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Virial coefficients of tangent hard spheres in a linear configuration have been 
determined numerically. Trends of the virial coefficients with the molecular 
anisotropy are similar to those of other linear models, such as hard spherocylinders 
or hard ellipsoids. Theoretical predictions of virial coefficients from different 
equations of state of hard body fluids are compared with the numerical results. 
None of them provides a completely satisfactory description of the lower virial 
coefficients when the anisotropy of the molecule is large. We propose a new 
method to build up an equation of state of hard linear models (prolate or oblate) 
from the knowledge of the first five virial coeff• The equation of state 
obtained in this way provides a very good description of the equation of state 
of hard linear fluids at low, medium and high anisotropies. 

1. Introduction 

Hard  body models of molecules have a great importance in liquid state theory 
since they may be used as reference systems in perturbation treatments of molecules 
with repulsive and attractive interactions 1-1, 2]. Hard  linear molecules such as 
spherocylinders (HSPs) or hard ellipsoids (HEs) have been studied in a number of 
papers so that their equation of state (EOS) [3 5], virial coefficients [6 8] and phase 
diagram [4, 9] are relatively well known. Furthermore,  Wertheim has recently 
proposed a theory of associated fluids [10-13]. The perturbation theory proposed 
by Wertheim may be used to predict the behaviour of chains of tangent hard spheres 
[14, 15]. This theory has been tested with respect to its ability to predict the virial 
coefficients and EOS of hard n-alkane models, and the results may be considered as 
very promising [16]. In this work we shall focus on the study of fluids of molecules 
made up by m tangent spheres in a linear configuration. We shall denote this model 
as the hard linear tangent spheres (HLTS) model. When m = 1 we get the hard sphere 
(HS) molecule and when m = 2 we get a particular case of the hard dumb-bell 
molecule. For  these two cases, the virial coefficients [17, 18], phase diagram [19-21] 
and EOS [22] are now well known. More recently Amos and Jackson [23] and 
Boublik et al. [24] have obtained the EOS via computer  simulation for trimers 
(m = 3) and tetramers (rn = 4), respectively. Although analytical formulas exist for 
determining the second virial coefficient B z of HLTS with m = 2 and m = 3 [18, 25] 
and lower virial coefficients have been obtained for m = 3 (see reference [5] for 
details) no other virial coefficient has been reported for HLTS with larger values of 
m. In this work, we shall provide results for the lower virial coefficients of HLTS 
molecules with m ranging from 3 up to 7. Thus the ability of Wertheim and other 
EOSs to predict virial coefficients of HLTS models is analysed. We shall discuss 
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Figure 1. 
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Hard models for this work. (a) Hard linear tangent spheres (HLTS). (b) Hard linear 
fused spheres with L* = 0"5. Dotted line shows the Coo axis in all cases. 

differences and similarities in the behaviour of the lower virial coefficients of prolate 
linear convex models as HE or HSP, with respect to prolate linear non-convex 
molecules as HLTS. We analyse different procedures for building up an EOS from 
the knowledge of the lower virial coefficients. Moreover,  we propose for prolate linear 
molecules a new method of building up an EOS from knowledge of the first virial 
coefficients, that yields better results than others previously proposed. The method 
is then extended to  oblate molecules. The EOS built in that way allows us to predict 
reasonably well the behaviour of the fluid up to high densities of hard spheres and 
of highly anisotropic molecules as well. The new proposed EOS may prove to be 
useful in theoretical studies of liquid crystal formation of hard linear (prolate or 
oblate) models. 

The scheme of the paper  is as follows. Section 2 presents numerical results for 
the virial coefficients of HLTS. In section 3 we compare the numerical results with 
the predictions of different equations of state. Section 4 introduces a new method of 
building an equation of state from a knowledge of the lower virial coefficients. Section 
5 contains the conclusions of this work. 

2. Virial coefficients of hard linear tangent spheres 

The model of HLTS consists of m hard spheres in contact in a linear rigid 
configuration, as illustrated in figure l(a). We have evaluated the first five virial 
coefficients of HLTS with m ranging from m = 3 to m = 7 by the method of Ree 
and Hoover  [17] as extended to hard molecular fluids by Rigby [26]. We have also 
evaluated the sixth virial coefficient. We have typically used ten million configurations 
for each reduced virial coefficient B* = B i / V ~  -1 where Bi is the ith virial coefficient 
and Vm is the molecular volume. For  some models two independent determinations 
were made. In the evaluation of B 6, we neglect a diagram corresponding to the one 
neglected by Ree and Hoover  [17] in their determination of B 6 of hard spheres. For  
hard bodies, this diagram makes a positive although small contribution to B6. 
Calculations of B* for HLTS become increasingly time consuming as m increases 
and the computer  time grows as m 2. The virial coefficients for HLTS are shown in 
table 1. Our  numerical determination of B* agrees very well with its analytical values 
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Table 1. Virial coefficients of linear tangent spheres. B* i-1 = Bi/V,,, . N stands for the number 
of independent configurations in the runs for the determination of B*. ~ is defined 
through equation (1). The figures in parentheses represent the estimated error in the last 
quoted digits. 

N/106 m B* B* B* B* B~ 

10 3 6-851 24"48 48'59 70 * 1'950 
10 3 6'850 (2) 24"47 (1) 48"51 (17) 68 (3) 120 (52) 1-950 
10 4 8"248 32"36 57"97 83 * 2"416 
10 4 8'248 (4) 32'36 (2) 57"90 (13) 81 (5) 313 (85) 2'416 
10 5 9"642 40"66 60"73 103 * 2'880 
10 5 9"640 (3) 40-67 (3) 61"14 (31) 97 (8) 634 (141) 2'880 
15 6 11.032 49"49 56"60 153 * 3'344 
15 6 11"034 (2) 49'49 (3) 56"34 (35) 163 (t0) 1460 (487) 3'345 
20 7 12.421 58-47 42"57 298 * 3"807 
20 7 12.423 (3) 58-49 (3) 42'53 (58) 295 (18) 1816 (865) 3808 

]-18, 25] for m = 2 and m = 3, which constitutes a check of our algorithm. We have 
defined a nonsphericity parameter  ~R according to  the prescription first proposed by 
Rigby [27]: 

B~ .= l + 3 0~ R. (1) 

We see in table 1 that the nonsphericity ~R increases with the length of the 
molecules and the relation between ~R and m is roughly linear. In figure 2, we show 
the behaviour of B~, B~ and B* as a function of ~R. According to equation (1) two 
models with the same value of ~R have also the same B*. For  comparison we also 
present in figure 2 the results for B* for HE and HSP molecules [5]. Trends are the 
same for all these prolate linear models. We see that B* increases smoothly with ~R. 
However, B* presents a completely different behaviour. It  increases up to ~R = 3 
(m = 5) and then it starts to decrease. The shape of the curve suggests that/34 becomes 
negative for m = 9. The presence of negative B* for prolate linear models was first 
found by Monson and Rigby [6] for HSP and more recently by Rigby [8, 28] for 
HE and the Gaussian overlap model. It is, therefore, a general feature of prolate 
linear models (convex and non-convex) at high elongations. The behaviour of B* is 
shown in figure 2c. It increases slowly to ~R = 3 and then it increases rapidly. This 
again seems to hold for HE and HSP. In order to estimate virial coefficients at 
intermediate values of ~R we have fitted B* to the empirical expression: 

i i 0~z 'o~ 3 c ~  4. (2) B *  = Co + c 1 ~  + c2 + C~ -~- 

The coefficients of equation (2) for HLTS, HE and HSP  are shown in table 2. 
The results of this fitting are shown as the solid line in figure 2. We conclude from 
figure 2 that the virial coefficients of prolate linear models present similar features 
in their behaviour regardless of the details of their shape. These three models, HE, 
HSP and HLTS, reduce to the hard sphere case when ~ = 1. As a consequence, the 
values of B* for ~ close to one are very similar for these three geometries. This 
supports the idea of conformality [5], namely that the knowledge of B~ (or ~ since 
they are related through equation (1)) is enough for describing the EOS of the fluid 
regardless of the finer details of its shape. This idea seems to be justified for small 
(i.e. ~ < 1.4). However, virial coefficients are sensitive to the details of the shape for 
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Figure 2. Reduced virial coefficients B* = B~/V~ -1 of HE, HSP and HLTS as a function of 
c~ as defined in equation (1). Symbols stand for numerical results of this work for HLTS 
and from [6-8] for HE and HSP. Solid lines correspond to the least squares fit of 
equation (2). Open circles stand for HLTS, open squares correspond to HSP, crosses 
to HE and the open triangles are for hard linear fused spheres with L* = 0"5. (a) Results 
of B~ = B3/V 2. (b) Results of B* = B4/V 3. (continued) 

larger values of e. An interesting remark is that HE and HSP values of B* are similar 
even for high ~, whereas the values for HLTS differ significantly for the two convex 
models. This supports the idea that for prolate linear convex bodies of revolution 
(D~h), the idea of conformality still holds for high values of e. However, B* for HSP 
and HLTS differ significantly, showing that conformality does not extend to 
nonconvex bodies. The EOSs of HLTS must be different from that of HE or HSP 
for high values of e. 

Moreover, the idea of spherical tangent atoms looks somewhat artificial from a 
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Table 2. Coefficients of the fitting of equation (2). The non-sphericity parameter a is defined 
by equation (1). 

�9 " i i i Model i c0 c~ c2 c3 c4 

HLTS 3 -3"17144 12"08706 1"08437 0 0 
4 -15"21228 28"73404 7.83745 -2"99440 0 
5 131-04776 --333-36365 343-68698 -130"56392 17-41735 

H E  3 - 0"926 66 10'020 82 0"905 84 0 0 
4 -8"05688 28.46251 0"27661 -2"31743 0 
5 -35-79375 94.80443 -19 '55544 -17-75536 6-52462 

HSP 3 - 1"227 19 10"375 90 0"851 29 0 0 
4 - 9-295 60 30-074 28 -0-321 58 - 2-092 30 0 
5 -9"48904 23"40932 48"15636 -43"893 18 10"041 05 

Table 3. Virial coefficients of hard linear fused spheres with L* = 0"5 (figure l(b)). B* = 
i - 1  B~/V m . N stands for the number of independent configurations in the determination 

of B*. The figures in parentheses represent the estimated error in the last quoted digits. 

N/10 6 m B~ B~ Ba* B~' B~ 

2 5 5.769 (4) 17.71 (2) 31.8 (2) 43 (3) 54 (56) 1.590 
2 7 6.806 (4) 22.53 (3) 36.2 (2) 45 (4) 166 (94) 1.935 
2 9 7.854 (6) 27.70 (4) 38.1 (4) 51 (11) 185 (130) 2.285 

chemical  po in t  of view. We have  therefore eva lua ted  virial  coefficients for ha rd  l inear 
spheres with a reduced a t o m - a t o m  b o n d  length L* = 1/cr = 0"5 (see figure l(b)). The 
results are shown in table  3 and in figure 2. W e  see how the virial  coefficients of this 
mode l  are  much  closer  to those of the H S P  mode l  than  to the H L T S  model .  
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Coefficients kl, k 2 and k 3 of equation (3) for the EOS ISPT of [29], for the EOS 
proposed by Nezbeda [31] and the EOS proposed by Boublik [32]. 

kl k2 k3 

ISPT 3c~ - 2 3~ 2 - 3c~ + 1 - cd  
Nezbeda 3c~ - 2 cd + c~ - 1 -c~ (5~ - 4) 
Boublik 3c~ - 2 3c~ 2 - 3c~ + 1 - e  (6c~ -- 5) 

3 .  T h e o r e t i c a l  p r e d i c t i o n s  

Several EOSs have been proposed for HLTS. Boublik [29] modified the scaled 
particle theory of hard convex bodies of Gibbons [30] and proposed an improved 
version (ISPT). Later Nezbeda [31], by analyzing the virial coefficients of HSP 
models proposed a new EOS, which was slightly modified by Boublik [32]. These 
three EOSs are written in the form 

1 + k l y + k z y  2 + k 3 y  3 
Z = (3) 

(1  - y)3 

where y is the packing fraction defined as y = p Vm, and p is the number density. The 
coefficients kl, k2 and k 3 are given in table 4 for the ISPT, Nezbeda and Boublik 
EOS. The virial coefficients obtained from equation (3) are given by 

B ~  = (k  2 + 3k3) + 0"5(1 - k 1 - 3k  a - 5k3)i q- 0-5(! q- kl q- k e -q- k3)i 2. (4) 

In fact, equation (3) can be recovered by resummation of the virial series with 
B* given by equation (4). It can be shown that for a hard convex body, the 
non-sphericity parameter [5, 18] defined in equation (t) is given by 

R S  
~B = (5) 

3Vm 

where R is 1/On ) times the mean radius of curvature and S is the surface-area of the 
molecule. For  convex bodies equation (t)  and equation (5) provide the same value 
of ~. For  nonconvex bodies,~for instance the HLTS model, R is ill defined. Boublik 
and Nezbeda [33] proposed for HLTS to take the mean radius of curvature from 
the corresponding HSP model with the same length to breadth ratio. For  HLTS 
equation (1) and equation (5) yield different values of e, the difference being about 
2% for m = 3 and 5% for m = 7. 

Recently, another EOS has been proposed for HLTS by Wertheim [14] and 
independently by Chapman et al. [15]. This EOS, which will be denoted by W, reads 

(1 + y + y 2 - y 3 )  (m 1) (1 + y - y 2 ~ 2 )  
Z = m - -- (6) 

(1  - -  y ) 3  ( 1  - y ) ( 1  - y/2)" 
Following the work of Boublik [34], we have recently modified equation (6) to allow 
for overlapping of hard spheres. This modified version [16] of Wertheim's EOS (MW) 
read 

Z = (2~ r~ -- 1) (1 + y + y2 _ y 3 )  _ ( 27~ _ 2) (1 + y -- y2/2) (7) 
(I - y ) 3  (1  - -  y ) ( 1  - y/2) 

Equation (7) differs from that proposed by Boublik only in the way of defining ~ (~R 
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in equation (7) instead of c~ B which is the choice of Boublik). Equation (6) does not 
yield exact results for B* whereas equation (7) does. In what follows we shall use 
equation (1) as our definition of cc Equation (7) provides a very good description of 
virial coefficients and EOS of hard n-alkane models [16]. The virial coefficients 
obtained from equation (7) are 

B~ = 1 + 3~, (8) 

B] = 14-5c~ - 4-5, (9) 

B~ = 3 0 ' 2 5 ~ -  12'25, 0o) 

B~ = 50.125~-22"125.  (ll) 

None of the presented EOSs yields completely satisfactory results for virial 
coefficients of HLTS and this is specially true for the highest elongations. The ISPT, 
The Nezbeda and Boublik EOSs predict a linear variation in ~ for k 1 and a quadratic 
dependence for k 2 and k 3 (see table 4). According to these three EOSs, B* (except 
B*) is a quadratic function of e. All these three EOSs provide a fair prediction of B~. 
For B*, ISPT and Boublik EOSs fail because they give positive values of B* when 
c~ ~ oo. Only the Nezbeda EOS predicts negative values for B* when c~ ~ 
although the quantitative agreement is not very good. For  B*, ISPT and Boublik 
EOSs capture the trends of the numerical results although they are not very precise. 
The Nezbeda EOS shows a maximum in B~ which is not observed in the numerical 
results. Equation (7) predicts that the virial coefficients are linearly increasing 
functions of c~ (see equations (8-11)). This EOS provides good virial coefficients for 
HLTS up to c~ = 2.5 (m = 4) but it fails for higher values of e. In particular, this EOS 
is unable to predict negative values of B* for very elongated molecules. 

To summarize, B* is well represented by a linear function of ~. B* by a quadratic 
function of e (which shows a maximum) and B* as an increasing function of c~ (linear 
for small cr and of higher order for higher anisotropies). None of the presented EOSs 
is able to reproduce all these features simultaneously. Furthermore,  we observe in 
figure 2 that all these features are common for HLTS,  H E  and HSP models. 

We have focused so far on the variation of a given virial coefficient B* with the 
anisotropy (i.e. c 0 for a given value of i. Now we shall analyse the variation of B* 
with i for a given molecule (c~ fixed). In figure 3 we present results of the virial 
coefficients of HLTS for m = 1, 3, 5 and 7 as a function of i. We see that the virial 
coefficients of HS fit relatively well to a quadratic form in i. This fact justifies the 
success of the Carnahan-Star l ing [35] EOS since this equation predicts a quadratic 
variation of B* with i. We see from figure 3 that to assume a quadratic form for B* 
would still be a reasonable approximation when m = 3. However, the assumption of 
a quadratic variation of B* with i would be a poor approximation for m = 5 or for 
m - - 7 .  The quadratic form cannot describe the presence of a maximum and a 
minimum (at least) in B* as a function of i. The ISPT, Nezbeda and Boublik EOSs 
predict a quadratic form (see equation (4)) for B* as a function of i and this is a bad 
approximation for long molecules, as can be seen in figure 3. 

Thus all the EOSs analysed fail either in the prediction of the variation of B* 
with c~ for a given i or in the variation of B* with i for a given ~. Although the error 
is small for medium anisotropies (and that explains their success in describing hard 
models of common molecules) it becomes more important  for large anisotropies. 

In the next section we shall try to illustrate a different approach to the problem. 
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B* of HLTS as a function of i for the cases m = 1, m = 3, m = 5 and m = 7. m is 
the number of tangent spheres. Solid lines are only a guide to the eye. 

The idea is now to get an EOS from knowledge (through numerical determination) 
of the lower virial coefficients. 

4. Building equations of state from virial coefficients 

In this section, we shall briefly describe some previous attempts at building up 
an EOS from the knowledge of the first few virial coefficients. Finally we shall propose 
a new method which in general yields better results for the EOS of tong molecules 
than others proposed so far. 

4.1. The PF2 approach 

The first possibility is to use an EOS of the form of equation (3) but choose k~, 
k 2 and k 3 to  fit the known values of B~, B* and B,~. According to equation (4) that 
implies choosing a quadratic form for B* as a function of i. This method will fail for 
very elongated molecules, as we have concluded from our discussion of figure 3. 
Moreover,  because the form of B* is quadratic, and for instance for m = 7 it has 
to fit B*, B* and B*, negative values of higher virial coefficients will be computed 
and the corresponding pressure will be too low. Since this option predicts a quadratic 
variation of B* with i, we shall denote it as a polynomial fit of second order (PF2). 

4.2. PF3 

The presence of a maximum and a minimum in B* appearing in B* for m = 7 
suggests that a polynomial of third order for B* (PF3) would yield better results. 
Let us assume that B* is given by 

Bff = g o  +91i+g2  i2 + 0 3  i3" (12) 
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Then by summing the series Z = 1 + ~ = ~  B~+ly ~ we obtain 

Z = (1 + k l y  + k l y  2 + k'3y 3 -F k '4y4 ) / (1  - y)4 (13) 

where the coefficients k], k;, k; and k~ may be written as a linear combination of the 
variables 9~. As a general rule if B* = P,(i) where P,(i) stands for a polynomial of 
order n in the variable i then the EOS will be of the form [36]: 

Z =  1 + k;y' ( l - y ) " + 1  (14) 
i = 1  

It is possible to choose the k~ in equation (13) or equation (14) so that the first 
n + 1 virial coefficients are reproduced. A practical limitation of equation (14) is that 
the numerical determination of B* is difficult and the error in its estimation prevents 
the determination of k; accurately. Equation (13) may be then regarded as the highest 
version of equation (14) obtainable from a practical point of view. 

4.3. The Barboy and Gelbart approach 

The Barboy and Gelbart [-37] approach yields an EOS of the form: 

( )/ Z =  1 + k;y' ( l - y ) " + 1  (15) 
i = 1  

which is identical to equation (14) except for the absence of the last term. It can be 
shown that the last term in equation (14) is always 

k',+, = ( -  1)"+i(1 - h), (16) 

i = n  

h = Z 9i (17) 
i = 0  

where h is the summation of all the coefficients 9i appearing in equation (12) (or 
higher order versions). Since the BG approach sets k',+ 1 = 0 that implies that 

i = n  

l = h =  ~ 9 i .  
i = 0  

The BG approach implies a polynomial fit to B* with the restriction that the 
summation of the coefficients should be exactly one and, fi.'om this point of view, it 
is only a slightly modified version of equation (14). Therefore, the conclusions 
applied to equation (14) will also hold for equation (15), which is the BG approach. 

4.4. Parsons 

Parsons [38, 39] assumes that the structure of the hard body may be related to 
that of a hard sphere. If Z ns is the compressibility factor for HS then the EOS for 
hard bodies arising from Parson's approach is 

Z = 1 + [ Z  " s -  I]8"/4. (18) 

If the Carnahan-Starling EOS is used for Z Hs, then equation (18) predicts that B* 
is a quadratic function of i. Parsons' approach is unable to predict the negative values 
of B* of long prolate linear models. For convex bodies equation (18) yields 
prolate-oblate symmetry. 
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Table 5. Compressibility factor Z for HLTS as obtained from the equation of state MPF2 
of this work (see equation (20)), from other EOSs and from simulation results Z uc [5, 
22-24]. m stands for the number of tangent hard spheres. 

m y Z MPF2 Z PF2 Z PF3 Z MW Z P . . . . . .  Z MC 

1 0-0774 1.36 1-36 1-36 1'36 1"36 1.36 
1 0'2097 2.53 2'53 2'52 2"52 2'52 2"53 
1 0"3065 6"82 6"89 6.73 6"78 6'78 6-81 
1 0'4628 10.25 10-41 9'93 10'18 10.18 10'19 

2 0'1047 1"80 1.81 1"80 1'80 1'75 1"79 
2 0'2094 3'35 3.37 3.33 3"33 3.07 3.36 
2 0'3665 8.85 9'22 8"36 8"79 7.41 8"95 
2 0"4712 17.84 19"39 14'53 17'85 14.26 18'06 

3 0"100 1"99 1.99 1-99 1-98 1'89 2-00 
3 0'200 3.90 3.91 3'89 3.86 3.41 3.93 
3 0'300 7.55 7.67 7.43 7"52 6-09 7.71 
3 0-453 21'23 22"33 19"06 21.68 15.67 21"68 

4 0'205 4.75 4'75 4.75 4"75 4.02 4-85 
4 0'289 8.41 8.42 8-41 8"57 6'67 8"68 
4 0'359 13.38 13.40 13-36 14.00 10.22 13"81 
4 0"400 17.55 17'59 17"50 18'75 13.22 * 

Table 6. As in table 5 for HSP L* stands for L* = l/m Monte Carlo data were taken from 
[5, 7, 9]. 

L* y zMPFZ zPF2 zPF3 zNezbeda Z P . . . . . .  zMC 

1 0"200 2'67 2'68 2'67 2"67 2'62 2"65 
1 0'300 4"56 4"60 4-52 4"56 4'42 4-48 
1 0"400 8'08 8'22 7'78 8'10 7'81 8'19 
1 0'446 10"69 10"98 10'01 10-74 10"38 10"74 

2 0"200 3"05 3'06 3'05 3'06 2"93 3"07 
2 0'300 5'34 5"41 5"27 5'41 5-09 5-40 
2 0-400 9'43 9"75 8"93 9'74 9" 15 9"60 
2 0"455 12"63 13"26 11"13 13"24 12'13 13"00 

3 0-191 7 3"28 3'28 3"28 3'31 3"12 3"30 
3 0'348 5 7'96 8"04 7"87 8"36 7"72 8'26 
3 0"435 6 12"8 14'42 12'31 14'02 13-23 13-68 
3 0-481 8 16"43 16"93 15"32 18"59 17"97 17"54 

5 0" 176 70 3'65 3" 59 3'68 3'72 3"43 3-67 
5 0"265 10 6'27 5'89 6-57 6"51 5'87 6"33 
5 0' 309 22 8"09 7'28 8'90 8'46 7"67 8' 18 
5 0"353 40 10-38 8'78 12"38 10"90 10'05 10'26 

4.5. The new equation proposed in this work 

To s tudy the possibi l i t ies  of the  EOSs  of the  previous  sect ion and  those  
based  on vir ial  coefficients of this section, we shall  c o m p a r e  theoret ica l  p red ic t ions  
with M o n t e  Car lo  (MC)  results. In  table  5, we show the results  for H L T S  and  in 
tab le  6 for H S P .  In  table  7, we c o m p a r e  the average  dev ia t ion  with respect  to the 
M C  da t a  of  different semiempir ica l  approaches .  The  average dev ia t ion  A has been 
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Table 7. Average deviation A (see equation (19)) for the compressibility factor of several 
theoretical EOS. The MC points correspond to those presented in tables 5 and 6. We 
analyse the results with c~ defined from equation (1) (eR) and c~ defined from equation 
(5) (~B). 

AHLTS AHSP AHLTS + AHSP 

ISPT (eB) 3"5 17'4 20'7 
ISPT (e~) 2"3 17'4 19-7 
Nezbeda (eB) 7"4 1"9 9"3 
Nezbeda (~R) 8"4 1"9 10"3 
Boublik (~B) 4"4 5"7 10"1 
Boublik (~R) 5'7 5"7 11"4 
MW (~B) 0"9 14"8 15'7 
MW (eR) 1"0 14"8 15"8 
Parsons 12.2 4.5 16.7 
PF2 1.8 3.5 5-3 
PF3 3.8 6-2 10-0 
MPF2 1-2 2.1 3.3 

defined as 
i=nMc 

A E~ = (100/n~c) ~ IZ E~ - z~Cl / z?  c (19) 
i=1 

where nMc is the number  of thermodynamic states for which MC experiments 
were carried out. For  HLTS the Wertheim (W) and its modified version M W  
yield the best EOS. However, only the results for m = 3 and m = 4 have been reported 
so far. Since the prediction of virial coefficients was poor  for longer chains, we expect 
that W and M W  EOSs will deteriorate for longer chains. Other EOSs, such as 
Parsons approach,  and the Boublik and Nezbeda EOSs, do not provide satisfactory 
results the results of the ISPT being better. The PF2 yields better results than 
the PF3. 

In the case of HSP, the Nezbeda EOS yields the best results. However, it 
deteriorates as the length of the molecule increases (see results for L* = 5 in table 
6). The W, MW, ISPT and Boublik EOSs gives results that are not quite satisfactory. 
Parsons'  approach works better in that case than in the case of HLTS, and PF2 is 
again superior to PF3. This may  appear surprising since PF3 incorporates correctly 
one additional virial coeff• (B*) with respect to PF2. However, PF3 predicts a 
cubic variation of the virial coefficients and PF2 a quadratic one. Results of table 7 
suggest that the quadratic form for B* is superior to the cubic one when it is forced 
to fit the first virial coefficients. However, as was pointed out above, the PF2 has an 
important  defect since for long molecules it will predict negative values of the virial 
coefficients beyond B* and this "fact does not agree with the results obtained for B* 
and B~. 

The idea of a quadratic form for B~ is, nevertheless, appealing. It seems that at 
least up to i = 6 the virial coefficients B~* are increasing functions of i. The only 
coefficient breaking this rule in the case of prolate linear models is B* which presents 
a singular behaviour for HLTS, HE and HSP. It should be recognized from the 
beginning that for linear prolate molecules a quadratic form of B* may provide 
reasonable estimates for all i (at least up to B~) except for B*. So, we propose a new 
EOS which keeps a quadratic form for B* but the coefficients k 1, k 2 and k 3 are 
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Table 8. EOSs for prolate (k > 1) and oblate (k < 1) HE from the MPF2 EOS of this work. 
For  prolate molecules MPF2 is given by equation (20) and for oblate molecules by 
equation (25). The MC results are from [4, 41]. Virial coefficients of HE required 
in equation (20) and equation (25) were taken from [8]. The asterisks correspond to 
states where a nematic phase was found in computer simulations [41]. 

k = 3 k = 1/3 

y Z MPF2 MC Z MPF2 MC 

0-20 3'02 3"05 3" 10 3-10 
0-30 5'27 5-41 5"57 5-55 
0"40 9"30 9"80 10'31 10-03 
0'45 12"49 13"34 14'31 13-57 

k = 5 k = 1/5 

y Z MPF2 MC Z MPF2 MC 

0-1111 2"20 2'21 2"29 2-28 
0-2036 3'94 3'96 4"35 4-22 
0'2592 5"45 5-54 6'25 5-79 
0"3147 7"43 7'66 * * 

k = 10 k = 1/10 

y Z MPF2 MC Z MPF2 MC 

0-0555 1'90 1"90 2"01 2-00 
0-1111 3"20 3"15 3-61 3-46 
0"1481 4'41 4'21 4'94 4-50 
0'2306 7"22 5"99 * * 

chosen to r ep roduce  the k n o w n  values of B*, B~ and  B*. An EOS o b t a i n e d  in 
this way  m a y  prov ide  a reasonable  es t imate  of B* with i > 5 but  it  gives very p o o r  
values of B* for long molecules.  W e  can correct  this defect by sub t rac t ing  the 
con t r i bu t ion  of the pred ic ted  B* and  a d d i n g  the cor rec t ion  of the numer ica l  B~. O u r  
p r o p o s e d  E O S  is 

zprolate = ] -1- k l y  q- k2y  2 + k3y  3 -I- (B4 *'exact - B* ' the~ 3, (20) 
( 1  - -  y3) 

kl  = B* --  3, 

k2 = B ~  - 3 B ~  + 3 ,  

ka = (B* - 6B* + 8B* - 3)/3, 

B *'the~ = k 3 -+- 3k 2 + 6k 1 + t0,  

(21) 

(22) 

(23) 

(24) 
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where B *,the~ is B* as predicted by the first term on the right-hand side of equation 
(20). We shall denote the equation (20) as the modified polynomial of order 2 (MPF2). 
In tables 5, 6 and 7 we show the results of the EOS obtained that way. We see that 
the results are good and they do not deteriorate as the length of the molecules 
increases. For HLTS the deviation of MPF2 as represented by A is only slightly 
larger than that of the W and MW EOSs which are the best for this kind of molecule. 
For  HSP, MPF2 is only slightly worse than those of Nezbeda. However, the MPF2 
gives good results for the longest molecule of table 7 and it is expected that it will 
also provide good results for longer molecules. On the other hand, there are good 
reasons, as described in our discussion of the virial coefficients, to expect that both 
the W (or its MW) and Nezbeda EOSs will deteriorate for longer molecules. 

The idea leading to equation (20) for prolate linear models can be extended to 
oblate molecules. For  oblate molecules B~, B* and B* are always positive and 
increase with the anisotropy of the molecule. However, B* reaches a maximum and 
then goes to negative values. In fact this behaviour of the first virial coefficients has 
been reported for oblate [8] HE and for oblate [40] HSP. We propose for oblate 
molecules a quadratic form for the B* with the coefficients obtained to match B~, B~ 
and B* and then correct the poor  prediction of B* with the numerical value of B* 
The MPF2 EOS for oblate molecules is 

z o b l a t  e = 1 + k l y  + k z y  2 + k3y 3 + (B.,exac t - -  B*'the~ 4 5  ]y , (25) 
(1 - y )3  

kl = B* - 3, (26) 

k2 = B~ - 3B* + 3, (27) 

k 3 = B~ - 3B~ + 3B* - 1, (28) 

B * ' t h e ~  = 3k3 + 6 k  2 -t- 10k 1 + 15. (29) 

In table 8 we compare results for HE with prolate and oblate symmetry with MC 
data for these systems [41]. For  a given density, oblate molecules have a higher 
pressure (i.e. Z)  than prolate molecules and this fact is in agreement with computer 
simulations. Moreover, the general agreement between the EOS proposed here and 
MC, where available, is very reasonable. 

The basic idea behind the new proposed EOS is to assume a quadratic form for 
B* (as in the Carnahan-Starl ing EOS of HS), except for the first virial coefficient of 
the virial expansion showing negative values at high anisotropies (the fourth for 
prolate and the fifth for oblate molecules). 

5. Conclusions 

In this work we have evaluated the first six virial coefficients of linear tangent 
spheres. We show that dependence on elongation of B*, B* and B~ are similar for 
HLTS, HE and HSP. HE and HSP present very similar B* even for high 
anisotropies whereas the values of HLTS differ significantly. As a consequence, 
different EOSs are required for HLTS and for prolate convex bodies such as HE 
and HSP. None of the several proposed EOSs reproduces all the features of B* 
(i = 3, 4, 5) as a function of e, so they fail to reproduce the EOSs of prolate hard 
bodies at high anisotropies. We have analysed several attempts to build an EOS for 
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prolate linear models from the knowledge of the first virial coefficients. We have 
shown that the EOS obtained by assuming a quadratic form for B* plus a correction 
term for B* yields good results for prolate linear molecules at moderate and high 
anisotropy. The procedure is extended to oblate molecules by admitting that the 
correction term should now be in B*. The proposed EOS yields reliable results for 
HS and for intermediate elongations. Moreover, for very long molecules it does 
provide good results, since it incorporates the correct value of the lower virial 
coefficients. This is quite important since for very long molecules the range where an 
isotropic fluid phase is stable becomes vanishing small [42]. The proposed EOS 
distinguishes prolate and oblate molecules. Overall the new proposed EOS yields 
good predictions over a large range of anisotropies and it has proved to be very 
useful in theoretical studies of liquid crystal formation of hard molecules [43]. 
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