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Linear hard sphere models
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Virial coefficients of tangent hard spheres in a linear configuration have been
determined numerically. Trends of the virial coefficients with the molecular
anisotropy are similar to those of other linear models, such as hard spherocylinders
or hard ellipsoids. Theoretical predictions of virial coefficients from different
equations of state of hard body fluids are compared with the numerical results.
None of them provides a completely satisfactory description of the lower virial
coefficients when the anisotropy of the molecule is large. We propose a new
method to build up an equation of state of hard linear models (prolate or oblate)
from the knowledge of the first five virial coefficients. The equation of state
obtained in this way provides a very good description of the equation of state
of hard linear fluids at low, medium and high anisotropies.

1. Introduction

Hard body models of molecules have a great importance in liquid state theory
since they may be used as reference systems in perturbation treatments of molecules
with repulsive and attractive interactions [1, 2]. Hard linear molecules such as
spherocylinders (HSPs) or hard ellipsoids (HEs) have been studied in a number of
papers so that their equation of state (EOS) [3-5], virial coefficients [6—8] and phase
diagram [4, 9] are relatively well known. Furthermore, Wertheim has recently
proposed a theory of associated fluids [10-13]. The perturbation theory proposed
by Wertheim may be used to predict the behaviour of chains of tangent hard spheres
[14, 15]. This theory has been tested with respect to its ability to predict the virial
coefficients and EOS of hard n-alkane models, and the results may be considered as
very promising [16]. In this work we shall focus on the study of fluids of molecules
made up by m tangent spheres in a linear configuration. We shall denote this model
as the hard linear tangent spheres (HLTS) model. When m = 1 we get the hard sphere
(HS) molecule and when m =2 we get a particular case of the hard dumb-bell
molecule. For these two cases, the virial coefficients [17, 18], phase diagram [19-21]
and EOS [22] are now well known. More recently Amos and Jackson [23] and
Boublik et al. [24] have obtained the EOS via computer simulation for trimers
(m = 3) and tetramers (m = 4), respectively. Although analytical formulas exist for
determining the second virial coefficient B, of HLTS with m = 2 and m = 3 [18, 25]
and lower virial coefficients have been obtained for m = 3 (see reference [5] for
details) no other virial coefficient has been reported for HLTS with larger values of
m. In this work, we shall provide results for the lower virial coefficients of HLTS
molecules with m ranging from 3 up to 7. Thus the ability of Wertheim and other
EOSs to predict virial coefficients of HLTS models is analysed. We shall discuss
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Figure 1. Hard models for this work. («) Hard linear tangent spheres (HLTS). (b) Hard lincar
fused spheres with L* = 0-5. Dotted line shows the c,, axis in all cases.

differences and similarities in the behaviour of the lower virial coefficients of prolate
linear convex models as HE or HSP, with respect to prolate linear non-convex
molecules as HLTS. We analyse different procedures for building up an EOS from
the knowledge of the lower virial coefficients. Moreover, we propose for prolate linear
molecules a new method of building up an EOS from knowledge of the first virial
coeflicients, that yields better results than others previously proposed. The method
is then extended to-oblate molecules. The EOS built in that way allows us to predict
reasonably well the behaviour of the fluid up to high densities of hard spheres and
of highly anisotropic molecules as well. The new proposed EOS may prove to be
useful in theoretical studies of liquid crystal formation of hard linear (prolate or
oblate) models.

The scheme of the paper is as follows. Section 2 presents numerical results for
the virial coefficients of HLTS. In section 3 we compare the numerical results with
the predictions of different equations of state. Section 4 introduces a new method of
building an equation of state from a knowledge of the lower virial coefficients. Section
5 contains the conclusions of this work.

2. Virial coefficients of hard linear tangent spheres

The model of HLTS consists of m hard spheres in contact in a linear rigid
configuration, as illustrated in figure 1(a). We have evaluated the first five virial
coefficients of HLTS with m ranging from m = 3 to m = 7 by the method of Ree
and Hoover [17] as extended to hard molecular fluids by Rigby [26]. We have also
evaluated the sixth virial coefficient. We have typically used ten million configurations
for each reduced virial coefficient B¥ = B,/V., ! where B, is the ith virial coefficient
and F,, is the molecular volume. For some models two independent determinations
were made. In the evaluation of By, we neglect a diagram corresponding to the one
neglected by Ree and Hoover [17] in their determination of Bg of hard spheres. For
hard bodies, this diagram makes a positive although small contribution to B.
Calculations of Bf for HLTS become increasingly time consuming as m increases
and the computer time grows as m?. The virial coefficients for HLTS are shown in
table 1. Our numerical determination of B¥ agrees very well with its analytical values
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Table 1. Virial coefficients of linear tangent spheres. B = B,/V:~!, N stands for the number
of independent configurations in the runs for the determination of B¥. « is defined
through equation (1). The figures in parentheses represent the estimated error in the last
quoted digits.

N/10S  m B* B% B¥ B* B %
10 3 6851 24-48 48-59 70 * 1950
10 3 6850 (2) 2447 (1) 4851 (17) 68 (3) 120 (52) 1:950
10 4 8248 32:36 5797 83 * 2416
10 4 8248 (4)  32:36(2) 5790 (13) 81 (5) 313 (85) 2416
10 5 9-642 4066 60-73 103 * 2-880
10 5 9640 3) 4067 (3) 6114 (31) 97 (8) 634 (141)  2:880
15 6 11032 49-49 5660 153 * 3344
15 6 11034 (2) 4949 (3) 5634 (35) 163 (10) 1460 (487) 3345
20 7 12421 58-47 42:57 298 * 3-807
20 7 12423 (3) 5849 (3) 4253 (58)  295(18) 1816 (865)  3-808

[18, 25] for m = 2 and m = 3, which constitutes a check of our algorithm. We have
defined a nonsphericity parameter a® according to the prescription first proposed by
Rigby [27]:

B¥ =1+ 3aR. M

We sec in table 1 that the nonsphericity a® increases with the length of the
molecules and the relation between a® and m is roughly linear. In figure 2, we show
the behaviour of B¥, B¥ and B¥ as a function of aR. According to equation (1) two
models with the same value of af have also the same B%. For comparison we also
present in figure 2 the results for B¥ for HE and HSP molecules [5]. Trends are the
same for all these prolate linear models. We see that B¥ increases smoothly with o,
However, B¥ presents a completely different behaviour. It increases up to «® =3
(m = 5) and then it starts to decrease. The shape of the curve suggests that B, becomes
negative for m = 9. The presence of negative B} for prolate linear models was first
found by Monson and Rigby [6] for HSP and more recently by Rigby [8, 28] for
HE and the Gaussian overlap model. It is, therefore, a general feature of prolate
linear models (convex and non-convex) at high elongations. The behaviour of B¥ is
shown in figure 2c. It increases slowly to «® = 3 and then it increases rapidly. This
again seems to hold for HE and HSP. In order to estimate virial coefficients at
intermediate values of a® we have fitted B} to the empirical expression:

B¥ =cb + clo + cho? + ko + chot. )

The coefficients of equation (2) for HLTS, HE and HSP are shown in table 2.
The results of this fitting are shown as the solid line in figure 2. We conclude from
figure 2 that the virial coefficients of prolate linear models present similar features
in their behaviour regardless of the details of their shape. These three models, HE,
HSP and HLTS, reduce to the hard sphere case when « = 1. As a consequence, the
values of B} for o close to one are very similar for these three geometries. This
supports the idea of conformality [5], namely that the knowledge of B¥ (or « since
they are related through equation (1)) is enough for describing the EOS of the fluid
regardless of the finer details of its shape. This idea seems to be justified for small «
(ie. « < 14). However, virial coefficients are sensitive to the details of the shape for
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Figure 2. Reduced virial coefficients Bf = B,/Vi ' of HE, HSP and HLTS as a function of
o as defined in equation (1). Symbols stand for numerical results of this work for HLTS
and from [6-8] for HE and HSP. Solid lines correspond to the least squares fit of
equation (2). Open circles stand for HLTS, open squares correspond to HSP, crosses
to HE and the open triangles are for hard linear fused spheres with L* = 0-5. (a) Results
of B% = B,/VZ. (b) Results of B = B,/V3. (continued)

larger values of a. An interesting remark is that HE and HSP values of B¥ are similar
even for high o, whereas the values for HLTS differ significantly for the two convex
models. This supports the idea that for prolate linear convex bodies of revolution
(D), the idea of conformality still holds for high values of «. However, B¥ for HSP
and HLTS differ significantly, showing that conformality does not extend to
nonconvex bodies. The EOSs of HLTS must be different from that of HE or HSP
for high values of a.

Moreover, the idea of spherical tangent atoms looks somewhat artificial from a



Linear hard sphere models 1237

1000

800

600+

4
Bs/\,

4004

200+

(©)
Figure 2. (continued) (c) Results of B¥ = Bs/Va

Table 2. Coefficients of the fitting of equation (2). The non-sphericity parameter « is defined
by equation (1).

Model i b ¢l ch ch ch
HLTS 3 —317144 12:087 06 1-084 37 0 0

4 — 1521228 28-73404 7-83745 —2:99440 0

5 13104776 — 33336365 343-686 98 — 13056392 17-417 35
HE 3 —0926 66 1002082 0-905 84 0 0

4 — 8056 88 28462 51 0276 61 —2:31743 0

5 —35-79375 94-804 43 —19-55544 —17-75536 652462
HSP 3 —1-22719 10-37590 0-85129 0 0

4 —9-29560 3007428 —0-32158 —2-09230 0

5 —9:489 04 23-409 32 48-156 36 —43-89318 10-04105

Table 3. Virial coefficients of hard linear fused spheres with L* = 0-5 (figure 1(b)). Bf =
B,/Vi ', N stands for the number of independent configurations in the determination
of B. The figures in parentheses represent the estimated error in the last quoted digits.

N/10° m B% B¥ B% B% B¥ o
2 557694  1771(Q2) 318 43 (3) 54 (56) 1590
2 7 6-806 (4) 2253 (3) 362 (2) 45 4 166 (94) 1-935
2 9 7854(6) 2770(4) 3814 5L 185 (130) 2285

chemical point of view. We have therefore evaluated virial coefficients for hard linear
spheres with a reduced atom-atom bond length L* = [/o = 0-5 (see figure 1(b)). The
results are shown in table 3 and in figure 2. We see how the virial coefficients of this
model are much closer to those of the HSP model than to the HLTS model.
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Table 4. Coefficients k,, k, and k; of equation (3) for the EOS ISPT of [29], for the EOS
proposed by Nezbeda [31] and the EOS proposed by Boublik [32].

ky ka ks
ISPT 300 —2 30 — 3o+ 1 —o?
Nezbeda 30— 2 o 4o —1 —o (500 — 4)
Boublik 30— 2 302 — 3a + 1 —o (60 — 5)

3. Theoretical predictions

Several EOSs have been proposed for HLTS. Boublik [29] modified the scaled
particle theory of hard convex bodies of Gibbons [30] and proposed an improved
version (ISPT). Later Nezbeda [31], by analyzing the virial coefficients of HSP
models proposed a new EOS, which was slightly modified by Boublik [32]. These
three EOSs are written in the form

2 3
Z:L+k1y+k2y +kyy 3)

(1 -y

where y is the packing fraction defined as y = pV¥,,, and p is the number density. The
coefficients k,, k, and k, are given in table 4 for the ISPT, Nezbeda and Boublik
EOS. The virial coefficients obtained from equation (3) are given by

B¥ = (ky + 3ks) + O5(1 — ky — 3k, — Ska)i + O5(1 + ky + k, + ky)i2.  (4)

In fact, equation (3) can be recovered by resummation of the virial series with
B} givenn by equation (4). It can be shown that for a hard convex body, the
non-sphericity parameter [5, 18] defined in equation (1) is given by

RS

B_
3V,

&)

where R is 1/(4x) times the mean radius of curvature and S is the surface-area of the
molecule. For convex bodies equation (1) and equation (5) provide the same value
of «. For nonconvex bodies, for instance the HLTS model, R is ill defined. Boublik
and Nezbeda [33] proposed for HLTS to take the mean radius of curvature from
the corresponding HSP model with the same length to breadth ratio. For HLTS
equation (1) and equation (5) yield different values of «, the difference being about
2% form =3 and 5% for m = 7.

Recently, another EOS has been proposed for HLTS by Wertheim [14] and
independently by Chapman et al. [157]. This EOS, which will be denoted by W, reads

A+y+y*—y) (1+y—y2/2).
(1—y? (I =t —y/2)

Following the work of Boublik [34], we have recently modified equation (6) to allow
for overlapping of hard spheres. This modified version [167] of Wertheim’s EOS (MW)
read

Z=m —(m—1) ©)

1 2y 1 —y*2

(I+y+y : Y)—(ZocR—2) A+y—y/2)
(11— (1= —-y/2)
Equation (7) differs from that proposed by Boublik only in the way of defining a (a®

Z=028 -1 @)
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in equation (7) instead of o® which is the choice of Boublik). Equation (6) does not
yield exact results for B whereas equation (7) does. In what follows we shall use
equation (1) as our definition of a. Equation (7) provides a very good description of
virial coefficients and EOS of hard n-alkane models [16]. The virial coefficients
obtained from equation (7) are

B% =1+ 3a, ()

B% = 14:50 — 45, ©)
B¥ = 30250 — 1225, (10)
B¥ = 501250 — 22:125. (11)

None of the presented EOSs yields completely satisfactory results for virial
coeflicients of HLTS and this is specially true for the highest elongations. The ISPT,
The Nezbeda and Boublik EOSs predict a linear variation in « for k; and a quadratic
dependence for k, and k5 (see table 4). According to these three EOSs, Bf (except
B?%) is a quadratic function of «. All these three EOSs provide a fair prediction of B¥.
For B}, ISPT and Boublik EOSs fail because they give positive values of B when
o = o0. Only the Nezbeda EOS predicts negative values for B when o = oo
although the quantitative agreement is not very good. For B¥, ISPT and Boublik
EOSs capture the trends of the numerical results although they are not very precise.
The Nezbeda EOS shows a maximum in B¥ which is not observed in the numerical
results. Equation (7) predicts that the virial coefficients are linearly increasing
functions of « (see equations (8—11)). This EOS provides good virial coefficients for
HLTS up to o = 2-5 (m = 4) but it fails for higher values of a. In particular, this EOS
is unable to predict negative values of B} for very elongated molecules.

To summarize, B¥ is well represented by a linear function of a. B by a quadratic
function of & (which shows a maximum) and B¥ as an increasing function of « (linear
for small o and of higher order for higher anisotropies). None of the presented EOSs
is able to reproduce all these features simultancously. Furthermore, we observe in
figure 2 that all these features are common for HLTS, HE and HSP models.

We have focused so far on the variation of a given virial coefficient B¥ with the
anisotropy (i.c. ) for a given value of i. Now we shall analyse the variation of B¥
with i for a given molecule (x fixed). In figure 3 we present results of the virial
coefficients of HLTS for m = 1, 3, 5 and 7 as a function of i. We see that the virial
coefficients of HS fit relatively well to a quadratic form in i. This fact justifies the
success of the Carnahan-Starling [35] EOS since this equation predicts a quadratic
variation of B} with i. We see from figure 3 that to assume a quadratic form for B¥
would still be a reasonable approximation when m = 3. However, the assumption of
a quadratic variation of B} with i would be a poor approximation for m = 5 or for
m = 7. The quadratic form cannot describe the presence of a maximum and a
minimum (at least) in B} as a function of i. The ISPT, Nezbeda and Boublik EOSs
predict a quadratic form (see equation (4)) for B¥ as a function of i and this is a bad
approximation for long molecules, as can be seen in figure 3.

Thus all the EOSs analysed fail either in the prediction of the variation of B¥
with a for a given i or in the variation of B¥ with i for a given «. Although the error
is small for medium anisotropies (and that explains their success in describing hard
models of common molecules) it becomes more important for large anisotropies.

In the next section we shall try to illustrate a different approach to the problem.
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700

Figure 3. B¥ of HLTS as a function of i for the cases m =1, m=3 m=5and m=7. m is
the number of tangent spheres. Solid lines are only a guide to the eye.

The idea is now to get an EOS from knowledge (through numerical determination)
of the lower virial coefficients.

4. Building equations of state from virial coeflicients

In this section, we shall briefly describe some previous attempts at building up
an EOS from the knowledge of the first few virial coefficients. Finally we shall propose
a new method which in general yields better results for the EOS of long molecules
than others proposed so far.

4.1. The PF2 approach

The first possibility is to use an EOS of the form of equation (3) but choose k;,
k, and k; to fit the known values of B%, B¥ and B}. According to equation (4) that
implies choosing a quadratic form for B} as a function of i. This method will fail for
very elongated molecules, as we have concluded from our discussion of figure 3.
Moreover, because the form of B¥ is quadratic, and for instance for m = 7 it has
to fit B%, B% and B}, negative values of higher virial coefficients will be computed
and the corresponding pressure will be too low. Since this option predicts a quadratic
variation of B¥ with i, we shall denote it as a polynomial fit of second order (PF2).

42. PF3

The presence of a maximum and a minimum in B¥ appearing in B} for m =7
suggests that a polynomial of third order for B¥ (PF3) would yield better results.
Let us assume that B} is given by

B¥ =gy + g,1+ g,i* + g3i°. (12)



Linear hard sphere models 1241

Then by summing the series Z =1+ ) ;_; B, ;)" we obtain
Z=(1+kyy+kyy* +ky® + kiyH/( - y)* (13)
where the coefficients ki, k5, k3 and k; may be written as a linear combination of the

variables g;. As a general rule if Bf = P,(i) where P,(i) stands for a polynomial of
order n in the variable i then the EOS will be of the form [36]:

Z=<1 +l=§1k,‘y">/(1 -yt (14)
i=1

It is possible to choose the k; in equation (13) or equation (14) so that the first
n + 1 virial coefficients are reproduced. A practical limitation of equation (14) is that
the numerical determination of B} is difficult and the error in its estimation prevents
the determination of k5 accurately. Equation (13) may be then regarded as the highest
version of equation (14) obtainable from a practical point of view.

4.3. The Barboy and Gelbart approach
The Barboy and Gelbart [37] approach yiclds an EOS of the form:

Z=<“ﬁfuﬁva—w“l (13)

which is identical to equation (14) except for the absence of the last term. It can be
shown that the last term in equation (14) is always

o= (— M — R, (16)
h=§m (17)

where h is the summation of all the coefficients g, appearing in equation (12) (or
higher order versions). Since the BG approach sets k., ; = 0 that implies that

l1=h= igi.
i=o

The BG approach implies a polynomial fit to B} with the restriction that the
summation of the coefficients should be exactly one and, from this point of view, it
is only a slightly modified version of equation (14). Therefore, the conclusions
applied to equation (14) will also hold for equation (15), which is the BG approach.

4.4, Parsons

Parsons [38, 39] assumes that the structure of the hard body may be related to
that of a hard sphere. If Z™ is the compressibility factor for HS then the EOS for
hard bodies arising from Parson’s approach is

Z=1+[Z" — 1]B%/4. (18)

If the Carnahan-Starling EOS is used for Z™5, then equation (18) predicts that B}
is a quadratic function of i. Parsons’ approach is unable to predict the negative values
of B} of long prolate lincar models. For convex bodies equation (18) yields
prolate—oblate symmetry.



1242

C. Vega et al.

Table 5. Compressibility factor Z for HLTS as obtained from the equation of state MPF2
of this work (see equation (20)), from other EOSs and from simulation results ZM¢ [5,
22-24]. m stands for the number of tangent hard spheres.

m y ZMPFZ ZPFZ ZPF3 ZMW ZParsons ZMC

1 00774 1-36 1-36 1-36 136 1-36 1-36
1 0-2097 2:53 253 2:52 252 2:52 2:53
1 0-3065 6-82 689 673 678 678 681
1 04628 1025 1041 9:93 1018 1018 10-19
2 0-1047 1-80 1-81 1-80 1-80 175 1-79
2 02094 3-35 3-37 333 3-33 307 3-36
2 03665 885 922 836 879 741 895
2 04712 1784 1939 14-53 1785 14-26 18-06
3 0-100 1-99 1-99 1-99 1-98 1-89 2:00
3 0-200 390 391 3-89 3-86 341 393
3 0-300 753 767 743 752 609 7
3 0-453 21-23 22-33 19-06 21-68 1567 21-68
4 0-205 475 475 475 475 402 4-85
4 0289 841 842 841 857 667 868
4 0-359 13-38 13-40 1336 14-00 1022 13-81
4 0-400 17-53 1759 17-50 1875 1322 *

Table 6. As in table 5 for HSP L* stands for L* = I/c. Monte Carlo data were taken from

(5,7, 9]

L* y ZMPFZ ZPFZ ZPF3 ZNezbeda ZParsons ZMC
1 0-200 2:67 2:68 2:67 2:67 2:62 2-65
1 0-300 4-56 4-60 4-52 4:56 4-42 4-48
1 0-400 8-08 822 778 810 7-81 819
1 0-446 10-69 1098 10-01 10-74 10-38 10:74
2 0-200 3-05 3-06 3:05 3-06 293 307
2 0-300 534 541 527 541 509 5-40
2 0-400 9-43 9-75 893 9-74 9-15 9-60
2 0-455 12:63 1326 11-13 1324 1213 13-00
3 0-1917 328 328 328 331 312 3:30
3 0-3485 796 804 7-87 836 772 826
3 0-4356 12:8 14-42 12-31 1402 13-23 13-68
3 04818 1643 1693 1532 1859 1797 17-54
5 0-17670 365 359 3:68 372 343 3-67
5 026510 627 589 6-57 651 587 6-33
5 030922 809 728 8:90 846 767 818
5 0-35340 10-38 878 12:38 10-90 10-05 10-26

4.5. The new equation proposed in this work

To study the possibilities of the EOSs of the previous section and those
based on virial coeflicients of this section, we shall compare theoretical predictions
with Monte Carlo (MC) results. In table 5, we show the results for HLTS and in
table 6 for HSP. In table 7, we compare the average deviation with respect to the
MC data of different semiempirical approaches. The average deviation A has been
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Table 7. Average deviation A (see equation (19)) for the compressibility factor of several
theoretical EOS. The MC points correspond to those presented in tables 5 and 6. We
analyse the results with « defined from equation (1) (a®) and « defined from equation

(5) (@®).

AHLTS AHSP AHLTS + AHSP
ISPT (aB) 35 174 207
ISPT (a}) 23 17-4 197
Nezbeda («?) 74 1-9 9-3
Nezbeda (a}) 84 1-9 103
Boublik («B) 4-4 57 101
Boublik («}) 57 57 114
MW (o®) 09 14-8 157
MW (a}) 10 14-8 158
Parsons 122 4-5 167
PF2 1-8 35 53
PF3 38 6-2 100
MPF2 1-2 21 33
defined as
[ = pme
NS — (100/myc) 3, |25 — 2|z (19)
i=1

where nyc is the number of thermodynamic states for which MC experiments
were carried out. For HLTS the Wertheim (W) and its modified version MW
yield the best EOS. However, only the results for m = 3 and m = 4 have been reported
so far. Since the prediction of virial coefficients was poor for longer chains, we expect
that W and MW EOSs will deteriorate for longer chains. Other EOSs, such as
Parsons approach, and the Boublik and Nezbeda EOSs, do not provide satisfactory
results the results of the ISPT being better. The PF2 yields better results than
the PF3.

In the case of HSP, the Nezbeda EOS yields the best results. However, it
deteriorates as the length of the molecule increases (see results for L* = 5 in table
6). The W, MW, ISPT and Boublik EOSs gives results that are not quite satisfactory.
Parsons’ approach works better in that case than in the case of HLTS, and PF2 is
again superior to PF3. This may appear surprising since PF3 incorporates correctly
one additional virial coefficient (B¥) with respect to PF2. However, PF3 predicts a
cubic variation of the virial coefficients and PF2 a quadratic one. Results of table 7

“suggest that the quadratic form for B¥ is superior to the cubic one when it is forced
to fit the first virial coefficients. However, as was pointed out above, the PF2 has an
important defect since for long molecules it will predict negative values of the virial
coefficients beyond B} and this fact does not agree with the results obtained for B¥
and BE.

The idea of a quadratic form for B} is, nevertheless, appealing. It seems that at
least up to i = 6 the virial coefficients B} are increasing functions of i. The only
coefficient breaking this rule in the case of prolate linear models is B¥ which presents
a singular behaviour for HLTS, HE and HSP. It should be recognized from the
beginning that for linear prolate molecules a quadratic form of B¥ may provide
reasonable estimates for all i (at least up to B¥) except for B¥. So, we propose a new
EOS which keeps a quadratic form for B} but the coefficients k,, k, and k; are
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Table 8. EOSs for prolate (k > 1) and oblate (k < 1) HE from the MPF2 EOS of this work.
For prolate molecules MPF2 is given by equation (20) and for oblate molecules by
equation (25). The MC results are from [4, 41]. Virial coefficients of HE required
in equation (20) and equation (25) were taken from [8]. The asterisks correspond to
states where a nematic phase was found in computer simulations [41].

k=3 k=1/3
y ZMPF2 MC ZMPFZ MC
020 302 305 310 310
0-30 527 5-41 557 555
0-40 9-30 9-80 10-31 10-03
0-45 12-49 13-34 14:31 13-57
k=5 k=1/5
y ZMPFZ MC ZMPFZ MC
0-1111 2:20 221 2:29 228
0-2036 394 396 435 4-22
0-2592 545 5-54 625 579
0-3147 743 7-66 * *
k=10 k=1/10
y ZMPFZ MC ZMPF2 MC
0-0555 1-90 1-90 2:01 2-00
0-1111 320 315 361 3-46
0-1481 441 421 494 4-50
0-2306 722 599 * *

chosen to reproduce the known values of B%, B¥ and B¥. An EOS obtained in
this way may provide a reasonable estimate of B} with i > 5 but it gives very poor
values of B for long molecules. We can correct this defect by subtracting the
contribution of the predicted B} and adding the correction of the numerical B¥. Our
proposed EOS is

1+ kiy+koy® + kyy?

7 prolate _ 1= 4 (B¥-exact _ ptheoy 3 (20)
ky = BY —3, 1)

k, = BY — 3B% + 3, 2)

k, = (BY — 6B% + 8B} — 3)/3, (23)

Bi‘stheo = k3 + 3k2 + 6k1 + 10’ (24)
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where B the° is B* as predicted by the first term on the right-hand side of equation
(20). We shall denote the equation (20) as the modified polynomial of order 2 (MPF2).
In tables 5, 6 and 7 we show the results of the EOS obtained that way. We see that
the results are good and they do not deteriorate as the length of the molecules
increases. For HLTS the deviation of MPF2 as represented by A is only slightly
larger than that of the W and MW EOSs which are the best for this kind of molecule.
For HSP, MPF2 is only slightly worse than those of Nezbeda. However, the MPF2
gives good results for the longest molecule of table 7 and it is expected that it will
also provide good results for longer molecules. On the other hand, there are good
reasons, as described in our discussion of the virial coefficients, to expect that both
the W (or its MW) and Nezbeda EOSs will deteriorate for longer molecules.

The idea leading to equation (20) for prolate linear models can be extended to
oblate molecules. For oblate molecules B¥, B% and B¥ are always positive and
increase with the anisotropy of the molecule. However, B¥ reaches a maximum and
then goes to negative values. In fact this behaviour of the first virial coefficients has
been reported for oblate [8] HE and for oblate [40] HSP. We propose for oblate
molecules a quadratic form for the B¥ with the coefficients obtained to match B%, B%
and B¥ and then correct the poor prediction of B¥ with the numerical value of B#¥
The MPF2 EOS for oblate molecules is

L+ kyy+ky* + kg y?

Zoblate — (1 — y)3 + (Bgc,exact o B?,theo)y“" (25)
k, = BY — 3, (26)

k, = BX — 3B% + 3, 27)

ky = B — 3B% +3B% — L, (28)

B;g,theo — 3k3 + 6k2 + IOk1 + 15. (29)

In table 8 we compare results for HE with prolate and oblate symmetry with MC
data for these systems [41]. For a given density, oblate molecules have a higher
pressure (i.e. Z) than prolate molecules and this fact is in agreement with computer
simulations. Moreover, the general agreement between the EOS proposed here and
MC, where available, is very reasonable.

The basic idea behind the new proposed EOS is to assume a quadratic form for
B¥ (as in the Carnahan—Starling EOS of HS), except for the first virial coefficient of
the virial expansion showing negative values at high anisotropies (the fourth for
prolate and the fifth for oblate molecules).

5. Conclusions

In this work we have evaluated the first six virial coefficients of linear tangent
spheres. We show that dependence on elongation of B%, Bf and B¥ are similar for
HLTS, HE and HSP. HE and HSP present very similar B¥ even for high
anisotropies whereas the values of HLTS differ significantly. As a consequence,
different EOSs are required for HLTS and for prolate convex bodies such as HE
and HSP. None of the several proposed EOSs reproduces all the features of B}
(i=3,4,5) as a function of «, so they fail to reproduce the EOSs of prolate hard
bodies at high anisotropies. We have analysed several attempts to build an EOS for
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prolate linear models from the knowledge of the first virial coefficients. We have
shown that the EOS obtained by assuming a quadratic form for B plus a correction
term for B¥ yields good results for prolate linear molecules at moderate and high
anisotropy. The procedure is extended to oblate molecules by admitting that the
correction term should now be in B¥. The proposed EOS yields reliable results for
HS and for intermediate elongations. Moreover, for very long molecules it does
provide good results, since it incorporates the correct value of the lower virial
coefficients. This is quite important since for very long molecules the range where an
isotropic fluid phase is stable becomes vanishing small [42]. The proposed EOS
distinguishes prolate and oblate molecules. Overall the new proposed EOS yields
good predictions over a large range of anisotropies and it has proved to be very
useful in theoretical studies of liquid crystal formation of hard molecules [43].
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