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Solid–fluid equilibrium for the quadrupolar hard dumbbell model has been determined by Monte
Carlo simulation for several values of the quadrupole moment and molecular elongation. Several
solid structures have been studied includinga-N2, a fcc plastic crystal, based centered monoclinic
structure providing closest packing for hard dumbbells and two orthorhombic structures. For low
elongations, hard dumbbells freeze into a plastic crystal phase when the quadrupole moment is low
and into thea-N2 structure when it is large. More elongated dumbbells freeze into a close-packed
structure for low quadrupole moment, into an orthorhombic structure for moderate quadrupole
moment and into thea-N2 structure for large quadrupole moment. For any elongation and
quadrupole moment the stable phase at very high pressures is one of the close-packed structures.
The quadrupolar hard dumbbell model gives a qualitatively correct description of trends in the
solid–fluid equilibrium for several systems including N2, the halogens, CO2, and
acetylene. ©1995 American Institute of Physics.
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I. INTRODUCTION

In recent work the phase diagram for the hard dumbb
model has been determined from Monte Carlo simulati
studies as a function of the dumbbell bond length.1–3 This
work has revealed several interesting aspects of the role
molecular shape in determining solid–fluid equilibrium
Mildly anisotropic hard dumbbells freeze into a plastic cry
tal ~PC! structure with orientational disorder whereas mo
anisotropic dumbbells freeze into monoclinic structures th
provide the closest packing. Thea-N2 structure which ap-
pears in a number of linear molecules~N2, CO2, C2H2! was
not found to be thermodynamically stable for hard dum
bells. When used in a generalized van der Waals theory4 the
results for hard dumbbells provide a qualitative basis for u
derstanding the solid–fluid equilibria for nonpolar diatom
molecules. This illustrates the importance of the packing
fects associated with molecular shape in determining so
phase properties and solid–fluid equilibrium.

Of course it is to be expected that other anisotrop
forces, such as dispersion and multipolar interactions play
important role in explaining the stability of some soli
phases with respect to others. Multipolar forces5 arising from
the presence of a multipolar moment~e.g., dipole or quadru-
pole! are quite sensitive to the relative orientation betwee
pair of molecules in the solid phase. Dispersion forces
though important seem to be less sensitive to the rela
orientation between molecules. In fact Kihara6 was able to
explain the solid structures of several molecules by us
hard nonspherical quadrupolar models.

In this work we study the solid–fluid equilibrium of hard
dumbbells with an embedded point quadrupole using Mo
Carlo simulation. The choice of this model was motivated
the fact that a clear picture of the freezing of nonpolar ha
dumbbells has already been developed.1–3 The effect of the
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quadrupole moment on the phase diagram can be observ
by comparing the results for the quadrupolar hard dumbbe
model with those for the hard dumbbell model without the
quadrupole. The results should then provide some insig
into the phase diagrams of homonuclear diatomic molecule
such as N2, O2, Cl2, and Br2 as well as other quadrupolar
molecules such as acetylene and CO2. We have also studied
the phase diagram for the quadrupolar hard sphere mod
because of its importance as a limiting case.

There has recently been an increasing interest in th
theoretical determination of fluid–solid equilibrium of mo-
lecular fluids. Density functional theories7,8 and cell theory9,4

have been developed to predict the fluid–solid transition o
hard dumbbells and comparison with simulation results ha
been presented. This work provides Monte Carlo data for th
fluid–solid equilibrium of hard quadrupolar dumbbells
which may be useful to further test these theories so th
their predictive value may be compared.

The paper is arranged as follows. In Sec. II the simula
tion methodology is described. In Sec. III results are pre
sented for a number of models. Section IV gives a summa
of our results and conclusions.

II. METHODOLOGY

The interaction between hard dumbbells with an embed
ded quadrupole along the molecular axis~HDQ! is given by

uHDQ~1,2!5uHD~1,2!1uQ~1,2!, ~1!

whereuHD~1,2! is the pair potential between hard dumbbells
anduQ is the quadrupolar interaction which is given by

uQ~1,2!5
3Q2

4r 5
@125~c1

21c2
2!215c1

2c2
2

12~s1s2c24c1c2!
2#, ~2!
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1362 C. Vega and P. A. Monson: Solid–fluid equilibria
whereQ is the quadrupole moment,r the distance between
the centers of mass,ci5cos(u i), si5sin(u i), and
c5cos~f12f2!. Hereu i andf i denote the usual orientation
angles in the intermolecular frame. The polar axis is the o
which connects the centers of mass of the molecules.
geometry of the hard dumbbell is described byL*5L/s
whereL is the distance between the two hard spheres of
molecule ands is the diameter of the hard sphere. In th
work the quadrupolar potential given by Eq.~2! has been
truncated atr c52.5s.

In order to determine the phase equilibria, the equat
of state~EOS! and chemical potential must be determined
the fluid and solid phases. In the fluid phase we p
formed standard isobaric, isothermal Monte Carlo~MC!
simulations10 using 108 molecules in a cubic simulation ce
with periodic boundaries. The length of runs in this work f
fluid and solid phases was typically about 20 000 cycles
equilibration and 20 000 cycles for averages—a cycle co
sisting of an attempted move for each molecule and an
tempted volume change. Fluid runs were started at low pr
sures and then higher pressures states were obtained fro
gradual compression of the final configuration of the pre
ous run.

In this paper we will use reduced variables for the de
sity and quadrupole moment. The reduced densityr* is de-
fined as

r*5rd3, ~3!

wherer is the number density andd is the diameter of the
sphere with the same volume as the hard dumbbell

d35s3~111.5L*20.5L* 3!. ~4!

The reduced quadrupole is defined as

Q* 25
Q2

kTd5
. ~5!

The compressibility factor of the fluid was fitted to th
expression

Z5
11k1y1k2y

21k3y
3

~12y!3
, ~6!

wherey is the volume fraction. The parametersk1 , k2 , and
k3 were determined through a least-squares fit. Table I gi
the values for the coefficients in Eq.~3! which provide the

TABLE I. MC results for the fluid phase EOS of quadrupolar hard dum
bells.L*5L/s,Q* 25Q2/(kTd5). The parametersk1 , k2 , andk3 of Eq. ~6!
obtained from a least squares fit are given.

L* Q* 2 k1 k2 k3

0 0.5 0.326 9469 0.974 5606 0.612 2980
0 1 20.743 1447 20.409 5283 5.231 681
0 1.5 21.055 726 23.193 744 8.879 604
0.3 0.3 0.919 6625 1.223 351 21.210 996
0.3 1.0 22.266 356 9.405 792 27.978 440
0.6 0.5 0.928 5581 1.219 304 0.105 0713
0.8 0.2 2.276 923 20.812 6462 2.176 273
0.8 1.0 0.458 0269 20.771 7791 4.777 466
J. Chem. Phys., Vol. 102,
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best fit to our fluid phase equation of state results. The Helm
holtz free energy of the fluid phase may be obtained from th
relation

A/NkT5@ ln r*21#1E
0

r* Z21

r* 8
dr* 8, ~7!

where the term in brackets on the right-hand side of Eq.~7!
corresponds to the ideal gas contribution to the Helmhol
free energy, and the integral corresponds to the residual pa

We now describe the simulation methodology for th
solid phases. In this work several solid structures have be
considered. The first structure studied was thea-N2 structure.
The Bravais lattice for this structure is simple cubic.11 In this
structure the centers of mass of the molecules are arrang
on a cubic fcc lattice and the molecules are oriented alon
the four body diagonals of the cube. Thea-N2 structure does
not provide an efficient way of packing for hard dumbbell
and in fact it was proved to be thermodynamically unstab
for nonpolar hard dumbbells.2 However it is a common
structure for solids of strongly quadrupolar linear molecule
and therefore it seems appropriate to consider it for the qu
drupolar hard dumbbell model. Second we have consider
the base centered monoclinic structures that provide clos
packing for hard dumbbells. They are denoted as CP1, CP
and CP3 and details about their structure are given in Ref.
For hard dumbbells these structures were found to b
stable2,3 for densities down to the melting point for
L*.0.38. ForL*,0.38 they were found to be stable at
high pressures. Free energies of the CP1, CP2, and C
phases are quite similar, the differences being smaller th
the uncertainty of the free energy calculations.2 However, it
could be the case that the free energy differences are
creased by the presence of the quadrupole and we shall
turn to this point later. Another structure considered in thi
work is a fcc plastic crystal~PC!. In this phase the centers of
mass of the molecules are arranged in a fcc cubic lattice b
there is no long range orientational order. This phase is o
tained by expansion of thea-N2 solid structure~see Ref. 2
for details!. Finally we have also considered two orthorhom
bic structures which will be denoted as O1 and O2. O1 is th
structure of the solid halogens11–13 ~Cl2, Br2, I2!. The struc-
tures are illustrated schematically in Fig. 1. If we label th
base vectors of the unit cell asa, b, andc then for O1 the
molecular axes all lie in planes parallel to thea–c plane. O2
is similar to O1 but it differs in that alternate molecules hav
their axes rotated in and out of the plane parallel to thea–c
plane as shown in Fig. 1. The Bravais lattice for O2 is simp
orthorhombic and there are 4 molecules per unit cell. Th
O2 structure may be considered as a distorted version of t
a-N2 structure.

To simulate the solid phase we used the MC equivale
of the molecular dynamics method developed by Parrinel
and Rahman.14 The method is a constant pressure MC simu
lation but changes in the unit cell shape are allowed in add
tion to the volume changes used in the conventional consta
pressure MC.15 The cell shape changes are important becau
the equilibrium cell shape may change with pressure. For t
CP1, CP2, and CP3 structures 144 molecules were used

-
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1363C. Vega and P. A. Monson: Solid–fluid equilibria
the simulations. For thea-N2, PC, O1, and O2 structures 108
molecules were used. Other details of the simulations a
similar to those of our previous work.2,3

Once the EOS for a solid phase is known free ener
calculations for one thermodynamic state of that solid mu
be performed so that chemical potential and phase equilib
can be determined. To that purpose we used t
Frenkel–Ladd16 method as extended to nonspherical pa
ticles by Frenkelet al.17,18 In this method the free energy of
the solid is related to that of an ideal classical Einstein cry
tal. We refer to the papers of Frenkelet al.17,18 and to our
previous work2,3 for details. The final expression for the
Helmholtz free energy of the HDQ solid at a given density

A

NkT
5

AE

NkT
1

DA1

NkT
1

DA2

NkT
1

DA3

NkT
, ~8!

whereAE is the free energy of an ideal Einstein crystal an
DA1 is the difference between the free energy of an ide
Einstein crystal and that of an Einstein crystal with HDQ
interactions.DA2 is the difference between the free energy o
the HDQ solid and that of an Einstein crystal with HDQ
interactions, andDA3 is the difference in free energy be-
tween a system of unconstrained center of mass and one
fixed center of mass. The expressions used forAE , DA2 , and
DA3 are identical to those given in Ref. 2. The expression f

FIG. 1. The orthorhombic structures O1 and O2 viewed in the directio
normal to thea–c plane. In the O1 structure the molecular axes lie in plane
parallel to thea–c plane. The1 and2 labels on the atoms indicate rotation
out of the planar parallel to thea–c plane in the O2 structure.
J. Chem. Phys., Vol. 102,
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DA1 however is slightly different for the HDQ than for the
HD system. TheDA1 for HDQ is obtained from the relation

DA1 /NkT52
1

N
lnK expF2b(

i, j

uHDQ~ i , j !G L , ~9!

where the brackets denote canonical ensemble average ov
configurations generated according to the canonical distribu
tion function of the noninteracting Einstein crystal. The
DA1/NkT term is comparable in magnitude to the quadrupo-
lar internal energy of the solidUQ/NkT. Whereas for HD,
DA1/NkT was always positive and small, in the HDQ sys-
tem the sign ofDA1/NkT is that of the quadrupolar internal
energy. The evaluation ofDA1/NkT given by Eq.~9! was
performed by using umbrella sampling.

In the evaluation of the free energy we used the equilib-
rium geometry of the unit cell resulting from the MC runs.
This allows for any change in the lattice geometry that may
occur in the expansion from close packing. Once the free
energy of a given HDQ solid structure has been determined
for a given density then free energies at other densities ca
be determined by thermodynamic integration

A~r2!/NkT5A~r1!/NkT1E
r1

r2
@p/~r2kT!#dr. ~10!

To perform integration in Eq.~10! we fitted the pressure of
the solid to a polynomial in density. At high pressures the
logarithm of the pressure was fitted to a polynomial form in
density.

We have checked our solid phase free energy calcula
tions for thermodynamic consistency. For that purpose we
have evaluated the free energy of thea-N2 lattice for
L*50.3 and Q* 250.3 at two different densities
~r*51.2120 andr*51.3500! with the Frenkel–Ladd method
and in this way we found a free energy difference ofDA/
NkT53.31. Byintegration of the equation of state we found
that DA/NkT53.28 which indicates that the two calcula-
tions are thermodynamically consistent within the accuracy
of our calculations.

III. RESULTS AND DISCUSSION

MC results for the solid phase properties obtained for
L*50.0, 0.3, 0.6, and 0.8 and several values ofQ* 2 are
shown in Tables II–V. Free energy calculations for the solid
phases are presented in Table VI. The computed phase tra
sitions are shown in Table VII. The estimated uncertainties
are about 1% for the solid phase densities and about 6% fo
the quadrupolar energies. We shall proceed now to separa
discussion of the results for each dumbbell elongation.

A. Results for L *50

For L*50 the HDQ model reduces to a hard sphere
with an embedded point quadrupole, and the results for thi
system can be compared with those for hard spheres.19 For
L*50 thea-N2 and CP structures have the same close pack
ing density,r*521/2. However, the orientations of the mol-
ecules in the solid~given by the orientation of the quadru-
pole! are quite different. In Table VIII the internal energy at
close packing is given for thea-N2 and CP structures for

n
s
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1364 C. Vega and P. A. Monson: Solid–fluid equilibria
Q* 251. The quadrupole favors thea-N2 structure which has
a negative value ofUQ/NkT relative to the CP structures
which have positive values. It is interesting to note that CP
CP2, and CP3 have quite similar values ofUQ/NkT for all
elongations so that the quadrupole does not favor a gi
close packed structure over the others. This suggests tha
a-N2 structure is likely to be the stable one for quadrupo
hard spheres.

In Table II our simulation results for thea-N2 solid
phase withQ* 250.5, 1, 1.5 arepresented. Although no sys
tematic study of the effect of truncating the quadrupolar

TABLE II. MC results fora-N2 solid structure of quadrupolar hard sphere
(L*50). p*5p/(kT/d3), r*5rd3, UQ is the quadrupolar internal energy
andS denotes the orientational order parameter as defined in Ref. 2.
quadrupolar potential was truncated atr c52.5s except for states labeled
with an asterisk where the valuer c52.9s was used. Low values ofS;1/9
indicate the appearance of a plastic crystal phase.

Q* 2 p* r* UQ/(NkT) S

0.5 60 1.327 23.61
45 1.313 23.31
40 1.302 23.41
35 1.288 23.37
30 1.266 23.24
25 1.249 23.04
20 1.217 22.91
15 1.162 22.42
12.5 1.120 21.67
10 1.037 21.35

0.5 60* 1.330 23.52 0.74
45* 1.310 23.46 0.64
40* 1.299 23.38 0.48
35* 1.290 23.32 0.37
30* 1.278 23.25 0.28
25* 1.254 23.03 0.14
20* 1.217 22.77 0.11
15* 1.156 22.26 0.11
12.5* 1.113 21.55 0.10
10* 1.039 21.34 0.11

1.0 45 1.326 28.51 0.92
40 1.318 28.42 0.92
30 1.292 28.12 0.91
20 1.269 27.84 0.91
15 1.244 27.56 0.90
12.5 1.227 27.37 0.90
10 1.206 27.13 0.90
8 1.177 26.81 0.88
6 1.150 26.50 0.88
4 1.084 25.82 0.80
3 1.041 25.36 0.57

1.5 40 1.330 213.39 0.95
30 1.314 213.11 0.94
20 1.294 212.77 0.93
15 1.281 212.55 0.93
10 1.269 212.34 0.93
8 1.259 212.17 0.92
6 1.237 211.79 0.89
4 1.232 211.72 0.89
2 1.214 211.38 0.87
1 1.199 211.17 0.88
0.75 1.184 210.90 0.87
0.5 1.199 211.16 0.88
J. Chem. Phys., Vol. 102,
1,

en
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teraction has been performed we have made some addition
calculations withr c52.9s for 256 molecules. For the 108
molecule systems the cutoff of 2.5s is slightly larger than
half the box length for the solid phases withL*50 ~but not
for the other values ofL* considered in this work! and since
periodic boundaries with the minimum image criterion were
used there is a slight anisotropy in the truncation of the po
tential in this case. For the systems with a cutoff of 2.9s this
does not occur because of the larger system size. Althou
some differences between the two sets of results are evide
it seems that these differences are comparable to the statis
cal uncertainty in the results. Notice that the orientationa
order parameter2 decreases smoothly with pressure. The ori
entational order parameter used in this work varies betwee
unity for a system with the orientational order of the initial
lattice and;1/9 for an orientationally disordered state. The
lower pressure states forQ* 250.5 correspond to a plastic
crystal phase~PC!. The transition to the PC phase appears t
be second order. The PC withQ* 250.5 exhibits a high
degree of orientational disorder at melting. Solid–fluid equi
libria for L*50 andQ* 250.5, 1, 1.5 arepresented in Table
VII. In Fig. 2~a! results are shown for the casesQ* 250.5
and 1.0. The quadrupole decreases the pressure of the flui
solid transition with respect to the hard sphere case. Th
effect is small forQ* 250.5 and large forQ* 251. This is
due to the fact that forQ* 250.5 the solid phase is a PC,
whereas forQ* 251.5 the solid phase presents a large de
gree of orientational order. The fluid density at coexistenc
decreases with the quadrupole moment but the densi
change on freezing increases. In Fig. 2~b! coexistence densi-
ties of the fluid–solid equilibria of quadrupolar hard sphere
are shown. The reduced temperature is defined a
T*5kTd5/Q2. Notice that this system does not seem to ex
hibit a vapor–liquid critical point. In this regard it is quite
similar to other systems with weakly attractive or short rang
forces which have been studied recently.20–22

B. Results for L *50.3

For L*50.3 we have studied systems withQ*50.3
andQ*51. Results are presented in Table III. We shall firs
discuss theQ* 250.3 case. At very high pressures the close
packed structures are stable. This can be understood from
fact that the pressure of thea-N2 phase diverges when the
density tends tor*51.4657, the maximum possible density
of hard dumbbells with this structure for this elongation. The
CP structures exhibit this divergence whenr* tends to
r*51.4917. This kind of divergence was analyzed in deta
by Alder, Hoover, and Young for the hard sphere case.23

According to the cell theory23,24 the origin of this divergence
is the fact that the free volume of each molecule tends to ze
at close packing, so that free energy and pressures diverg
Therefore whenever the maximum allowed density of a
given structure is approached the free energy diverges and
transition to another structure which packs molecules mor
efficiently is expected. At very high pressures the CP struc
tures should be the stable phases. The differences betwe
the free energies of the CP structures are small and we ca
not establish which is the most stable among them. It can b
seen from the results of Table III that the EOS for the CP

s

he
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1365C. Vega and P. A. Monson: Solid–fluid equilibria
TABLE III. MC results for different solid structures of quadrupolar hard dumbbells withL*50.3.Notation as
in Table I. Values of pressure labeled with an asterisk where obtained by compressing the PC solid. Values of
pressure followed by the name of a structure in brackets indicate the spontaneous formation of that phase by
expansion of thea-N2 or compression of the PC phase.

Q* 2 Solid p* r* UQ/(NkT) Q* 2 Solid p* r* UQ/(NkT)

0.3 CP3 1000 1.481 3.14 0.3 PC 17* 1.072 20.71
500 1.470 3.10 18* 1.087 20.74
300 1.453 3.00 19* 1.099 20.79
200 1.437 2.88 20* 1.110 20.82
150 1.417 2.71 21* 1.113 20.82
100 1.375 2.30 22* 1.140 21.19
80 1.330 1.29 23* ~a-N2! 1.196 21.92
70 1.293 20.19 24* ~a-N2! 1.203 21.98
60 1.272 20.64 25* ~a-N2! 1.227 22.12

0.3 CP1 1000 1.481 3.13 30* ~a-N2! 1.247 22.23
500 1.470 3.09 1.0 a-N2 1000 1.456 211.17
300 1.455 3.01 500 1.447 211.05
200 1.436 2.87 300 1.437 210.91
150 1.412 2.60 200 1.426 210.75
100 1.372 2.20 100 1.398 210.30

0.3 a-N2 1000 1.455 23.35 80 1.386 210.12
500 1.447 23.31 25 1.302 28.84
300 1.435 23.26 20 1.280 28.52
200 1.421 23.20 15 1.261 28.25
100 1.387 23.03 12.5 1.243 28.00
80 1.366 22.91 10 1.228 27.80
70 1.353 22.84 7.5 1.186 27.27
60 1.338 22.77 5 1.132 26.62
50 1.322 22.67 4 1.114 26.42
45 1.310 22.59 1.0 CP3 1000 1.481 10.39
40 1.297 22.53 500 1.470 10.13
35 1.270 22.37 300 1.449 9.36
30 1.249 22.24 200 1.405 5.68
25 1.219 22.04
24 1.208 21.99
23 1.196 21.91
22 1.185 21.85
21 1.178 21.80
20 1.148 21.53
19 1.137 21.46

18~PC! 1.102 20.81
17~PC! 1.077 20.73
16~PC! 1.062 20.69
15~PC! 1.103 20.77
14~PC! 1.044 20.66
13~PC! 1.018 20.60
12~PC! 0.977 20.55
r
u
o

e

s
r

r

d
and CP3 are almost identical. In the rest of this work w
shall take the CP3 structure as representative of all CP st
tures anticipating that the behavior of CP1 and CP2 sho
be quite similar. As the pressure is decreased there is a cr
ing between the EOS of thea-N2 and that of the CP3 struc-
ture. We performed free energy calculations for both stru
tures and found a transition from CP3 toa-N2 as the pressure
was decreased. The origin of this transition is the comp
tion between the repulsive forces from the molecular sha
which favor the CP structure and the quadrupolar forc
which favor thea-N2 structure. Packing considerations mu
dominate at high pressure whereas the quadrupolar fo
can stabilize thea-N2 structure at low pressure.

By further expanding thea-N2 structure a significant
change occurs atp*518. The orientational order paramete
J. Chem. Phys., Vol. 102,
e
uc-
ld
ss-

c-

ti-
pe
es
t
ces

,

TABLE IV. MC results for different solid structures of quadrupolar har
dumbbells withL*50.6.Notation as in Table I.

Q* 2 Solid p* r* UQ/(NkT) Solid p* r* UQ/(NkT)

0.5 a-N2 100 1.337 24.78 CP3 100 1.378 3.16
80 1.323 24.68 80 1.335 1.68
70 1.312 24.61 70 1.313 20.73
60 1.301 24.54 60 1.293 21.36
40 1.260 24.25 45 1.238 20.92
35 1.252 24.19 40 1.219 21.52
30 1.232 24.05 35 1.189 21.96
25 1.217 23.95 30 1.158 22.25
20 1.180 23.68 25 1.125 22.40
15 1.121 23.26
12.5 1.065 22.89
10 1.012 22.52
No. 3, 15 January 1995



1366 C. Vega and P. A. Monson: Solid–fluid equilibria
TABLE V. MC results for different solid structures of quadrupolar hard
dumbbells withL*50.8. Notation as in Tables I and IV. Considered solid
structures area-N2, CP3, O2 and the experimental structure of halogens O
Lengths~in s units! of the simulation box denoted asa, b andc are shown
at some states. The lengths of the unit cell base vectors can be obtaine
dividing a, b, andc by three.

Q* 2 Solid p* r* UQ/(NkT) a b c

0.2 CP3 100 1.370 0.66
80 1.345 0.62
70 1.332 0.60
60 1.306 0.56
50 1.273 0.50
45 1.255 0.47
40 1.231 0.39
35 1.204 0.36
30 1.162 0.31
25 1.107 0.02

0.2 a-N2 50 1.204 21.58 5.60 5.55 5.61
45 1.196 21.56 5.50 5.63 5.67
42.5 1.196 21.55 5.44 5.55 5.81
40 1.204 21.56 5.27 5.51 6.00
37.5 1.217 21.57 5.11 5.49 6.15

35~O2! 1.205 21.54 5.12 5.53 6.15
30~O2! 1.185 21.48 5.11 5.59 6.21
25~O2! 1.130 21.35 5.20 5.73 6.23
20~O2! 1.072 21.17 5.25 5.85 6.38
19~O2! 1.080 21.17 5.15 5.79 6.52
18~O2! 1.045 21.03 5.08 5.91 6.68
17~O2! 1.021 20.97 5.16 5.97 6.68
16~O2! 1.001 20.88 5.26 6.00 6.65

0.2 O2 30 1.174 21.46 5.09 5.63 6.23
35 1.202 21.51 4.93 5.65 6.27
40 1.224 21.58 5.00 5.52 6.20
45 1.246 21.64 5.02 5.46 6.15
50 1.257 21.67 4.96 5.47 6.14
60 1.280 21.73 4.94 5.44 6.10
70 1.302 21.79 4.96 5.38 6.04
80 1.313 21.82 4.96 5.33 6.03
100 1.336 21.88 4.95 5.29 5.98

0.2 O1 50 1.244 20.63 3.92 4.95 8.70
45 1.241 20.83 4.05 4.89 8.52
40 1.217 20.82 4.14 4.91 8.49
35 1.196 20.84 4.20 4.97 8.41
30 1.155 20.80 4.27 5.07 8.40
25 1.122 20.81 4.42 5.13 8.25
20 1.041 20.70 4.69 5.47 7.86

1 a-N2 150 1.291 29.08 5.44 5.45 5.49
100 1.272 28.85 5.46 5.47 5.52
80 1.264 28.74 5.41 5.52 5.56
60 1.249 28.56 5.38 5.52 5.65
40 1.276 28.68 5.03 5.42 6.04

30~O2! 1.252 28.37 5.07 5.44 6.08
20~O2! 1.193 27.69 5.17 5.56 6.12
10~O2! 1.105 26.70 5.35 5.76 6.20
8~O2! 1.043 26.02 5.52 5.89 6.20
6~O2! 1.021 25.79 5.57 5.96 6.19
4~O2! 0.934 24.84 5.91 6.13 6.21
40~O2! 1.276 28.67 5.02 5.41 6.07
50~O2! 1.297 28.92 4.98 5.38 6.04
60~O2! 1.311 29.09 4.96 5.36 6.03
80~O2! 1.327 29.28 4.95 5.31 6.01
100~O2! 1.349 29.56 4.94 5.28 5.97
150~O2! 1.371 29.83 4.92 5.24 5.94
300~O2! 1.397 210.15 4.91 5.20 5.90
J. Chem. Phys., Vol. 102,
internal energy, and density drop significantly. Thea-N2
phase has transformed into a PC phase which can be further
expanded until it spontaneously melts. In order to understand
the nature of the transition between thea-N2 and the PC we
carried out a gradual compression of the PC phase obtained
at p*517 from the expansion of thea-N2 structure. Results
of this compression are shown in Table III and in Fig. 3
where it is seen that the compressed PC states lie on a dif-
ferent branch than thea-N2 states. Whenp*523 the PC
phase transforms intoa-N2 phase again. The presence of this
hysteresis loop is indicative of a first-order phase transition.
In fact free energy calculations show a first-order phase tran-
sition between thea-N2 and the PC atp*519.35.Figure 3
shows the scenario forL*50.3 andQ* 250.3. Thefluid
freezes into a PC phase that is unstable with respect to the
a-N2 structure at higher densities and with respect to a
monoclinic base centered structure~CP3! at even higher
pressures. By comparing with the phase diagram of HD with
L*50.3 it is concluded that the effect of a quadrupole mo-
ment on the phase diagram of HD is to insert a region of
stability of thea-N2 phase between the PC and CP3 phases.

We have also analyzed the phase diagram forL*50.3
andQ*51. Results are shown in Table III. At high densities
CP3 is again the stable structure. It becomes unstable with
respect to thea-N2 phase at lower pressures. When thisa-N2
structure is further expanded it finally melts whenp*54.61.
The phase diagram forQ*51 is shown in Fig. 4. The most
interesting feature is that the PC phase has disappeared. In
Ref. 3 it was argued that the maximum allowed anisotropy of
hard dumbbells in order to have a PC phase is ofL*50.38.
This work shows an additional restriction that there also be a
low quadrupole moment.

The results we have obtained for the HDQ models with
L*50.3 permit us to construct a schematic phase diagram
as shown in Fig. 5 which summarizes all the available infor-
mation. At low values ofQ* 2 the fluid freezes into a PC
phase which becomes unstable with respect to a CP structure
at higher pressures. For moderateQ* 2 values the fluid
freezes into a PC phase. This becomes unstable with respect
to thea-N2 phase at higher pressures and into a CP structure
at still higher pressures. For high quadrupole moments the

1.

d by

TABLE V. ~Continued.!

Q* 2 Solid p* r* UQ/(NkT) a b c

1 a-N2 30 1.193 27.85 5.52 5.60 5.69
20 1.159 27.43 5.60 5.60 5.77
10 1.083 26.51 5.84 5.79 5.73
8 1.066 26.32 5.74 5.83 5.88
6 1.013 25.72 5.98 5.98 5.80
5 0.993 25.51 5.93 6.05 5.90
4 0.969 25.24 5.98 6.02 6.02

1 CP3 1000 1.460 3.49
500 1.450 3.44
300 1.433 3.23
200 1.413 2.89
150 1.393 2.59
100 1.344 1.58
80 1.301 0.625
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TABLE VI. Free energy calculations for different solid structures of quadrupolar hard dumbbells. Notation as
in preceding tables.l is the maximum value ofl used in the free energy calculations.DA1 is given by Eq.~9!
of this work andDA2 is given by Eq.~3.14! of Ref. 2.Aref is the Helmholtz free energy at the reference density.
All free energies are divided byNkT.

L* Q* 2 Lattice N lmax r* DA2 DA1 Aref

0 0.5 PC 108 1000 1.037 28.8241 23.1725 4.1903
0 1 a-N2 108 8000 1.150 211.4708 27.5611 2.3262
0 1.5 a-N2 108 8000 1.200 210.1726 212.1749 20.989
0.3 0.3 PC 108 1000 1.053 29.2780 21.9664 5.3015
0.3 0.3 a-N2 108 8000 1.2120 211.5148 22.4827 7.7199
0.3 0.3 a-N2 108 8000 1.3500 27.7299 22.9549 11.034
0.3 0.3 CP3 144 30000 1.4173 25.11667 2.6954 22.611
0.3 1.0 a-N2 108 8000 1.1320 212.0519 27.3855 2.2794
0.3 1.0 a-N2 108 8000 1.3500 27.4371 29.8887 4.3926
0.3 1.00 CP3 144 90000 1.4481 27.6815 9.3302 29.417
0.6 0.5 a-N2 108 8000 1.1210 212.0550 23.6702 6.2105
0.8 0.2 O2 108 8000 1.0798 211.9668 21.3059 8.7435
0.8 0.2 CP3 144 8000 1.1721 210.3351 0.2279 11.9336
0.8 1.0 a-N2 108 8000 1.1300 210.4600 27.4389 4.1177
0.8 1.0 O2 108 8000 1.1932 29.2622 27.8444 4.9104
d.

t-
.
s
a

u-
fluid freezes into thea-N2 structure that is unstable with
respect to a CP structure at high pressures. It is straight
ward to show that the slope of a given phase transition in
units of Fig. 5 is given by

~dp* /dQ* 2!5r1* r2* @DU/~NkTQ* 2Dr* !#, ~11!

whereDr andDU are the change in density and configur
tional energy at the transition. For all the studied transitio
Dr is positive. Therefore the sign of (dp* /dQ* 2) is that of
DU. The slopes of the lines shown in Fig. 5 are in agreem
with this relation.

In Fig. 5 estimated values ofQ2/(kTmd
5) for N2 and

C2H2 are also shown. The experimental
5 quadrupole moment

and melting temperature25 Tm of these two substances hav
been used along with a reasonable estimation ofd.26,27 It is
interesting to note that N2 freezes into a PC phase~although
slightly different from the one obtained in this work!. More-
over nitrogen also exhibits thea-N2 and rhombohedral struc-
tures in its experimental phase diagram.11 The fractional den-
J. Chem. Phys., Vol. 102
for-
the
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sity change at freezing for N2 is small in agreement with this
work and with previous simulation results.28 Acetylene
freezes into ana-N2 structure

29 in agreement with the model
results in Fig. 5.

C. Results for L *50.6

ForL*50.6 we have studied the model withQ* 250.5.
In Table IV results are shown for thea-N2 and CP3 struc-
tures. In Fig. 6 the phase diagram for the model is illustrate
The fluid freezes into ana-N2 and by compression a phase
transition to the CP3 structure is obtained although no a
tempt to locate thea-N2 to CP3 transition has been made
For the HD model of the same elongation the fluid freeze
into a CP structure. The quadrupole therefore introduces
region of stability of thea-N2 phase between the fluid and
the CP phase.

We have found some interesting results for the quadr
polar energy for the CP3 structure. For this structureUQ is
TABLE VII. Fluid–solid and solid–solid equilibria of quadrupolar hard dumbbells as determined from the MC
results of fluid~Table I! and solid phases~Tables II–V!, and from the free energy calculations of Table VI.
Notation as in preceding tables.

L* Q* 2 Phase 1 Phase 2 r1* r2* p* m/kT

0 0.5 Fluid PC 0.9505 1.0885 11.09 14.86
0 1 Fluid a-N2 0.8175 1.1025 4.43 6.15
0 1.5 Fluid a-N2 0.2750 1.1870 0.36 20.71
0.3 0.30 Fluid PC 0.996 1.048 14.9 14.44
0.3 0.30 PC a-N2 1.103 1.153 19.35 23.59
0.3 0.30 a-N2 CP3 1.455 1.487 935.14 657.14
0.3 1 Fluid a-N2 0.8035 1.1275 4.61 6.36
0.3 1 a-N2 CP3 1.459 1.486 1741.66 1182.6
0.6 0.5 Fluid a-N2 0.9445 1.0785 12.91 17.69
0.8 0.2 Fluid O2 1.0605 1.1675 28.76 35.00
0.8 0.2 Fluid CP3 1.1535 1.2565 47.55 51.90
0.8 1 Fluid a-N2 0.8045 1.015 5.86 8.99
0.8 1 Fluid O2 0.819 1.025 6.27 9.49
0.8 1 a-N2 O2 1.140 1.168 16.50 18.70
, No. 3, 15 January 1995
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1368 C. Vega and P. A. Monson: Solid–fluid equilibria
positive at high pressures and becomes negative at low p
sures. In fact at close packingUQ for the CP3 structure is
strongly positive~see Table VIII! and on this basis the high
pressure behavior ofUQ is easily understood. The quadru
pole tends to destabilize the CP structures. The change
sign ofUQ for the CP3 is due to distortion of the unit ce
with respect to that at close packing as the pressure is
creased. This distortion affects the parameters of the unit
and the orientation of the molecules within the unit cell. A
close packing the angleu between the molecular axis and th
perpendicular to theab plane is on averageu520.3°
whereas whenp*535 this angle is on averageu540.5°.
This change allows a more favorable orientation of the qu
drupolar interactions. We already mentioned in our previo
work the importance of lattice distortion when computing th
free energy of a solid phase.2 For HD this effect although

TABLE VIII. Quadrupolar internal energyUQ/NkT of quadrupolar hard
dumbbells at close packing for several solid structures. The prese
UQ/NkT values correspond toQ* 25Q2/(kTd5)51. rcp

CP andrcp
a-N2 repre-

sent the close packing densities of the close packed~CPs! anda-N2 struc-
tures respectively. If no distortion of the unit cell occurs internal energies
different densities and quadrupoles may be obtained by multiplying val
on this table by the factorQ* 2 (r/rcp)

5/3.

L* rcp
CP rcp

a-N2
CP1

UQ/(NkT)
CP2

UQ/(NkT)
CP3

UQ/(NkT)
a-N2

UQ/(NkT)

0 1.4142 1.4142 2.658 2.658 2.658 210.605
0.1 1.4485 1.4452 6.304 6.305 6.276 210.995
0.2 1.4741 1.4618 9.069 9.073 9.028 211.206
0.3 1.4917 1.4657 10.777 10.785 10.751 211.257
0.4 1.5016 1.4585 11.361 11.368 11.352 211.164
0.5 1.5044 1.4412 10.792 10.791 10.789 210.944
0.6 1.5001 1.4147 9.099 9.086 9.092 210.611
0.7 1.4890 1.3797 6.413 6.391 6.397 210.177
0.8 1.4709 1.3366 2.996 2.970 2.971 29.652
0.9 1.4461 1.2855 20.763 20.785 20.792 29.046
1.0 1.4142 1.2266 24.367 24.377 24.395 28.366
J. Chem. Phys., Vol. 102,
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appreciable was not large. However it becomes very impor
tant when polar forces are present. In fact without lattice
distortionUQ would take a value of aboutUQ/NkT53.09
when r*51.189 andQ* 250.5 whereas the MC value is
UQ/NkT521.96. Theoretical treatments of solid phases
should therefore consider the possibility of lattice distortion
when dealing with quadrupolar interactions. Otherwise im-
portant errors in the determination of thermodynamic prop-
erties of the solid phase may occur.

Finally, although we have not considered it for this
dumbbell bond length an orthorhombic structure may appea
as the stable structure on freezing for small values of the
quadrupole moment, as we shall see for the case o
L*50.80.

D. Results for L *50.80

For L*50.8 the values of the quadrupole considered
were:Q* 250.2 and 1.0. ForQ* 250.2 results for several
solid structures are shown in Table V. The EOS for the CP3
structure has been obtained at high and low pressures. R
sults for thea-N2 structure are also presented. The cubic
geometry of this structure is preserved in the initial high
pressure states. However when pressure is decreased t
a-N2 becomes mechanically unstable and transforms into th
orthorhombic structure O2. This structure is clearly visible at
pressures smaller thanp*535. When the O2 structure at
p*530 obtained from expansion of thea-N2 solid is com-
pressed the system follows a different path forp*.35 than
the one obtained from expansion of thea-N2. Therefore this
O2 structure is mechanically stable up to very high pres-
sures.

In Fig. 7 the EOS for all the different phases are shown.
The EOS of the O2 and the CP3 solids cross for a pressure o
aboutp*535. That indicates a phase transition from the O2
to the CP3 structure at high pressures. ForQ* 250.2 the
fluid freezes into an orthorhombic structure O2 and at high

ed

at
es
as
FIG. 2. ~a! Equation of state for quadrupolar hard spheres (L*50) with Q* 250.5 ~solid line! andQ* 251.00 ~dashed line!. Triangles correspond to MC
results of the fluid phase forQ* 250.5 ~open! andQ* 251 ~filled!. Squares correspond to MC results the solid phase forQ* 250.5 ~open! andQ* 251
~filled!. Fluid solid transitions are shown by the tie lines.~b! Transition densities for quadrupolar hard spheres. Reduced temperature is defined
T*5T/[Q2/(kd5)]51/Q* 2. Results forT*50 correspond to extrapolation of the results obtained at higher temperatures.
No. 3, 15 January 1995



1369C. Vega and P. A. Monson: Solid–fluid equilibria
FIG. 3. Equation of state for HDQ withL*50.3 andQ* 250.30.Symbols stand for MC results: triangles~fluid phase!; open circles~plastic crystal PC!;
squares~a-N2!; filled circles ~CP3!. The tie lines show the phase transitions~a! low pressure results,~b! high pressure results.
t
t

pressures this O2 structure becomes unstable with respe
a close packing~base centered monoclinic! structure~CP3!.
Thea-N2 phase is absent for this model. The appearance
an orthorhombic structure is a new feature. It appears
elongated molecules with moderate values of the quadrup
moment. It should be recalled that for the correspond
nonpolar HD model withL*50.8 no orthorhombic phase
was found. The conditions for the appearance of orthorho
bic phases are elongated molecules with moderate qua
poles. This is not surprising. In fact Cl2, Br2, I2 ~which cor-
respond to values ofL* ranging from 0.6 to 0.8! have
orthorhombic structures at freezing.11 On the basis of static
lattice energy summations, English and Venables30 con-
cluded that for quadrupolar two center Lennard-Jones m
els the orthorhombic structure was the most stable one
large elongation and moderate quadrupole. This is in agr
ment with the findings of this work. However it should b
pointed out that the orthorhombic structure O2 differs fro
J. Chem. Phys., Vol. 102
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the experimental orthorhombic~O1! structure found in halo-
gens. To analyze this point further we performed MC simu-
lations of HDQ models by using the O1 structure of halo-
gens. Results are shown in Table VII. Free energy
calculations show that forQ* 250.2 this structure is less
stable than the O2 solid. We conclude that for this model
although an orthorhombic phase appears at freezing it is no
identical to that found in real halogens. It seems possible tha
dispersion forces would favor the O1 structure over the O2
structure.

We now consider the results forL*50.8 andQ*51.
When starting from ana-N2 structure at high pressures~see
Table V! this structure becomes mechanically unstable and it
transforms into the orthorhombic structure O2. When this O2
structure is expanded it finally melts. We also compressed
the O2 structure starting from the state atp*540. These
results are shown in Fig. 8~a!. Results for the CP3 structure
are shown in Table V and in Fig. 8~b!. As is shown in Fig.
FIG. 4. Equation of state for HDQ withL*50.3 andQ* 251. Notation as in Fig. 3:~a! low pressure results;~b! high pressure results.
, No. 3, 15 January 1995
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1370 C. Vega and P. A. Monson: Solid–fluid equilibria
8~b! there is a crossing between the EOS of the O2 and C
structures suggesting the possibility of a phase transit
from the O2 to the CP3 at high pressures. So far the res
are quite similar to those presented forQ* 250.2 and
L*50.8.However there is an important difference. We pe
formed free energy calculations at lower pressure and fou
thea-N2 structure to be more stable than the O2 structure
melting. According to the results of this work for this mod
the fluid freezes into thea-N2 structure, then as the pressu

FIG. 5. Phase diagram for quadrupolar hard dumbbells withL*50.3 for
several values ofQ* 25Q2/(kTd5). Lines correspond to first-order phas
transitions. Approximate values ofQ* 2 for N2 and C2H2 at the triple point
are indicated.

FIG. 6. Equation of state for HDQ withL*50.6 andQ* 250.5.Notation
as in Fig. 3.
J. Chem. Phys., Vol. 102,
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is increased there is a phase transition to the O2 structu
and at very high pressures there is a phase transition from t
O2 structure to a CP structure.

Figure 9 summarizes all the results obtained for har
dumbbells withL*50.8. For very small quadrupole mo-
ment the fluid freezes into the CP3 structure, at modera
quadrupole moment freezing occurs into the O2 structur
and at large quadrupole moment freezing into thea-N2 phase
occurs. Once again at high pressures the CP3 structure is
stable one. In Fig. 9 estimated values ofQ2/(kTmd

5) for
CO2 and I2 are shown obtained from experimental data5 and
reasonable estimation ofd26,30 assuming an elongation of
L*50.8 for these molecules. The quadrupolar hard dumb
bell model explains the freezing of a molecule like I2 into an
orthorhombic structure or one like CO2 into thea-N2 struc-
ture. Moreover for CO2 it predicts a transition from thea-N2
to an orthorhombic structure in agreement with recent ex
perimental results.31

For all the elongations considered in this work thea-N2
phase was the stable phase at freezing when the quadrup
moment was sufficiently high. This is due to the fact that th
a-N2 is the more favorable structure for quadrupolar interac
tions. The most favorable relative orientation between a pa
of quadrupoles is the so-calledT configuration.30 The a-N2
structure allows a large number of pair of molecules to hav
this T configuration.

IV. CONCLUSIONS

Solid–fluid equilibrium of quadrupolar hard dumbbells
has been determined by Monte Carlo computer simulatio
for a number of elongations and values of the quadrupo
moment. The principal findings of this work are as follows.

~i! Short molecules with moderate values of the quadru
pole moment freeze into a plastic crystal phase. At highe

FIG. 7. Equation of state for HDQ withL*50.8 andQ* 250.2. Symbols
stand for MC results: triangles~fluid phase!; open squares~a-N2!; filled
squares~orthorhombic structure O2!; filled circles ~CP3!; stars~orthorhom-
bic structure O1!. The tie lines show the phase transitions.
No. 3, 15 January 1995
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FIG. 8. Equation of state for HDQ withL*50.8 andQ* 251. Symbols stand for MC results: triangles~fluid phase!; open squares~a-N2!; filled squares~O2!;
circles ~CP3!. Tie lines correspond to the fluid toa-N2 and to thea-N2 to O2 transitions.~a! Low pressure results,~b! high pressure results.
c
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pressures the plastic crystal phase is unstable with respe
thea-N2 solid and at very high pressures thea-N2 structure
becomes unstable with respect to a base centered monoc
structure that provides the highest packing density for h
dumbbells.

~ii ! Short molecules with large quadrupole mome
freeze into thea-N2 phase. This becomes unstable with r
spect to a monoclinic close packed structure at higher pr
sures.

~iii ! More elongated molecules freeze into the mon
clinic structure for small quadrupole moment, into an orth
rhombic structure for moderate quadrupoles, and into

FIG. 9. Phase diagram for quadrupolar hard dumbbells withL*50.8 for
several values ofQ* 25Q2/(kTd5). Lines correspond to first order phas
transitions. Approximate values forQ* 2 for I2 and CO2 at the triple point are
shown.
J. Chem. Phys., Vol. 102,
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a-N2 structure for large quadrupoles. At sufficiently high
pressure the stable phase is always a monoclinic close
packed structure.

~iv! The quadrupole moment is responsible for the ap-
pearance of thea-N2 and orthorhombic structures into the
phase diagram of hard dumbbells.

~v! The quadrupolar hard sphere system exhibits only
solid–fluid equilibrium, with the fluid density becoming
quite low for high quadrupole moment. Such behavior is also
expected for the HDQ models.

~vi! Freezing into thea-N2 structure is accompanied by
a relatively large fractional density change on freezing. The
is consistent with experimental results for CO2 and acety-
lene.

The stable solid phase at freezing for quadrupolar hard
dumbbells is shown schematically in Fig. 10 as a function of
the molecular elongation and quadrupole moment. Figure 10
also includes the results of our previous work2 on nonpolar
hard dumbbells. The boundaries marked on Fig. 10 are only
qualitative estimates made on the basis of our simulation
results. There are a number of qualitative similarities be-
tween Fig. 10 of this work and Fig. 5 of the paper by English
and Venables30 which was based on calculations of the static
lattice energy for the Lennard-Jones diatomic plus quadru-
pole potential. The regions of stability of the orthorhombic
and a-N2 structures are quite similar. The most important
differences arise from the appearance of a plastic crystal
phase for mildly anisotropic molecules and that of the close
packed monoclinic structures which are the stable structures
for hard dumbbells in the high pressure limit irrespective of
the quadrupole moment. Also O2 rather than O1 appears as
the stable orthorhombic structure for the HDQ model.

Figure 10 can help in our understanding of the stable
phases at freezing found for several substances such as th
rare gases, the halogens, N2, O2, CO2, and acetylene. As
anticipated by Kihara6 shape and polar forces appear as the
most important factors determining solid structure. Of course
No. 3, 15 January 1995
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1372 C. Vega and P. A. Monson: Solid–fluid equilibria
dispersion forces are also important in the determination
solid structure and the model used in this work is too simp
to describe all features found in experimental studies of lin
ear molecules. Nevertheless, our results suggest that gen
trends in the solid–fluid equilibria of quadrupolar linear mol
ecules are already captured by the simple quadrupolar ha
dumbbell model.
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