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Liquid-Vapor Equilibria of Polar Fluids from a van der Waals-like Theory 
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A van der Waals-like theory of quadrupolar and dipolar linear fluids is presented. The reference system 
consists of a hard polar fluid, and attractive forces are considered through the mean field approximation. 
The effect of polar forces on liquid-vapor equilibria and on critical properties is analyzed for a number of 
molecular elongations. Trends as predicted by the theory are compared with computer simulations of linear 
polar fluids, and good agreement is found. Polar forces increase the critical temperature and acentric factor 
of a fluid. Quadrupole moment increases the critical density of a fluid. However, high dipole moments 
decrease critical densities. Deviations from the principle of corresponding states are analyzed. Polar forces 
and molecular elongation provoke a broadening of the coexistence curve and an increase of the slope of the 
vapor pressure curve when reduced by their critical magnitudes. The presented treatment, being quite simple, 
describes most of the main features of vapor-liquid equilibria of linear polar fluids. 

I. Introduction 

It is a century now since van der Waals proposed his equation 
of state.' A consequence of this equation is that all fluids follow 
the same equation of state when reduced by their critical 
magnitudes. That constitutes the principle of corresponding 
states which was later formulated on a molecular basis.* 
Although this principle holds quite well for spherical and almost 
spherical molecules, important deviations were found for 
molecules having a nonspherical shape or presenting a multipole 
(dipole or quadrupole) moment. Early attempts to account for 
these deviations from statistical mechanics grounds were 
form~lated.~.~ They were especially successful in the description 
of the effect of polar forces on spherical-shaped modek5 The 
past two decades were quite active in developing an understand- 
ing of the role of molecular shape on phase equilibria. van der 
Waals-like theories? perturbation theories,7-l0 or even computer 
simulation' ' have provided a clear understanding of the role of 
molecular shape on phase equilibria. The situation is less 
satisfactory for nonspherical polar fluids although some recent 
progress should be mentioned. 

Integral equations are now being solved for a number of linear 
polar models,'* and progress in the field through this line may 
be anticipated. Perturbation theories have recently been devel- 
oped for linear polar fluids, and the consequences have not 
completely been explored yet.13-17 Simultaneously, a number 
of simulation studies concerning dipolar and quadrupolar linear 
fluids have been per f~rmed. '~J~  Quite recently, it has become 
possible to easily obtain liquid-vapor equilibria by computer 
simulation through the so-called Gibbs ensemble methodology.2o 
This new route is just being explored. In fact, Dubey et a1.*' 
have presented simulation results for linear dipolar fluids, and 
we have recently performed a very comprehensive simulation 
study of quadrupolar linear Kihara fluids.22 A similar study 
for a quadrupolar two-center Lennard-Jones model has recently 
been performed by using the NFT+ test particle method.23 
These studies can be considered as examples of what may be 
learned in the near future on vapor-liquid equilibria of linear 
polar fluids. 
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Our approach in this work is however slightly different. Our 
aim is to show the simplest theory that can account for the effect 
of both shape and polarity on phase equilibria. Rigby6 proposed 
a van der Waals-like treatment of linear nonpolar fluids. The 
idea is to take a hard convex body as reference system and to 
include the effect of dispersion forces through a mean field term. 
Here we shall follow this idea. We shall take a hard polar 
system as reference state, and we shall include dispersion forces 
through a mean field term. For describing the reference hard 
polar fluid we shall use a simple perturbation theory which has 
provided satisfactory agreement with computer simulation for 
these sy~tems.'~-'' This theory is a compromise between 
accuracy and simplicity, which becomes an important factor in 
phase equilibria studies. The purpose of this paper is to provide 
a general view of the role played by shape and polarity on phase 
equilibria by using a very simple treatment. In particular, the 
effect of the quadrupole or dipole moment on critical properties 
of a linear fluid is analyzed. Deviations from the principle of 
corresponding states due to both shape and polarity and the 
coupling between these two factors will also be considered. We 
pay some attention to the study of the effect provoked by a 
given quadrupole or dipole on molecules with different elonga- 
tions. Although dipole and quadrupole moments provoke the 
same effect on some critical properties, an analysis of some 
differences is also performed. A clear understanding of the role 
of polarity and shape on phase equilibria is important since most 
of more common fluids have both nonspherical shape and polar 
forces. 

The scheme of the paper is as follows. In section I1 a 
perturbation theory for hard polar fluids is presented. Section 
I11 describes the van der Waals-like treatment that will be used 
in this work. In section IV results of liquid-vapor equilibria 
for linear nonpolar fluids, linear quadrupolar fluids, and linear 
dipolar fluids are presented. In section V we present a simplified 
theoretical treatment that provides analytical formulas for the 
effect of polar forces on critical properties. Finally, section VI 
summarizes the main conclusions of this work. 

II. Hard Polar Fluids 
In this section we shall study a linear hard spherocylinder 

(HSP) with an embedded point dipole or quadrupole. The shape 
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orientation w1,w~.  The packing fraction y is defined by 

y = nV, (7) 

Figure 1. Geometry of a hard spherocylinder. The meaning of L, d, 
and e is illustrated. 

of the HSP is defined by L* = Ud, which is the ratio of the 
bond length L to the molecular diameter d as illustrated in Figure 
1. The dipole-dipole uDD or quadrupole-quadrupole u@ 
potentials are given by 

uDD = 012/r3>(sls2c - 2c1c2) (1) 

uQQ = (3Q2/4J)[ 1 - 5(C12 4- c;) - 15cl2C,2 + 
2(sls2c - ~ c , c , ) ~ I  (2) 

where p and Q stand for the dipole and quadrupole moment, ci 
= cos Oi, si = sin Oi and c = cos(41 - 42). In eqs 1 and 2 the 
polar axis is the one connecting the center of mass of both 
molecules. We shall use reduced multipole moments defined 
as 

Q*' = Q2/(6d5) (3) 

p*2 = p2/(6d3) (4) 

where E is an arbitrary unit of energy and d is the diameter of 
the hard spherocylinder (see Figure 1). Therefore, the total pair 
potential is given for a quadrupolar hard spherocylinder (HSPQ) 
by 

( 5 )  
UHSPQ - HSP - u  + u Q Q  

and for a dipolar hard spherocylinder (HSPD) by 

(6) 
UHSPD - HSP - u +uDD 

The ideal dipole or quadrupole aligned with the molecular 
axis is situated on the center of mass of the molecule. All our 
discussions and conclusions refer to that case. 

Boublik has recently developed a perturbation theory for hard 
ellipsoids with a q u a d r u p ~ l e ~ ~ , ~ ~  (HEQ) or dipoleI6 (HED). This 
perturbation theory has been extended to HSPQ fluids with good 
res~1ts.I~ We briefly summarize the theory and refer the reader 
to the original papers for  detail^.'^-^^ In this perturbation theory 
the HSP is taken as the reference system, and the perturbation 
terms up to third order are evaluated. To accelerate the 
convergence of perturbation series, a Pad6 approximant is used.24 
Structure of the hard reference fluid is needed to evaluate the 
perturbation terms. This is, in general, unknown or difficult to 
obtain so that the ParsonsZ5 approximation is used. That means 
that the pair correlation function g(r,w1,w~,y) is approximated 
by gHS(d@wl,wZ),y) where gHS is the radial distribution function 
of hard spheres and D(o1,w~)  in the distance between the centers 
of mass when the two molecules are at contact for the relative 

where n is the number density of the fluid and V, is the 
molecular volume of the HSP. Parsons's approximation 
uncouples orientational and radial coordinates, and each per- 
turbation term reduces to an orientational average of a certain 
function of the angular part of the polar potential and a 
radial14-17 integration of a certain function of gHS. The free 
energy for HSPQ is given by17 

(9) 

(io) 

AHSPQ = AHSP + AQ 

= ~y~ + A;~(I - (A:~ + A$~)/A:~)-' 

where AHSPQ is the free energy of the quadrupolar model, AHSP 
is the free energy of the hard spherocylinder, and AQ is the 
quadrupolar contribution to the free energy. Defining n* = nd3, 
then AFA, A$A, AYA, and AYB are given by 

A?A/NkT = (3/2)%X*(Q*2/r*)I~(L*) uQ@) (1 1) 

A$A/NkT = -nn*(9/16)(Q*4/r*2)JQ(L*) b&) (12) 

AyA/NkT = -(Q*6/r*3)KQ(L*) 9nn* cQ@) (13) 
64 

z (Y) (14) 
9 1 
16 [(Vm/d3)/(n/6)]5 

A$B/NkT = -dn*2( Q*6/r* 3, 

where IQ, JQ, and KQ are geometrical quantities obtained by 
integration and depending on the particular shape of the 
considered model. l 7 s Z 6  The reduced temperature is defined as 
r* = T/(c/k) where E is some arbitrary unit of energy. 
Expressions for U Q ~ ) ,  b ~ b ) ,  C Q ~ ) ,  and Z Q ~ )  are given in eqs 
32-34 of ref 17. These functions can be obtained by numerical 
integration of radial distribution function of hard spheres divided 
by the appropriate power of the distance between the centers 
of mass. Values of ZQ, JQ, and KQ for HSP have been previously 
reported in refs 17 and 26. The theory may be extended to 
HSPD fluids.26 Now ID and KD are zero so that Ala and A ~ A  
vanish. AHSPD is given by 

(15) 
AHSPD - HSP - A  + A D  

= A;~(I - (16) 

The AZA term is given by 

AyA/NkT = -n n*(p*4/r*2)JD(L*) bDb) (17) 

The determination of AYB requires three-body distribution 
functions. B~ub l ik*~  has evaluated this term for dipolar 
ellipsoids by using the superposition approximation. In this 
work AyB of the HSPD model is taken from the corresponding 
dipolar hard ellipsoid model of the same length to breadth ratio. 
With this approximation A:? is given byZ7 

Values of JD for L* -= 1 were determined numerically by using 
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Figure 2. Polar contribution to the free energy of a linear model with L* = 0.505 as obtained from the theory of this work (symbols) and from 
simulation results of a two-center Lennard-Jones mode119.30 (lines). Free energy is plotted versus the packing fraction y (eq 7). The critical temperature 
of the nonpolar model of the same elongation is denoted as TO. Values of TO are given in Tables 1 and 2. For the two-center Lennard-Jones model 
TO was taken from ref 30. (a) Quadrupolar free energy AQ for a model with Q*q2 1.588 (see eq 34 for e*,:). (b) Dipolar free energy AD for P * ~ *  
= 2.932 (see eq 35 for P * , ~ ~ ) .  

the C ~ n r o y ~ ~  integration method. The obtained values of JD 
were fitted to a empirical polynomial which is given for L* < 
1 by 

JD = 0.6666 - 1.2377L* + 1.7814L*2 - 1.8447L*3 + 
1.1584L*4 - 0.3158L*5 (19) 

Definition of the function b ~ ( y )  and empirical fits to their 
computed values were reported in ref 26. 

The residual free energy of the hard spherocylinder system 
AHSP is obtained from integration of the EOS of hard convex 
bodies proposed by Ne~beda.*~ To obtain the total part, an ideal 
gas term must be added. The final expression is 

y(5a2 - a - y(7a2 - 5 a  + 1)) 

(1 - Y > 2  
[MY) - 11 + + AHSP = 

(5a2 - 4a - 1) ln(1 - y) (20) 

(L* + 2)(L* + 1) 
(3L* + 2) 

a =  

where a is the nonsphericity parameter of the HSP model. Let 
us mention that Parsons25 has proposed another expression for 
AHSP which is especially accurate for very elongated molecules. 
For the elongations considered in this work eq 20 yields better 
results. 

Equations 9-21 consistute the route to obtain AHSPQ,HSPD. 

These equations have been tested by comparing their predictions 
with Monte Carlo results, and the agreement was found to be 
satisfactory.” As a further check, the polar contribution to the 
Helmholtz free energy (AQ or AD) determined from the theory 
of this work for a model with L* = 0.505 i s  compared to that 
obtained from simulation for a two-center Lennard-Jones model 
with the same elongation. Saager and F i s ~ h e r ~ ~ , ~ ~  have per- 
formed a comprehensive study of two-center Lennard-Jones 
polar models with L* = 0.505 so that the polar contribution to 
the free energy is now well-known for this model. The com- 
parison is shown in Figure 2.  The theory accounts for the main 
features of the contribution of polar forces to the free energy. 
A drawback of our working expressions for AHSPQ,HSPD is that 
they predict liquid-vapor equilibria even in the absence of dis- 

persion forces. For dipolar hard spheres (L* = 0) such liquid- 
vapor transition has not been found in computer  simulation^.^^ 

The main advantage of the theory is to provide a reasonable 
description of the behavior of hard linear polar fluids while 
keeping a simple form. This is especially useful in the context 
of phase equilibria where a fast determination of thermodynamic 
properties at any thermodynamic state is required. Certainly, 
one could use more sophisticated theories to describe hard polar 
fluids, as for instance integral equation theory.33 However, if 
the interest is focused on the effect of the dipole or quadrupole 
moment on phase equilibria, the proposed treatment may be 
enough for a qualitative description of the trends. In fact, this 
treatment has recently been applied to analyze the effect of a 
quadrupole moment on liquid-solid equilibria, and an explana- 
tion of the high triple point of carbon dioxide was obtained.34 
We have also shown the effect of a dipole or quadrupole mo- 
ment on the isotropic-nematic equilibria of long linear mod- 
els.26 In this work we study the effect of the dipole or quad- 
rupole moment on the liquid-vapor equilibria of a linear fluid. 

111. van der Waals Model of Polar Fluids 

A hard polar model is not certainly a complete model of a 
liquid. Although short-range forces accounting for the molecu- 
lar shape are included and long-range attractive forces arising 
from multipolar moments are considered, an inclusion of 
attractive dispersion forces is still needed. A simple way to do 
it is to use the van der Waals treatment so that each molecule 
feels a uniform background due to the presence of attractive 
dispersion forces. That is equivalent to incorporate a term in 
the free energy which is linear in density. Whereas this is not 
exact, it constitutes a simple way of incorporating attractive 
forces and it will be adopted in this work. The free energy of 
a molecule according to all this approximations is given by 

(22) AjN = AHSPQ,HSPDjN - an 

The equation of state following from eq 22 is 

Equations 22 and 23 are the basic equations of this work. 
The original van der Waals (VDW) EOS was quite useful for 
describing real fluids. However, for some time it was not easy 
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probably be illustrated from this van der Waals-like treatment. 
Eventually, a more sophisticated treatment of dispersion forces 
as for instance that proposed by Saager et al. may be 
incorporated in the theory.38 It is interesting to stress here that 
our van der Waals-like equation of state has four independent 
variables, namely, E, a, L*, and Q* (or p*).  

Taking (T and E from eq 24 as unit of length and energy, 
respectively, then the independent variables are L* and Q* (or 
p*). If L* is fixed, it is possible to analyze the effect of Q* on 
phase equilibria. In this way we learn about the effect of 
quadrupole on phase equilibria of a given model. Another 
possibility is to fix Q* and to see the effect at different equations. 
Although we have used eq 3 to define Q* (with d = o), it should 
be recognized that the way of reducing a quadrupole moment 
is not unique. A general problem when comparing two polar 
models with different elongations is how to define the reduced 
quadrupole (dipole). One would like to have an “equivalent” 
quadrupole (dipole) for both elongations so that one could 
evaluate the effect of the same “equivalent” quadrupole at two 
different elongations. The problem arises from the fact that 
the concept of “equivalent” quadrupole is ill-defined. Even 
admitting the arbitrary character of the concept “equivalent” 
quadrupole, we found Q* as defined by eq 3 not particularly 
useful. We propose now a new way of reducing the quadrupole 
or dipole moment which will be denoted as and P*,~, 
respectively. They are defined by the expressions 

to establish a link between a statistical thermodynamic theory 
and the VDW EOS. The development of perturbation theories 
allowed this link. At present, it is possible to derive the van 
der Waals EOS starting from first principles and by doing some 
well-defined  approximation^.^^ It would be useful to have such 
a derivation for our extension of the VDW EOS to polar fluids. 
This derivation may be done in the following way, Let us 
assume that the pair potential between two linear molecules is 
given by the Kihara potential36 plus a multipolar term (dipolar 
or quadrupolar): 

U(@) = 4E[(o/@)’2 - (a/@)6] + uQQ,DD (24) 

In eq 24 e is the shortest distance between the molecular 
cores. For our linear model the molecular core will be taken 
as a linear rod of length L, or if a is used as unit of length L* 
= L/a. Let us divide the full pair potential into a reference uo 
and a perturbation part u1: 

u = u, + u1 (25) 

We shall take for the reference system UO: 

U,(@) = 4€[(0/@)’* - (o/& + uQQ,DD e < 0 (26) 

e’a (27) QQD 

The perturbation term can be easily obtained from eqs 25-27. 
The free energy of the full potential is given up to first order in 
the perturbation by 

uo(e> = 

A/N = AdN + A,/N (28) 

where go(@) is the surface to surface average correlation function 
of the reference system given by eqs 26 and 27 and S,+,+,(g) 
is the surface averaged over all the relative orientations of the 
body generated by the center of mass of molecule two when 
moving around molecule one at constant e. Convex body 
geometry3’ was used in deriving eq 29. Now we shall relate 
the properties of the reference system to those of a hard polar 
system with a hard diameter d = a. We shall also neglect 
correlations as usual in mean field treatments. ’These two 
approximation may be written as 

According to the approximation of eq 31 and using convex 
body geometry, A1 may be written as 

a = xcd[(6/55)L*’ + (6/5)L* + (16/9)] (32) 

A l / N  = -an (33) 

By adding together eq 30 and eq 33, we recover our previous 
eq 22. Throughout this work the van der Waals constant a will 
be given by eq 32. The approximations contained in eq 22 are 
now clear. The first approximation is the truncation of the 
perturbation expansion at first order. The other two approxima- 
tions are given by eqs 30 and 3 1. It is clear that this simplified 
theory can only account for qualitative trends of the model given 
by eq 24 and that no quantitative agreement may be expected. 
Since our intention here is to explore trends in phase equilibria 
of linear polar molecules, some of the main features can 

(34) 

(35) 
where TO is the critical temperature of a model with the same 
elongation as the one under consideration but with no multipole 
moment. Note that for spheres the definition of eqs 34 and 35 
is equivalent (except for a constant) to that of eqs 3 and 4. This 
way of reducing a dipole or quadrupole moment is similar (the 
difference being the presence of the factor kTo instead of E in 
the denominator of eqs 34 and 35) to another recently proposed22 
which was found to be very useful in analyzing Gibbs ensemble 
data of molecules with different elongations. It is also similar 
to that proposed in refs 18 and 31, the difference being the use 
of the molecular volume instead of the inverse of the critical 
density of the nonpolar model in eqs 34 and 35. 

In Figure 3 we present the polar contribution to the free 
energy along the critical isotherm of the nonpolar model for 
several elongations when e*,: = 3 (Figure 3a) and when p*e: 
= 3 (Figure 3b). The surprising result is that AQ does not 
depend significantly on L* when the definition of eq 34 is used. 
However, AD depends on the molecular elongation, and the 
effect of the dipole seems to be larger for a spherical molecule 
than for an elongated model. These two facts will have 
consequences in the way quadrupole or dipole moment affect 
critical properties at different elongations. We shall return to 
this point later. Before leaving this section, it should be 
mentioned that the L* dependence of AD for fixed p*e: and 
packing illustrated in Figure 3b of this work is in agreement 
with that of ref 31. However, the L* dependence of AQ for a 
given and y shown in Figure 3a is different from that 
found by Bohn et a1.** (see Figure 7 of ref 18). The origin of 
this difference is unknown. 

IV. Results 
We shall present now the results obtained from eqs 22 and 

23 for different models and elongations. We shall present first 
results for nonpolar models and then for quadrupolar and dipolar 
models. We shall finish with a comparison between the effect 
of a dipole and a quadrupole. 
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Figure 3. Polar contribution to the free energy obtained from the theory of this work versus packing fraction along the critical isotherm of a 
nonpolar model (T = TO) with the same elongation. Solid line stands for L* = 0, dashed line for L* = 0.3, and short dashed line for L* = 0.8. 
(a) Quadrupolar free energy AQ for models with = 3. (b) Dipolar free energy AD for models with p*e: = 3. 
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Figure 4. Corresponding states plot for linear nonpolar molecules obtained from the mean field treatment of this work: solid line, results for L* 
= 0 (spherical model); dashed line, results for L* = 0.8. (a) Coexistence densities of the liquid-vapor equilibria. (b) Vapor pressure. 

(A) Nonpolar Models. For nonpolar models our treatment 
reduces to that previously proposed by Rigby6 (except that a 
different EOS of hard convex bodies is used). In Figure 4 we 
present the vapor-liquid equilibria and vapor pressure curve 
in critical units for different elongations. Molecular anisotropy 
provokes a broadening of coexistence densities and increases 
the slope (in absolute value) of the vapor pressure curve. That 
was first described by Rigby. Deviations of corresponding states 
principle for the Kihara model predicted by the theory are 
smaller than the ones obtained from computer simulation in the 
Gibbs ensemble." This is probably a consequence of the mean 
field approximation. 

(B) Quadrupolar Models. We shall present now results for 
linear quadrupolar moments. In Figure 5a we show results for 
L* = 0.3 and Q*2 = 0,0.75, and 1.5 as obtained from the theory 
of this work. Recently, a very extensive study of liquid-vapor 
equilibria of quadrupolar Kihara fluids through Gibbs ensemble 
simulation22 has been performed. In Figure 5 the theoretical 
predictions are shown along with the simulation results.22 The 
theory does not correctly predict the critical temperature as 
expected, and this is again a consequence on the mean field 
treatment. The mean field approximation also causes differences 
of shape in the coexistence curve. However, the theory predicts 

an increase of the critical temperature, pressure, and density 
with the quadrupole, and this is in agreement with simulation. 
This is further illustrated in Table 1. Similar conclusions are 
obtained for other elongations. In Figure 6 we present results 
of the vapor pressure for the same models. Quadrupole 
decreases the vapor pressure curve at a given temperature. The 
slope at low temperatures of the vapor pressure curve is related 
to the enthalpy of vaporization through the Clausius-Clapeyron 
equation. Therefore, the theory predicts an increase of the 
enthalpy of vaporization due to the quadrupole. 

In Figure 7a we present a corresponding states plot for the 
coexistence densities and in Figure 7b for vapor pressure. 
Results correspond to L* = 0.8 and Q*2 = 0, 1.49, and 2.98, 
and for comparison results for L* = 0 and Q*2 = 0 are also 
presented. We see how both molecular elongation and quad- 
rupole moment provoke a broadening of the coexistence curve. 
Similarly, molecular elongation and quadrupole moment increase 
the slope (in absolute value) of the vapor pressure curve. 

The acentric factor w is defined 

and can be easily evaluated from plots as the one shown in 
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Figure 5. Coexistence densities of the liquid-vapor equilibria of linear quadrupolar models with L* = 0.3. Solid line stands for Q*2 = 0, dashed 
line for Q*2 = 0.75, and short dashed line for Q*2 = 1.5. Open squares represent the critical point. (a) Results from the theory of this work. (b) 
Fit to the Gibbs ensemble simulation results of ref 22 and of ref 11 for a quadrupolar Kihara model. 

TABLE 1: Critical Temperature T,, Pressure pc,  and 
Density yc of Linear Quadrupolar Models Obtained from the 
Mean Field Theory of This Work4 
L* Q*’ Q*qz Tc yc pc w (AlNkT), 

0 0  0 1.006 0.130 0.090 -0.096 -3.15 
0 0.558 1.632 1.123 0.139 0.108 0.047 
0 1.117 3.264 1.374 0.153 0.150 0.250 

0.3 0 0 0.823 0.129 0.050 -0.090 -3.16 
0.3 0.75 1.442 0.891 0.135 0.057 0.026 
0.3 0.864 1.661 0.911 0.137 0.060 0.058 
0.3 1.5 2.883 1.052 0.148 0.076 0.254 
0.3 1.729 3.323 1.111 0.152 0.083 0.320 

0.6 0 0 0.716 0.125 0.032 -0.078 -3.19 
0.6 1.222 1.721 0.795 0.133 0.039 0.071 
0.6 2.445 3.444 0.966 0.149 0.054 0.338 

0.8 0 0 0.666 0.123 0.025 -0.068 -3.21 
0.8 1.492 1.770 0.742 0.131 0.031 0.079 
0.8 2.984 3.538 0.899 0.146 0.042 0.327 

Critical density is defined in terms of the packing fraction defined 
as y = nV,. e*,: is defined as QZ/(kToVm5’3) where TO is the critical 
temperature of a nonpolar model with the same elongation. The critical 
pressure is given inp/(du3) units. The acentric factor w is also shown. 
Free energies at the critical point (AINkT), for nonpolar models are 
shown in the last column. 

Figure 7b. The results of Figure 7b suggest that there are two 
terms contributing to w .  The fust arising from the short-range 
repulsive forces which are responsible of the molecular shape. 
The second arising from the attractive quadrupolar forces. All 
these facts are in good agreement with simulation results.22 The 
calculated values of w for quadrupolar models are also reported 
in Table 1. For L* = 0 and Q* = 0 a value of w close to zero 
should be expected. We obtain however o = -0.096. This is 
probably due to the mean field approximation. 

In Figure 8 we present the increase of the critical temperature 
defined by 

ATc = (T, - To) (37) 

for several elongations. In Figure Sa we plot AT, versus Q* as 
defined by eq 3. We also show AT, as obtained from Gibbs 
ensemble simulations. The agreement between theory and 
simulation for AT, is quite good. That may be explained from 
the fact that quadrupolar forces are treated with more accuracy 
than dispersion ones. Moreover, errors introduced by the mean 

- l ’ I  
-12 I I I I I 

0.5 1 .o 1.5 2.0 2.5 ? 

1 /T’ 
3 

Figure 6. Vapor pressures of the liquid-vapor equilibria of linear 
quadrupolar models with L* = 0.3 as obtained from the theory of this 
work solid line, Q*2 = 0; dashed line, Q*2 = 0.75; short dashed line, 
Q*2 = 1.5. Reduced pressure and temperatures are defined by p* = 
p/(e/u3) and F = Tl(c1k). 

field approximation seem to be constant with the quadrupole 
for a given elongation. According to Figure Sa, the same 
reduced quadrupole Q*2 provokes larger effects on spherical 
molecules than on anisotropic ones. However, when ATJTo is 
plotted versus as in Figure Sb, we observe that the results 
fall approximately on a single line independently of L*. 
Therefore, ATJTo is weakly dependent on L* and to some extent 
follows a single curve. This is observed in both theoretical 
prediction and Gibbs ensemble results from ref 22 so that it is 
clear that this is not an artifact of the theory. ATJTo values 
for longer molecules are sligtly smaller than for spherical ones 
at a given Q*q2. The basis for this behavior follows from two 
different facts. The first is that the free energy at the critical 
point of a nonpolar model does not depend strongly on the 
elongation as can be seen from the last column of Table 1. The 
second is that AQ along the critical isotherm of the nonpolar 
model does not depend strongly on L* when the definition of 
eq 34 is used for Q*es2. This was shown in Figure 3. Therefore, 
surfaces formed by AQlNkTo (plotted as a function of density 
and temperature) for two different elongations are very close, 
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Figure 7. Corresponding states plot for linear quadrupolar molecules with L* = 0.8 obtained from the mean field treatment of this work. Solid 
line stands for Q** = 0, long dashed line for Q*2 = 1.49, and dashed line for Q*2 = 2.98. Results for a spherical nonpolar model L* = 0, Q*2 
= 0 (short dashed line) are also shown. (a) Coexistence densities of the liquid-vapor equilibria. (b) Vapor pressure. 
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Figure 8. Increase of the critical temperature for linear quadrupolar model as obtained from the theory of this work (solid lines) and from simulation 
results of refs 22 and 11 for L* = 0 (circles), L* = 0.3 (squares), L* = 0.6 (open triangles), and L* = 0.80 (filled triangles). (a) AT, (see eq 37) 
versus Q**. Solid lines are theoretical results. From the top to the bottom lines stand for L* = 0, L* = 0.3, L* = 0.6, and L* = 0.8. (b) ATJTo 
versus the equivalent quadrupole defined by eq 34. 

and one may expect quite similar changes on critical properties 
for two models with the same This is further illustrated 
from a more quantitative point of view in the next section. 

The proximity between the free energy surfaces has another 
consequence. In Figure 9 we present results for Aw defined 
by 

Am = o(L*,Q) - o(L*,Q=O) (38) 
Results of Aw for several elongations are shown in Figure 

9. Again, the increase of the acentric factor due to quadrupolar 
forces does not strongly depend on L* when models with the 
same Q*q2 are compared. 

(C) Dipolar Models. The results for dipoles are in some 
respect similar to those presented for quadrupole models. In 
Table 2 we present results of the critical magnitudes. The dipole 
moment provokes an increases of the critical temperature, and 
this is common with quadrupoles. The critical density, however, 
behaves quite differently in dipolar and quadrupolar fluids. In 
dipolar fluids critical density increases very slightly with dipole 
moment, reaching a maximum and finally decreasing as the 

dipole moment takes higher values. This behavior differs from 
that observed in quadrupolar models where the quadrupole 
always provokes an increases of the critical density. Dubey et 
aLZ1 have studied a two-center Lennard-Jones model plus a 
dipole (2CLJD). They found an increase of the critical 
temperature and a decrease of the critical density (high values 
of the dipole moment were considered in that work21) in good 
agreement with the theory of this work. Critical pressure from 
simulation*' decreases with dipole moment. The theory of this 
work fails in describing this fact since it predicts an increase of 
the critical pressure with the dipole moment. As a consequence, 
the theory fails in describing the expected decrease of the 
compressibility factor due to dipolar forces. 

Dipole reduces the vapor pressure at a given temperature and 
therefore provokes an increase of the enthalpy of vaporization. 
In Figure 10 we show a corresponding states plot for coexistence 
densities (Figure loa) and vapor pressures (Figure lob). We 
present results for L* = 0.3. The presence of the dipole 
provokes a broadening of the coexistence curve. However, the 
effect is quite small, and dipolar forces seem to be less effective 
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Figure 9. Increase of the acentric factor Am (see eq 38) as a function 
of Q*,: for linear quadrupolar models of different elongations as 
predicted by this work solid line, L* = 0; long dashed line, L* = 0.3; 
dashed line, L* = 0.6; short dashed line, L* = 0.8. 

than quadrupolar ones in provoking the broadening of the 
coexistence curve. The dipole increases the slope (in absolute 
value) of the vapor pressure curve. Effects are similar to those 
found for a quadrupole moment. Again, from Figure 10 one 
may conclude that the acentric factor have contributions arising 
from the molecular shape and from dipolar forces. The results 
from our simple theory agree qualitatively with the results of 
more involved theories developed for 2CLJD.I3 

In Figure 1 l a  we present ATJTo defined by eq 37 for linear 
dipolar models plotted versus p*es2. The results follow a single 
line up to p*,: = 1. For larger dipole moment results depend 
on the value of L*. The agreement with simulation r e s ~ l t s ~ ~ - ~ ~  
is good. Spherical molecules present a larger increase in their 
critical temperature than nonspherical ones for a given value 
of p*,:. This can be understood from the results showed in 
Figure 3b. It can be seen that AD along the critical isotherm of 
the nonpolar model increases (in absolute value) as the elonga- 
tion decreases. Therefore, a higher increase of the critical 
temperature is expected for the spherical model. This is further 
illustrated in the next section. 

1 .o 
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TABLE 2: Critical Temperature T,, Pressure p,, and 
Density y, of Linear Dipolar Models Obtained from the 
Mean Field Theorv of This Worku 

L* p*2 p*e: Tc Yc P c  0 

0 0  0 1.006 0.1304 0.090 -0.096 
0 0.558 1.059 1.055 0.1318 0.096 -0.047 
0 1.117 2.120 1.163 0.1322 0.107 0.008 
0 2  3.796 1.372 0.1301 0.123 0.073 
0 3  5.694 1.628 0.1256 0.138 0.118 

0.3 0 0 0.823 0.129 0.050 -0.090 
0.3 0.675 1.080 0.859 0.130 0.053 -0.053 
0.3 1.345 2.158 0.934 0.129 0.057 -0.010 
0.3 2.024 3.238 1.024 0.127 0.061 0.019 
0.3 3.373 5.396 1.218 0.120 0.068 0.056 

0.6 0 0 0.716 0.125 0.032 -0.078 
0.6 0.797 1.118 0.745 0.126 0.034 -0.045 
0.6 1.594 2.237 0.804 0.125 0.036 -0.010 
0.6 2.391 3.355 0.873 0.122 0.038 0.013 

0.8 0 0 0.666 0.123 0.025 -0.068 
0.8 0.882 1.150 0.692 0.124 0.027 -0.037 
0.8 1.764 2.298 0.744 0.122 0.028 -0.005 
0.8 2.646 3.448 0.805 0.119 0.030 0.015 

(I The critical pressure is given in p l ( ~ l c 7 ~ )  units. Critical density is 
defined in terms of the packing fraction defined as y = nV,. p*e: is 
defined as p2/(kToVm). Acentric factor is also shown. 

In Figure 1 lb  AOJ (defined analogously to eq 38) is plotted 
for dipolar fluids. The dependence with L* is similar to that 
found for ATC/To. If the polar contribution to the pair potential is 
due to the dipole moment only, then spherical molecules present 
a larger change in the acentric factor than nonspherical ones 
for a given p*,:. 

Before finishing this section, two observations are relevant 
conceming our linear dipolar model. First is that real dipolar 
diatomic fluids must be heteronuclear (the two atoms making 
up the molecule must be different in order to have a dipole 
moment), whereas the molecular core used in this work (a hard 
spherocylinder) is adequate only when the two atoms have 
similar sizes. Second is that molecules having a high dipole 
moment do also have an appreciable quadrupole moment (this 
is the case for instance of water). The case considered in this 
section applies only when quadrupole moment is negligible 
when compared with dipole moment. The study of dipolar 
heteronuclear models having both dipolar and quadrupolar forces 
although quite interesting is beyond the scope of this work. 

-.i 
-7 ! 1 I I I 

1 .o 1.2 1.4 1.6 i .a 2 

Figure 10. Corresponding states plots for polar molecules with L* = 0.3. Long dashed line and symbols stand for dipolar models with p*2 = 
1.147 and p*2 = 3.373, respectively. Solid and short dashed lines stand for a quadrupolar model with Q** = 0 and Q*2 = 0.864. respectively. (a) 
Coexistence densities of the liquid-vapor equilibria. (b) Vapor pressure. 
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Figure 11. (a) AT,/To (see eq 37 for ATc) for linear dipolar models of different elongations as a function of p*e42. Theoretical results correspond 
to the solid line (L* = 0), long dashed line (L* = 0.3), and short dashed line for (L* = 0.8). Symbols are Monte Carlo results from refs 40-42: 
circles (L* = 0). squares (L* = 0.3), and filled triangles (L* = 0.80). (b) Increase of the acentric factor due to dipolar forces for L* = 0 (solid 
line), L* = 0.3 (dashed line), and L* = 0.8 (short dashed line). 
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Figure 12. Liquid-vapor equilibria of a model with L* = 0.3. Solid 
line corresponds to p** = Q*2 = 0, long dashed line to p*2 = 1.147, 
and short dashed line to Q*2 = 0.864. A corresponding states plot of 
these systems is also illustrated in Figure 10. 

However, the dipolar model used here has an advantage. Since 
the molecular core used for the quadrupolar and dipolar model 
is the same (a hard spherocylinder), any discrepancy in the 
behavior of dipolar and quadrupolar fluids will be uniquely due 
to the different form of the dipolar and quadrupolar potential. 
In the next section such a comparison is performed. 

(D) Quadrupole versus Dipole. Let us finish this section 
by presenting a comparison between the effect of a dipole or 
of a quadrupole on the phase diagram. In Figure 12 we compare 
coexistence densities for L* = 0.3, when there is no multipole, 
when there is a quadrupole, and when there is a dipole present. 
We consider values of p*eq2 and Q*eq2 that provoke a similar 
increase of the critical temperature with respect to the nonpolar 
model. However, Figure 12 illustrates that dipole and quad- 
rupole provoke different changes in vapor-liquid equilibria 
densities even when two models with the same critical tem- 
perature are compared. Dipole moment seems less effective 
than the quadrupole in broadening the coexistence curve. This 
is seen more clearly in Figure 10a where a corresponding states 
plot is shown for the three models shown in Figure 12. Figure 

12 and Figure 10a illustrate an important point. If a dipolar 
and a quadrupolar model with the same elongation and critical 
temperature are compared, the quadrupole will present larger 
deviations from the principle of corresponding states. This is 
not only true for densities but for the vapor pressures as well 
(see Figure lob). Quadrupole is more effective in increasing 
the slope (in absolute value) of the vapor pressure curve than 
the dipole. However, taking a higher dipole moment p*,q2 = 
3.37 and comparing with e*,: = 0.86 (see Figure lo), similar 
corresponding states plots from the critical point up ,a T/T, = 
0.7 are obtained. That guarantees that a four-parameter equation 
of state can simultaneously describe dipolar or quadrupolar fluids 
since it is possible to choose values of Q or p that obey similar 
corresponding states plots. 

Let us now compare the effect of a dipole or quadrupole on 
the critical temperature. By comparing AT, for quadrupolar 
fluids (Figure 8b) with AT, of dipolar fluids (see Figure l la),  
it can be seen that for equal values of p*eq2 and the 
quadrupole provokes a larger increase on the critical tempera- 
ture. For L* = 0 where there are results for quadrupolar and 
dipolar fluids this is what is observed in computer s i m u l a t i ~ n . ~ - ~ ~  
There is another striking difference between the dipole and the 
quadrupole mentioned before. Whereas there is a weak L* 
dependence in the plot of AT, versus as can be seen in 
Figure 8b, this does not hold for dipolar models (see Figure 
l la).  Also, the critical density is modified in a different way 
by quadrupolar and dipolar forces. These results come out from 
the theory proposed here, but the reason of this different 
behavior is not clear. In the next section an explanation of these 
facts is proposed. Moreover, analytical formulas for AT, and 
Ay, (defined in an equivalent way to AT, of eq 37) are provided. 
To achieve this goal, a simplified version of the mean field 
theory of this work is given. 

V. Effect of Polar Forces on Critical Properties 

In this section we derive algebraic expressions obtained from 
a still more simplified version of the mean field treatment of 
this work for the magnitudes (T, - To)/To and y ,  - yo. The 
total free energy of a polar system interacting through eq 24 is 
given by 

A = [AHSP - an] + AQ'D (39) 
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When no polar forces are present (Q = p = 0), the last term of 
eq 39 vanishes and the potential of eq 24 reduces to the Kihara 
potential. Therefore, the terms in brackets on eq 39 correspond 
to the free energy of a Kihara nonpolar model which will be 
denoted as AK and eq 39 can be rewritten as 

Vega et al. 

A = A ~ + A Q  (40) 

From eq 40 we obtain for the pressure 

p = p K + p Q  (41) 

The critical point is obtained by solving the equations 

p’(T,y) = 0 (42) 

p”(T,y) = 0 (43) 

where p’(T,y) and p”(T,y) are defined by the relations 

(45) 

and where eq 42 and eq 43 hold at the critical point. Let us 
denote TO and yo as the critical temperature and density of a 
nonpolar model (Q = p = 0) with the same elongation that the 
model under consideration. The free energy of this nonpolar 
model is given by AK. For any thermodynamic function F(T,y) 
of the polar model a Taylor expansion can be performed around 
TO and yo to yield up to first order 

Then by expanding the functions p’(T,y) and p”(T,y) according 
to eq 46 and taking into account that 

(5) = o  
To.Yo 

(47) 

we finally obtain for eqs 42 and 43 

(49) 

where T, and yc denote the critical point of the polar model. 
Equations 49 and 50 constitute linearized version of the mean 
field treatment of this work. They form a linear system with 
two unknowns (T, - To)/To and Cy, - yo). If we denote p~~ 
and p$y as 

and we use a similar notation for the rest of the derivatives, 
then the solution of the system formed by eqs 49 and 50 is 
given by 

Equations 53 and 54 can be applied to quadrupolar or dipolar 
fluids. All derivatives should be evaluated at TO, yo. The critical 
packing fraction of the nonpolar fluids yo are moderate. Then, 
instead of using the Pad6 approximant for AQ,D in this section, 
we shall use the simpler expressions: 

Q -  Q A -A2A 

AD = AiA + AYB 

(55) 

In this way, pQsD and its derivatives are easily obtained. 
Moreover, eqs 55 and 56 yield similar results to the Pad6 
approximant for not too high densities (as it is the case for yo). 
In Figure 13 we compare (T, - To)/To as a function of 
obtained from the mean field theory described in the main text 
and from the linearized version given by eqs 53 and 54. The 
agreement is quite good except at high quadrupole moments. 
The advantage of the linearized treatment is twofold. First, it 
yields algebraic expressions for the increase of critical tem- 
perature and density due to the quadrupole. Second, it allows 
an analysis of the factors determining these magnitudes. 

In Table 3 we present results for the different derivatives 
appearing in eqs 53 and 54. We present results for two polar 
models of different elongation with the same e*,: or with the 
same p*es2. The denominator of eq 53 or 54 seems to be hardly 
affected by L*, and this is true for dipolar and quadrupolar 
models. Let us focus therefore in the numerator of eq 53. For 
quadrupolar models the second term on the numerator of eq 53 
does not change much with L*. However, the term p:, 
decreases moderately with L*. Since both the denominator of 
eq 53 and the second term of the numerator are rather insensitive 
to L* in the case of quadrupolar models, the only L* dependence 
is contained in the p; term. That explains that for quadrupolar 
models (T, - To)/To is an almost universal function of Q*,: 
(see Figure 8b) although it is slightly smaller for more elongated 
molecules. In the case of dipolar molecules, however, the first 
term in the numerator of eq 53 is negligible in comparison with 
the second one. Moreover, the term p! presents an strong L* 
dependence, and it decreases substahtially with L*. That 
explains the L* dependence found for AT,/To in the case of 
dipolar fluids. The decreases of critical density observed at high 
dipole moments is associated with the change of sign of the 
p g  term (see last two rows of Table 3) which is negative for 
low dipole moments and positive for high dipole moments. 

VI. Conclusions 

A van der Waals theory for linear polar fluids has been 
proposed. Quadrupole moment increases the value of the critical 
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TABLE 3: Derivatives Evaluated at TO, yo Required To 
Evaluate (T, - To)/To and 6, - yo) According to the 
Linearized Mean Field Theory Proposed in Section V (See 
Eqs 53 and 54)” 

L* Q*e: iu*eqZ TOPT~ P: T O P T ~ ~  P Y ~  - 8’” 
0.0 2 0 3.92 -7.08 35.37 109.37 0.58 
0.8 2 0 3.72 -5.12 34.43 134.03 0.45 

0.0 0 2 3.32 -2.46 22.03 177.60 0.39 
0.8 0 2 3.05 -0.68 19.97 206.25 0.22 
0.8 0 3 2.59 3.40 1.405 308.19 0.26 

a Results for quadrupolar and dipolar models are shown. For the 
notation see section V. 

density, pressure, and temperature with respect to the nonpolar 
model. Dipole moment increases the critical temperature with 
respect to the nonpolar model. However, critical density 
increases slightly with the dipole moment, reaches a maximum, 
and then decreases for larger dipole moments. Critical density 
is therefore affected in a different way by quadrupolar and 
dipolar forces. 

We propose a new way of reducing quadrupole and dipole 
moment. Using this new definition, we found the increase in 
critical temperature of quadrupolar models to be rather insensi- 
tive to molecular shape. For dipolar models the effectiveness 
of the dipole in modifying the critical temperature decreases 
with the molecular elongation. These two results can be 
understood from the behavior of AQ and AD at different 
elongations. Both observations are in agreement with recent 
computer simulation r e s ~ l t s . * ~ ~ ~ *  

Polar forces provoke deviations from the principle of cor- 
responding states. A broadening of coexistence densities (less 
pronounced for dipolar models) and an increase of the vapor 
pressure curve are observed when reduced by their critical 
magnitudes. We conclude that the acentric factor which is 
related with the slope of the vapor pressure curve has contribu- 
tions from both molecular shape and polar forces. However, 
when comparing a dipole with a quadrupole provoking the same 
increase in the critical temperature with respect to the nonpolar 
model, it turns out that the quadrupole is by far more effective 
than the dipole in broadening the coexistence curve and 
increasing the slope of the vapor pressure. It is possible how- 
ever, to choose a pair of values for the dipole and quadrupole 

moment so that they provoke similar deviations from the 
principle of corresponding states (at least for a certain range of 
temperatures). 

The theory presented in this work provides a consistent and 
unified picture of the vapor-liquid equilibria of linear nonpolar, 
quadrupolar and dipolar fluids. Most of the predicted trends 
are in agreement with computer simulation results. Moreover, 
the theory provides a simple molecular insight in the behavior 
of nonspherical polar models. Two directions of improvement 
can be pointed out. First concerns the inclusion of new features 
in the Hamiltonian as hydrogen heteronuclear 
cores, and simultaneous incorporation of dipolar and quadrupolar 
forces$6 so that a better understanding of the vapor-liquid 
equilibria of real substances could be obtained. Second more 
rigorous theoretical treatments on linear polar models would 
be quite useful to test the trends predicted by the van der Waals- 
like theory of this work. 
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