly 

0 0.388 0.407 4.87 15.68 0.67 1.19 
2 0.380 0.401 4.54 14.78 0.68 1.34 
4 0.354 0.383 3.59 12.35 0.74 1.97 
6 . . . . . . 
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FIG. 8. Equation of state for polar and nonpolar hard spherocylinders with 
L* = 5. The pressure is given in reduced units p* =p V,I(kT) and y is the 
packing fraction. The solid lines correspond to the EOS of the isotropic and 
nematic branches when no multipole moment is present. The long dashed 
line stand for the results of the HSPQ model with Q*2=4. The short dashed 
line stand correspond to a HSPD model with ~**=4. The tie lines represent 
the isotropic-nematic transitions as obtained from the theory of this work. 

That supports the idea that nematic phase may indeed disap- 
pear for large values of the reduced multipole moment (i.e., 
for low temperatures). If that is the case then these systems 
will go directly from the isotropic phase to a smectic or solid 
phase but these kinds of transitions have not been considered 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 
Y 

FIG. 9. EOS for HSP with L*=5. p*=pV,l(kT) and y is the packing 
fraction. The solid line on the left stands for the isotropic phase. The solid 
line on the nematic branch was determined from the minimization of Eq. 
(22) and the dashed line by functional minimization. Squares are MC results 
from Ref. 3. A smectic phase appears in the simulation at y=O.53. 
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in this work. Levesque ef af.53 have reported results for the 
isotropic and smectic phase for HSP with L* = 5 and ~*~=6. 
It would be very useful to know if a nematic phase appears in 
this system or as predicted in the present work the nematic 
phase disappears for high dipole or quadrupole moments. 

consider this possibility. In order to further investigate the 
possibility of a ferroelectric nematic phase we shall perform 
a functional minimization of Eq. (20) without imposing any 
symmetry on f(o). Therefore, we look for the solution of 

In the case of the dipolar system, there is the possibility ~N.f(~>l =. 
of a ferroelectric nematic. phase29’30 with a net dipole mo- Sf(w) (46) 

ment per unit of volume (different number of molecules with along with the normalization condition of Eq. (9). The 
dipoles up and down). Our trial function for f(o) [see Eq. Euler-Lagrange equation associated to that problem is given 
(21)] is symmetric around cos(@=O and therefore does not by 

-A*‘?fb)= 11 SVexc(w~ ,02)f(02)d02 

NkT 
f(o)= 

B2 

-AreSVb>=ll 
NkT SVexc(~l,~2)f(~2)d~2 do, I 

I . 
(47) 

Equation (47) constitutes an integral equation for f(o) and 
we have solved it by an iterative procedure. At high densities 
we find two solutions of f(w), namely f(w) = 1 (isotropic 
phase) and f( 0). For a few cases we recalculate the 
isotropic-nematic transition by this functional minimization. 
Densities, pressure, and chemical potential determined in 
that way were similar to that found from the minimization 
(with respect to t) of the trial function of Eq. (21) so that all 
the conclusions of our previous discussions still holds. In 
Fig. 9, we show that EOS of the isotropic and nematic phase 
for HSP with L* = 5. Figure 9 shows that EOS of the nem- 
atic branch as obtained by minimization of the trial function 
given in Eq. (21) or by functional minimization are quite 
similar. For all the models considered in this work, the solu- 

. tion of Eq. (47) was always symmetric around cos(@=O so 
that no evidence of ferroelectric order has been found. For 
HSP with L* = S there is a nematic-smectic phase transition 
at high densities3*54 and that may explain discrepancies be- 
tween the theory and the Monte Carlo results at the highest 
densities. 

For Q * 2 = 6 and moderate densities we found a nematic 
solution of Eq. (47). However this nematic solution is me- 
chanically unstable so that (@lap) <O. At high densities no 
solution was found for Eq. (47). In that case f(o) tends 
toward delta functions centered around cos(f3)= - 1 and 
cos(B)= 1. 

isotropic phase so that it allows to incorporate the progress 
made in the last two decades for isotropic molecular fluids. 
The Onsager’ limit is recovered for very elongated mol- 
ecules. We have applied this theory to HSP and HE and 
obtained good agreement with simulation results. For HLTS 
we predicted an isotropic-nematic transition. The analysis of 
the effect of dipole and quadrupole moment on nematic for- 
mation has shown that multipolar forces stabilize the nematic 
phase with respect to the isotropic phase. As a consequence, 
transition densities, pressures, and chemical potentials de- 
crease as the strength of the multipolar forces increases. We 
have observed that the density jump and order parameter of 
the nematic phase increase with the presence of polar forces. 
Overall, the effect of polarity on nematic formation is mod- 
erate. The nematic phase was found to be in all the cases 
nonferroelectric. For high values of ,z* or Q* (i.e., low tem- 
peratures) we did not find a stable nematic phase. That was 
true regardless of whether a trial function was used for f( o) 
or it was obtained from minimization of a free energy func- 
tional. That suggests that nematic phase disappears for high 
multipole moments in favor of a more ordered phase. In this 
work we have focused on hard multipolar models. We were 
able to give a picture of the isotropic-nematic transition as a 
function of molecular elongation and multipolar forces. 
Moreover the theory presented in this work may also be ap- 
plied to systems containing dispersion attractive forces. 

When p *2=6 we were unable of finding a solution of 
Eq. (47) at any density [except the trivial case f(w) = 11. All 
these results suggest the absence of a stable nematic phase 
for elongated molecules with high reduced multipole mo- 
ment (i.e., at low temperatures). 
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V. CONCLUSIONS 

In this work we have proposed a theory for studying the 
isotropic-nematic transition. The theory follows in some re- 
spects those proposed by Parsons’ and Lee’ and, therefore, 
presents some ad hoc character. Nevertheless, the theory re- 
quires the knowledge of the thermodynamic properties of the 
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