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Solid—fluid equilibrium for the quadrupolar hard dumbbell model has been determined by Monte
Carlo simulation for several values of the quadrupole moment and molecular elongation. Several
solid structures have been studied includiadyl,, a fcc plastic crystal, based centered monoclinic
structure providing closest packing for hard dumbbells and two orthorhombic structures. For low
elongations, hard dumbbells freeze into a plastic crystal phase when the quadrupole moment is low
and into thea-N, structure when it is large. More elongated dumbbells freeze into a close-packed
structure for low quadrupole moment, into an orthorhombic structure for moderate quadrupole
moment and into then-N, structure for large quadrupole moment. For any elongation and
quadrupole moment the stable phase at very high pressures is one of the close-packed structures.
The quadrupolar hard dumbbell model gives a qualitatively correct description of trends in the
solid—fluid equilibrium for several systems including ,,N the halogens, CQ and
acetylene. ©1995 American Institute of Physics.

I. INTRODUCTION guadrupole moment on the phase diagram can be observed
by comparing the results for the quadrupolar hard dumbbell

In recent work the phase diagram for the hard dumbbelmodel with those for the hard dumbbell model without the

model has been determined from Monte Carlo simulatiorquadrupole. The results should then provide some insight

studies as a function of the dumbbell bond lenfythThis into the phase diagrams of homonuclear diatomic molecules

work has revealed several interesting aspects of the role agfuch as N, O,, Cl,, and Bk as well as other quadrupolar

molecular shape in determining solid—fluid equilibrium. molecules such as acetylene and ,C®/e have also studied

Mildly anisotropic hard dumbbells freeze into a plastic crys-the phase diagram for the quadrupolar hard sphere model

tal (PO structure with orientational disorder whereas morebecause of its importance as a limiting case.

anisotropic dumbbells freeze into monoclinic structures that  There has recently been an increasing interest in the

provide the closest packing. TheN, structure which ap- theoretical determination of fluid—solid equilibrium of mo-

pears in a number of linear molecul@s,, CO,, C,H,) was  lecular fluids. Density functional theoriegband cell theor$*

not found to be thermodynamically stable for hard dumb-have been developed to predict the fluid—solid transition of

bells. When used in a generalized van der Waals tfetbyy  hard dumbbells and comparison with simulation results has

results for hard dumbbells provide a qualitative basis for unbeen presented. This work provides Monte Carlo data for the

derstanding the solid—fluid equilibria for nonpolar diatomic fluid—solid equilibrium of hard quadrupolar dumbbells

molecules. This illustrates the importance of the packing efwhich may be useful to further test these theories so that

fects associated with molecular shape in determining soligheir predictive value may be compared.

phase properties and solid—fluid equilibrium. The paper is arranged as follows. In Sec. Il the simula-
Of course it is to be expected that other anisotropiction methodology is described. In Sec. Ill results are pre-

forces, such as dispersion and multipolar interactions play agented for a number of models. Section IV gives a summary

important role in explaining the stability of some solid of our results and conclusions.

phases with respect to others. Multipolar forcagsing from

the presence of a multipolar momeetg., dipole or quadru- || METHODOLOGY

pole) are quite sensitive to the relative orientation between a

pair of molecules in the solid phase. Dispersion forces al- ~ The interaction between hard dumbbells with an embed-

though important seem to be less sensitive to the relativéed quadrupole along the molecular a#tDQ) is given by

orient'ation betvyeen molecules. In fact Kihnhrmas able to_ urPQ(1,2)=uM0(1,2) +u(1,2), (1)

explain the solid structures of several molecules by using HD ) ) )

hard nonspherical quadrupolar models. whereu™"(1,2) is the pair potential between hard dumbbells
In this work we study the solid—fluid equilibrium of hard @ndu® is the quadrupolar interaction which is given by

dumbbells with an embedded point quadrupole using Monte 302 . -

Carlo simulation. The choice of this model was motivated by ~ u®(1,2)= 275 [1—5(c1+c3)—15¢e1c;

the fact that a clear picture of the freezing of nonpolar hard

dumbbells has already been developetiThe effect of the +2(8;S,C—4¢41C,) 2], 2
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TABLE I. MC results for the fluid phase EOS of quadrupolar hard dumb- best fit to our fluid phase equation of state results. The Helm-

bells.L* =L/, Q*?=Q? (kTd"). The parameters, , k,, andk; of Eq.(6)  holtz free energy of the fluid phase may be obtained from the
obtained from a least squares fit are given.

relation
L* Q*? Ky Ky ks .71
o Z—
0 0.5 0.326 9469 0.974 5606 0.612 2980 A/NKT=[In p* —1]+ f —5 dp*’, )
0 1 —0.7431447  —0.409 5283 5.231 681 o P
0 15 —1.055 726 —3.193 744 8.879 604
0.3 0.3 0.919 6625 1.223351  —1.210996 where the term in brackets on the right-hand side of ().
03 1.0 2266 356 9.405 792 —7.978 440 corresponds to the ideal gas contribution to the Helmholtz
0.6 0.5 0.928 5581 1.219 304 01050713 he i | h idual
0.8 0.2 2276923  —0.812 6462 2176 273 ree energy, and { e integra _corres_ponds to the residual part.
0.8 1.0 0.458 0269  —0.771 7791 4.777 466 We now describe the simulation methodology for the

solid phases. In this work several solid structures have been
considered. The first structure studied wasdHd, structure.

The Bravais lattice for this structure is simple cubi¢n this
structure the centers of mass of the molecules are arranged
on a cubic fcc lattice and the molecules are oriented along

whereQ is the quadrupole moment,the distance between

the centers of mass,ci=cos(%), s=sin(f), and . ¢ body diagonals of the cube. TheN, structure does

C:COS((.Z’l_QSZ).' Here §; and ¢; denote the usual orientation not provide an efficient way of packing for hard dumbbells
angles in the intermolecular frame. The polar axis is the one

which connects the centers of mass of the molecules. Thand in fact it was proved to be thermodynamically unstable

geometry of the hard dumbbell is described by=L/o for nonpolar hard dumbbelfs.However it is a common

whereL is the distance between the two hard spheres of thgtructure for solids of strongly quadrupolar linear molecules

molecule ando is the diameter of the hard sphere. In this and therefore it seems appropriate to consider it for the qua-
work the quadrupolar potential given by E@) has'been drupolar hard dumbbell model. Second we have considered

truncated at .= 2. 5o the base centered monoclinic structures that provide closest
C_ . . H
In order to determine the phase equilibria, the equatiorPaCkmg for hard dumbbells. They are denoted as CP1, CP2,

of state(EOS and chemical potential must be determined inand CP3 and details about their structure are given in Ref. 2.

the fluid and solid phases. In the fluid phase we per_For hard dumbbells these structures were found to be

. o stablé® for densities down to the melting point for
f(.)rmed. stagdard isobaric, |sothe.rmal Monte Caﬂ_ﬂC) L*>0.38. ForL* <0.38 they were found to be stable at
simulation£® using 108 molecules in a cubic simulation cell hiah pressures. Free enerdies of the CP1. CP2. and CP3
with periodic boundaries. The length of runs in this work for gh p : g . '

fluid and solid phases was typically about 20 000 cycles forphalses are_qwte similar, the differences pemg smaller than
S the uncertainty of the free energy calculatidridowever, it

equilibration and 20 000 cycles for averages—a cycle con- . .
o could be the case that the free energy differences are in-
sisting of an attempted move for each molecule and an at-
. creased by the presence of the quadrupole and we shall re-
tempted volume change. Fluid runs were started at low pres- . ; . . .
; : urn to this point later. Another structure considered in this
sures and then higher pressures states were obtained froma | . .

; ' i ; - work is a fcc plastic crystalPO). In this phase the centers of

gradual compression of the final configuration of the previ- : . .

mass of the molecules are arranged in a fcc cubic lattice but

Ous run. there is no long range orientational order. This phase is ob-
In this paper we will use reduced variables for the den- 9 9 . P

. . _ tained by expansion of the-N, solid structure(see Ref. 2
z:%;gg quadrupole moment. The reduced densitys de for detailg. Finally we have also considered two orthorhom-

bic structures which will be denoted as O1 and O2. O1 is the
p* =pd?, (3)  structure of the solid halogehs®(Cl,, Br,, I,). The struc-
tures are illustrated schematically in Fig. 1. If we label the
base vectors of the unit cell @ b, andc then for O1 the
molecular axes all lie in planes parallel to taec plane. O2
d®=¢3(1+1.5L* —0.5L*3). (4) is similar to O1 but it differs in that alternate molecules have
their axes rotated in and out of the plane parallel toahe
plane as shown in Fig. 1. The Bravais lattice for O2 is simple
2 Q? orthorhombic and there are 4 molecules per unit cell. This
kT (3 02 structure may be considered as a distorted version of the
o ) ) a-N, structure.
The compressibility factor of the fluid was fitted to the To simulate the solid phase we used the MC equivalent

wherep is the number density andl is the diameter of the
sphere with the same volume as the hard dumbbell

The reduced quadrupole is defined as

expression of the molecular dynamics method developed by Parrinello
14Ky + Koy?+ gy and Rahman? The method is a constant pressure MC simu-
= 1y , (6) lation but changes in the unit cell shape are allowed in addi-

tion to the volume changes used in the conventional constant
wherey is the volume fraction. The parametdss, k,, and  pressure MCG? The cell shape changes are important because
k; were determined through a least-squares fit. Table | givethe equilibrium cell shape may change with pressure. For the
the values for the coefficients in E(B) which provide the CP1, CP2, and CP3 structures 144 molecules were used in
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— AA; however is slightly different for the HDQ than for the
+ ‘/'_ ' HD system. The\A, for HDQ is obtained from the relation
> 7
N — 1
e AAllNkT=—NIn< exp[—ﬁZ umPi,j) > 9
7 i<j

o~ where the brackets denote canonical ensemble average over
configurations generated according to the canonical distribu-
tion function of the noninteracting Einstein crystal. The
AA;/NKT term is comparable in magnitude to the quadrupo-
lar internal energy of the solith?/NkT. Whereas for HD,
AA;/NKT was always positive and small, in the HDQ sys-
tem the sign ofAA;/NKT is that of the quadrupolar internal
energy. The evaluation cA;/NKT given by Eq.(9) was
. performed by using umbrella sampling.
~ In the evaluation of the free energy we used the equilib-
) rium geometry of the unit cell resulting from the MC runs.
This allows for any change in the lattice geometry that may
-~ occur in the expansion from close packing. Once the free
HE energy of a given HDQ solid structure has been determined
RS for a given density then free energies at other densities can
e a be determined by thermodynamic integration

P2
o A(po)INKT=A(p)/NKT+ [ [p/(p?kT)Idp. (10
’ N p1
T I _
~-- To perform integration in Eq(10) we fitted the pressure of
the solid to a polynomial in density. At high pressures the
logarithm of the pressure was fitted to a polynomial form in
FIG. 1. The orthorhombic structures O1 and O2 viewed in the directiond€nSity.
normal to thea—c plane. In the O1 structure the molecular axes lie in planes ~ We have checked our solid phase free energy calcula-
paraIIeI to thea—c plane. The+ and— labels on the atoms indicate rotation t|ons for thermodynamlc Cons|stency For that purpose we
out of the planar parallel to the—c plane in the O2 structure. have evaluated the free energy of theN, lattice for
L*=0.3 and Q*2=0.3 at two different densities
(p*=1.2120 ang* =1.3500 with the Frenkel-Ladd method
the simulations. For the-N,, PC, O1, and O2 structures 108 and in this way we found a free energy differencetoh/
molecules were used. Other details of the simulations ar®kT=3.31. Byintegration of the equation of state we found
similar to those of our previous WwoRe that AA/NkT=3.28 which indicates that the two calcula-
Once the EOS for a solid phase is known free energyions are thermodynamically consistent within the accuracy
calculations for one thermodynamic state of that solid mus@f our calculations.
be performed so that chemical potential and phase equilibria
can be determined. To that purpose we used théll. RESULTS AND DISCUSSION
Frenkel-L th t t herical - . . .
renkel-Lad® method as extended to nonspherical par MC results for the solid phase properties obtained for

: 17,18 H
ticles by Frenkekt al: In this method the free energy of L*=0.0,03, 0.6, and 0.8 and several values@#? are

the solid is related to that of an ideal classical Einstein crys-ShOWn in Tables -V Free enerav calculations for the solid
tal. We refer to the papers of Frenket al!’*® and to our ' gy

previous work? for details. The final expression for the phases are presented in Table VI. The computed phase tran-

. . ... sitions are shown in Table VII. The estimated uncertainties
Helmholtz free energy of the HDQ solid at a given density ISare about 1% for the solid phase densities and about 6% for

A Ae  AA; AA, AA; the quadrupolar energies. We shall proceed now to separate
NKT NKT  NKT T NKT T NKT (8 discussion of the results for each dumbbell elongation.

A. Results for L*=0

whereAg is the free energy of an ideal Einstein crystal and
AA; is the difference between the free energy of an ideal For L*=0 the HDQ model reduces to a hard sphere
Einstein crystal and that of an Einstein crystal with HDQ with an embedded point quadrupole, and the results for this
interactionsAA, is the difference between the free energy ofsystem can be compared with those for hard sphéresr

the HDQ solid and that of an Einstein crystal with HDQ L* =0 thea-N, and CP structures have the same close pack-
interactions, and\A; is the difference in free energy be- ing density,p* =22 However, the orientations of the mol-
tween a system of unconstrained center of mass and one etules in the solidgiven by the orientation of the quadru-
fixed center of mass. The expressions usedforAA,, and  pole) are quite different. In Table VIII the internal energy at
AA; are identical to those given in Ref. 2. The expression forclose packing is given for the-N, and CP structures for
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TABLE II. MC results for a-N, solid structure of quadrupolar hard spheres teraction has been performed we have made some additional
(L*=0). p* =p/(kT/d%), p* =pd® U is the quadrupolar internal energy calculations withr ;=2.9¢ for 256 molecules. For the 108
and S denotes the orientational order parameter as defined in Ref. 2. TthoIecuIe systems the cutoff of 2&is slightly Iarger than
quadrupolar potential was truncatedrat=2.50 except for states labeled .

with an asterisk where the valug=2.90 was used. Low values &~1/9 half the box length for the solid phases witfi =0 (but not
indicate the appearance of a plastic crystal phase. for the other values df* considered in this wopkand since

periodic boundaries with the minimum image criterion were

Q** P P UP/(NKT) S used there is a slight anisotropy in the truncation of the po-
0.5 60 1.327 -3.61 tential in this case. For the systems with a cutoff of 2 ®is
45 1.313 -3.31 does not occur because of the larger system size. Although
40 1.302 —341 some differences between the two sets of results are evident
gg i:ggg :g:gz it seems that these differences are comparable to the statisti-
25 1.249 —3.04 cal uncertainty in the results. Notice that the orientational
20 1.217 -2.91 order parametérdecreases smoothly with pressure. The ori-
15 1.162 —2.42 entational order parameter used in this work varies between
12.5 1.120 —167 unity for a system with the orientational order of the initial
10 1.087 ~1.35 lattice and~1/9 for an orientationally disordered state. The
0.5 60° 1.330 -3.52 0.74 lower pressure states f@*2=0.5 correspond to a plastic
45* 1.310 —3.46 0.64 crystal phas€PC). The transition to the PC phase appears to
gg 1'522 :ggg 8'33 be second order. The PC wit@*?=0.5 exhibits a high
30° 19278 _305 028 degree of orientational disorder at melting. Solid—fluid equi-
25¢ 1.254 —-3.03 0.14 libria for L* =0 andQ*2=0.5, 1,15 arepresented in Table
20* 1.217 -2.77 0.11 VII. In Fig. 2(a) results are shown for the case&?=0.5
15 1.156 —2.26 0.11 and 1.0. The quadrupole decreases the pressure of the fluid—
133 icl)ég :1'2451 8'1(1) solid transition with respect to the hard sphere case. The
' ' ' effect is small forQ*2=0.5 and large foQ*2=1. This is
1.0 45 1.326 —8.51 0.92 due to the fact that fo*2=0.5 the solid phase is a PC,
40 1318 —8.42 0.92 whereas forQ*2=1.5 the solid phase presents a large de-
28 1'225 :géi g'gi gree of orientational order. The fluid density at coexistence
15 1244 756 0.90 decreases with the quadrupole moment but the density
12.5 1.227 -7.37 0.90 change on freezing increases. In Figh)2coexistence densi-
10 1.206 —-7.13 0.90 ties of the fluid—solid equilibria of quadrupolar hard spheres
8 1177 —6.81 0.88 are shown. The reduced temperature is defined as
i iégg :g:gg 8:23 T* =kTd®/Q2. Notice that this system does not seem to ex-
3 1.041 5136 0.57 hibit a vapor—liquid critical point. In this regard it is quite
similar to other systems with weakly attractive or short range
15 40 1.330 —13.39 0.95 forces which have been studied recerfly??
30 1.314 -13.11 0.94
2 2o By i B. Results for L*=0.3
15 1.281 —12.55 0.93 . .
12 323 :gi;‘ g'gg For L*=0.3 we have studied systems wi@* =0.3
6 1237 _11.79 0.89 andQ* =1. Results are presented in Table Ill. We shall first
4 1.232 —11.72 0.89 discuss th&Q*?=0.3 case. At very high pressures the close
2 1.214 —11.38 0.87 packed structures are stable. This can be understood from the
(1)75 11-11983 —ié-;g 8-23 fact that the pressure of theN, phase diverges when the
. . -10. . . * . X .
05 1199 1116 0.88 density tends t@p*=1.4657, the maximum possible density

of hard dumbbells with this structure for this elongation. The
CP structures exhibit this divergence whefi tends to
p*=1.4917. This kind of divergence was analyzed in detail
by Alder, Hoover, and Young for the hard sphere cHse.
Q*2=1. The quadrupole favors theN, structure which has According to the cell theoR?**the origin of this divergence
a negative value ofJ%/NKT relative to the CP structures is the fact that the free volume of each molecule tends to zero
which have positive values. It is interesting to note that CP1at close packing, so that free energy and pressures diverge.
CP2, and CP3 have quite similar valuesw?/NkT for all  Therefore whenever the maximum allowed density of a
elongations so that the quadrupole does not favor a givegiven structure is approached the free energy diverges and a
close packed structure over the others. This suggests that th@ansition to another structure which packs molecules more
a-N, structure is likely to be the stable one for quadrupolarefficiently is expected. At very high pressures the CP struc-
hard spheres. tures should be the stable phases. The differences between
In Table Il our simulation results for the-N, solid the free energies of the CP structures are small and we can-
phase withQ*2=0.5, 1, 1.5 argresented. Although no sys- not establish which is the most stable among them. It can be
tematic study of the effect of truncating the quadrupolar in-seen from the results of Table Il that the EOS for the CP1
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TABLE Ill. MC results for different solid structures of quadrupolar hard dumbbells Witk 0.3. Notation as

in Table I. Values of pressure labeled with an asterisk where obtained by compressing the PC solid. Values of
pressure followed by the name of a structure in brackets indicate the spontaneous formation of that phase by
expansion of thex-N, or compression of the PC phase.

Q*? Solid p* o U%Y(NkT) Q*?  Solid p* o UQ/(NKT)
0.3 CP3 1000 1.481 3.14 0.3 PC *17  1.072 -0.71
500 1.470 3.10 8 1.087 —-0.74
300 1.453 3.00 19 1.099 —-0.79
200 1.437 2.88 20 1.110 -0.82
150 1.417 2.71 21 1.113 -0.82
100 1.375 2.30 22 1.140 -1.19
80 1.330 1.29 23 a-N,) 1.196 —-1.92
70 1.293 -0.19 24 (a-Ny) 1.203 —1.98
60 1.272 —-0.64 25 (a-Ny) 1.227 —-2.12
0.3 CP1 1000 1.481 3.13 B-N,) 1.247 —-2.23
500 1.470 3.09 1.0 a-N, 1000 1.456 —-11.17
300 1.455 3.01 500 1.447 —11.05
200 1.436 2.87 300 1.437 -10.91
150 1.412 2.60 200 1.426 —10.75
100 1.372 2.20 100 1.398 —10.30
0.3 a-N, 1000 1.455 -3.35 80 1.386 —-10.12
500 1.447 -3.31 25 1.302 —8.84
300 1.435 —-3.26 20 1.280 —8.52
200 1.421 -3.20 15 1.261 —-8.25
100 1.387 -3.03 12.5 1.243 —-8.00
80 1.366 —-2.91 10 1.228 —7.80
70 1.353 —-2.84 7.5 1.186 -7.27
60 1.338 —2.77 5 1.132 —6.62
50 1.322 —2.67 4 1.114 —6.42
45 1.310 —2.59 1.0 CP3 1000 1.481 10.39
40 1.297 —-2.53 500 1.470 10.13
35 1.270 —-2.37 300 1.449 9.36
30 1.249 —-2.24 200 1.405 5.68
25 1.219 —-2.04
24 1.208 —-1.99
23 1.196 -1.91
22 1.185 —-1.85
21 1.178 —-1.80
20 1.148 —-1.53
19 1.137 —1.46
18P0 1102  -0.81
17(PC) 1.077 —-0.73
16(PC) 1.062 —0.69
15PC 1103  —0.77
14(PC) 1.044 —0.66
13(PO 1.018 —0.60
12(PO) 0.977 —-0.55

and CP3 are almost identical. In the rest of this work weragLe v. MC resuits for different solid structures of quadrupolar hard
shall take the CP3 structure as representative of all CP stru@umbbells withL* =0.6. Notation as in Table I.

tures anticipating that the behavior of CP1 and CP2 should —
be quite similar. As the pressure is decreased there is a cross-
ing between the EOS of theN, and that of the CP3 struc- 05 «-N, 100 1337 -478 CP3 100 1.378 3.16
ture. We performed free energy calculations for both struc- 80 1323 -—4.68 80 1.335 1.68

Solid p*  p* UYU(NKT) Solid p* p* U(NKT)

tures and found a transition from CP3deN, as the pressure 701312 -461 70 1313 -0.73
was decreased. The origin of this transition is the competi- 60 1301 —4.54 60 1293 ~1.36
, : , 40 1260 —4.25 45 1238 —0.92
tion between the repulsive forces from the molecular shape 35 1952 —4.19 40 1219 -1.52
which favor the CP structure and the quadrupolar forces 30 1.232 -4.05 35 1.189 -1.96
which favor thea-N, structure. Packing considerations must 25 1217  -3.95 30 1.158 -2.25

20 1.180 -—3.68 25 1.125 -2.40

dominate at high pressure whereas the quadrupolar forces
" 15 1121 -3.26
can stabilize thex-N, structure at low pressure. 125 1065 -289
By further expanding thex-N, structure a significant 10 1012 -252
change occurs gt* =18. The orientational order parameter,

J. Chem. Phys., Vol. 102, No. 3, 15 January 1995
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TABLE V. MC results for different solid structures of quadrupolar hard TABLE V. (Continued)

dumbbells withL* =0.8. Notation as in Tables | and IV. Considered solid

structures are-N,, CP3, 02 and the experimental structure of halogens 01.Q*2  Solid p* p* U9/(NKT) a b c
Lengths(in o units) of the simulation box denoted as b andc are shown
at some states. The lengths of the unit cell base vectors can be obtained By a-N, 30 1.193 —7.85 552 560 569
d|v|d|ng a, b’ andc by three. 20 1.159 —7.43 5.60 5.60 5.77
10 1.083 -6.51 584 579 573
Q*2  Solid p* o~ UYNKT) a b c 8 1.066 -6.32 574 583 588
6 1.013 -5.72 598 598 5.80
0.2 CP3 100 1.370 0.66 5 0.993 —5.51 593 6.05 5.90
80  1.345 0.62 4 0.969 -5.24 598 6.02 6.02
70 1.332 0.60
60  1.306 0.56 1 CP3 1000  1.460 3.49
50 1273 0.50 500  1.450 3.44
45 1955 0.47 300  1.433 3.23
© 1 o3 2o sz
35  1.204 0.36 : :
100  1.344 1.58
30 1162 0.31 80 1.301 0.625
25  1.107 0.02 ' '
02  aN, 50 1204 -158 560 555 561
45  1.196 -156 550 563 5.67
2(2)'5 1'2132 _i'gg :"2“7‘ 2?? Z'gé internal energy, and density drop significantly. TheN,
375 1217 157 511 549 645 phase has transformed into a PC phase which can be further
3502 1,205 154 512 553 615 €xpanded until it spontgneously melts. In order to understand
30(02) 1.185 -148 511 559 621 the nature of the transition between theé\, and the PC we
2502  1.130 -1.35 520 573 623 carried out a gradual compression of the PC phase obtained
20002  1.072 -117 525 585 6.38 atp*=17 from the expansion of the-N, structure. Results
1902 1080  -117 515 579 652  of this compression are shown in Table Il and in Fig. 3
1802 1.045 -103 508 591 668 \nere it is seen that the compressed PC states lie on a dif-
1702  1.021 —097 516 597 668 b h than the-N. states. Wherp* =23 the PC
1602 1001 -088 526 600 665 erentbranch than the-IN, stales. Wherp = € _
phase transforms inte-N, phase again. The presence of this
0.2 02 0 1174 -146 509 563 623 pysteresis loop is indicative of a first-order phase transition.
431?) 13(2)421 _1'22 g'gg :gg 2% In fact free energy calculations show a first-order phase tran-
. — 4. . . . .y * _ -
45 1946 164 502 546 615 Sition between th(af-N2 aild the PC ap 3 19.35.F|gurg 3
50 1.257 —-1.67 496 547 6.14 shows the scenario fdr :03 andQ :03 Thefluid
60  1.280 —173 494 544 610 freezes into a PC phase that is unstable with respect to the
70 1302 -1.79 496 538 6.04 a-N, structure at higher densities and with respect to a
80  1.313 —-182 496 533 6.03 monoclinic base centered structu€P3 at even higher
100 133  -1.88 495 529 598 pressures. By comparing with the phase diagram of HD with
0.2 o1 50 1.244 063 392 495 870 L*=0.3itis concluded that the effect of a quadrupole mo-
45 1241 -0.83 405 489 852 ment on the phase diagram of HD is to insert a region of
40 1217 —-082 414 491 849  stability of thea-N, phase between the PC and CP3 phases.
zg ﬂgg *g-gg i-;g g-g; g-ié We have also analyzed the phase diagramLfor0.3
o5 1107 —08l 442 513 gos andQ*=1.Results are shown in Table lll. At high densities
20 1.041 _070 469 547 786 CP3is again the stable structure. It becomes unste}ble with
respect to the-N, phase at lower pressures. When t#&isl,
1 aN, 150 1291 -9.08 544 545 549  girycture is further expanded it finally melts wheth=4.61.
128 i:gﬁ :g'gi g'ﬁ gg ggg The phase diagram f@@* =1 is shown in Fig. 4. The most
60  1.249 _856 538 552 565 mteres_tmg feature is that the PQ phase has dlsa_ppeared. In
40 1.276 _868 503 542 604 Ref 3itwas argyed that the maximum allowe_d anisotropy of
3002  1.252 -837 507 544 608 hard dumbbells in order to have a PC phase ik®0f0.38.
20002  1.193 -7.69 517 556 6.12 This work shows an additional restriction that there also be a
10(02) 1.105 —-6.70 5.35 5.76 6.20 IOW quadrupo'e moment.
802 1043  -602 552 589 6.20 The results we have obtained for the HDQ models with
602  1.021 -579 557 596 6.19 *_ ; . .
402 0934 _484 501 613 621 L =0.3 permit us to construct a schematic phase diagram
4002 1276 867 502 541 607 @S ghown in Fig. 5 which surznmarize§ all the avgilable infor-
50(02) 1.297 ~892 498 538 6.04 Mation. At low values ofQ*“ the fluid freezes into a PC
60002  1.311 -9.09 496 536 6.03 phase which becomes unstable with respect to a CP structure
80(02)  1.327 -9.28 495 531 6.0l at higher pressures. For moderaf®? values the fluid
10002 1.349  -956 494 528 597 freezes into a PC phase. This becomes unstable with respect
15002 1.371 7983 492524 594 4 ihe a-N, phase at higher pressures and into a CP structure
30002  1.397 -1015 491 520 590 o .
at still higher pressures. For high quadrupole moments the
J. Chem. Phys., Vol. 102, No. 3, 15 January 1995
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TABLE VI. Free energy calculations for different solid structures of quadrupolar hard dumbbells. Notation as
in preceding tables\ is the maximum value of used in the free energy calculatiodsA, is given by Eq.(9)

of this work andA A, is given by Eq(3.14) of Ref. 2.A is the Helmholtz free energy at the reference density.
All free energies are divided bMKT.

L* Q*2 Lattice N Amax p* AA, AA Aves

0 05  PC 108 1000 1037  -8.8241 -3.1725 4.1903
0 1 a-N, 108 8000 1150  —11.4708  —7.5611 2.3262
0 15 aN, 108 8000  1.200  —10.1726  —12.1749  —0.989
0.3 03 PC 108 1000 1053  —9.2780 ~1.9664 5.3015
0.3 03 aN, 108 8000 12120 —11.5148 —2.4827 7.7199
03 03  aN, 108 8000  1.3500  —7.7299 -2.9549  11.034
0.3 03  CP3 144 30000 14173 —5.11667 26954 22611
03 10 aN, 108 8000 11320 -—12.0519  —7.3855 2.2794
0.3 10 aN, 108 8000 13500  —7.4371 -9.8887 4.3926
0.3 100 CP3 144 90000 14481 —7.6815 9.3302  29.417
0.6 05 o, 108 8000 11210 —12.0550  —3.6702 6.2105
0.8 02 02 108 8000 10798 —11.9668  —1.3059 8.7435
0.8 02  CP3 144 8000 11721 -10.3351 02279  11.9336
0.8 10 aN, 108 8000 11300 —10.4600  —7.4389 4.1177
0.8 10 02 108 8000 11932  —9.2622 ~7.8444 4.9104

fluid freezes into thea-N, structure that is unstable with sity change at freezing for Ns small in agreement with this
respect to a CP structure at high pressures. It is straightfowork and with previous simulation resuf$.Acetylene
ward to show that the slope of a given phase transition in théreezes into am-N, structuré® in agreement with the model
units of Fig. 5 is given by results in Fig. 5.

(dp*/dQ*?)=pI p3[AU/(NKTQ 2Ap*)], (11)

whereAp andAU are the change in density and configura-
tional energy at the transition. For all the studied transitions ForL* =0.6 we have studied the model wiit >=0.5.
Ap is positive. Therefore the sign oflp*/dQ*?) is that of  In Table IV results are shown for the-N, and CP3 struc-
AU. The slopes of the lines shown in Fig. 5 are in agreementures. In Fig. 6 the phase diagram for the model is illustrated.
with this relation. The fluid freezes into am-N, and by compression a phase
In Fig. 5 estimated values d®?/(kT,,d°) for N, and transition to the CP3 structure is obtained although no at-
C,H, are also shown. The experimenitgladrupole moment tempt to locate thex-N, to CP3 transition has been made.
and melting temperatufeT,, of these two substances have For the HD model of the same elongation the fluid freezes
been used along with a reasonable estimatiod.8?’ It is  into a CP structure. The quadrupole therefore introduces a
interesting to note that Nfreezes into a PC phagelthough  region of stability of thea-N, phase between the fluid and
slightly different from the one obtained in this woriMore-  the CP phase.
over nitrogen also exhibits the-N, and rhombohedral struc- We have found some interesting results for the quadru-
tures in its experimental phase diagrarThe fractional den- polar energy for the CP3 structure. For this structufé is

C. Results for L*=0.6

TABLE VII. Fluid—solid and solid—solid equilibria of quadrupolar hard dumbbells as determined from the MC
results of fluid(Table ) and solid phaseéTables I1-\), and from the free energy calculations of Table VI.
Notation as in preceding tables.

L* Q*?  Phase 1 Phase 2 p¥ o3 p* wlkT

0 0.5 Fluid PC 0.9505 1.0885 11.09 14.86
0 1 Fluid a-N, 0.8175 1.1025 4.43 6.15
0 15 Fluid a-N, 0.2750 1.1870 0.36 -0.71
0.3 0.30 Fluid PC 0.996 1.048 14.9 14.44
0.3 0.30 PC a-N, 1.103 1.153 19.35 23.59
0.3 0.30 a-N, CP3 1.455 1.487 935.14 657.14
0.3 1 Fluid a-N, 0.8035 1.1275 4.61 6.36
0.3 1 a-N, CP3 1.459 1.486 1741.66 1182.6
0.6 0.5 Fluid a-N, 0.9445 1.0785 12.91 17.69
0.8 0.2 Fluid 02 1.0605 1.1675 28.76 35.00
0.8 0.2 Fluid CP3 1.1535 1.2565 47.55 51.90
0.8 1 Fluid a-N, 0.8045 1.015 5.86 8.99
0.8 1 Fluid 02 0.819 1.025 6.27 9.49
0.8 1 a-N, 02 1.140 1.168 16.50 18.70
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TABLE VIII. Quadrupolar internal energy)/NKT of quadrupolar hard ~ appreciable was not large. However it becomes very impor-
dumbbells at close packing for several solid structures The presentethnt when polar forces are present. In fact without lattice
U?/NKT values correspond tQ**=Q%/(kTd’)=1. pcy and ("> repre-  istortion U? would take a value of aboud/NkT=3.09

sent the close packing densities of the close patﬁl@ﬁ&) and a-N, struc- *2_
tures respectively. If no distortion of the unit cell occurs internal energies a%"’he” p *=1.189 andQ™“=0.5 whereas the MC value is

different densities and quadrupoles may be obtained by multiplying value$J Q/NkT=—1.96. Theoretical treatments of solid phases
on this table by the facto*? (p/p,)®">. should therefore consider the possibility of lattice distortion
when dealing with quadrupolar interactions. Otherwise im-
portant errors in the determination of thermodynamic prop-
erties of the solid phase may occur.

0 14142 14142 2.658 2.658 2.658 —10.605 Finally, although we have not considered it for this

CP1 CP2 CP3 a-N,
L*  pSh p;’“z UQ/(NKT) UQ/(NKT) UQ/(NKT) U/(NKT)

0.1 1.4485 1.4452 6.304 6.305 6.276 —10.995 ;

02 14741 14618 9.069 9.073 9.028 —11.206 dumbbell bond length an orthorhqmblc structure may appear
03 14917 14657 10777 10.785 10.751 —11.257 as the stable structure on freezing for small values of the
04 15016 1.4585  11.361 11.368 11.352 —11.164  quadrupole moment, as we shall see for the case of
0.5 1.5044 1.4412 10.792 10.791 10.789 —10.944 L*=0.80.

0.6 1.5001 1.4147 9.099 9.086 9.092 —10.611

0.7 1.4890 1.3797 6.413 6.391 6.397 —10.177

0.8 14709 1.3366  2.996 2.970 2971 -9652  D. Resultsfor L*=0.80

0.9 1.4461 1.2855 —0.763 —0.785  —0.792 —9.046

For L*=0.8 the values of the quadrupole considered
were:Q*?=0.2 and 1.0. FoQ*?=0.2 results for several
solid structures are shown in Table V. The EOS for the CP3
structure has been obtained at high and low pressures. Re-
positive at high pressures and becomes negative at low presults for the a-N, structure are also presented. The cubic
sures. In fact at close packird® for the CP3 structure is geometry of this structure is preserved in the initial high
strongly positive(see Table VIIJ and on this basis the high pressure states. However when pressure is decreased the
pressure behavior dfi? is easily understood. The quadru- a-N, becomes mechanically unstable and transforms into the
pole tends to destabilize the CP structures. The change afrthorhombic structure O2. This structure is clearly visible at
sign of U for the CP3 is due to distortion of the unit cell pressures smaller thap* =35. When the O2 structure at
with respect to that at close packing as the pressure is d@* =30 obtained from expansion of theN, solid is com-
creased. This distortion affects the parameters of the unit cefiressed the system follows a different path ir>35 than
and the orientation of the molecules within the unit cell. Atthe one obtained from expansion of theN,. Therefore this
close packing the angleébetween the molecular axis and the O2 structure is mechanically stable up to very high pres-
perpendicular to theab plane is on average#=20.3°  sures.
whereas wherp* =35 this angle is on averageé=40.5°. In Fig. 7 the EOS for all the different phases are shown.
This change allows a more favorable orientation of the quaThe EOS of the O2 and the CP3 solids cross for a pressure of
drupolar interactions. We already mentioned in our previousboutp* =35. That indicates a phase transition from the 02
work the importance of lattice distortion when computing theto the CP3 structure at high pressures. E5r?=0.2 the
free energy of a solid phadefFor HD this effect although fluid freezes into an orthorhombic structure O2 and at high

1.0 1.4142 1.2266 -4.367 —4.377 —4.395 —8.366

70 2.5

2.0 1
1.5

T* FLUID SOLID
1.0 4
0.5 1
00 T T T T T T |nd

1.5 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
*
(b) P

FIG. 2. (a) Equation of state for quadrupolar hard sphedes=0) with Q*2=0.5 (solid line) andQ*?=1.00 (dashed ling Triangles correspond to MC
results of the fluid phase fa@*2=0.5 (open and Q*?=1 (filled). Squares correspond to MC results the solid phas&fr=0.5 (open and Q*?=1

(filled). Fluid solid transitions are shown by the tie ling) Transition densities for quadrupolar hard spheres. Reduced temperature is defined as
T*=T/[ Q% (kd®)] =1/Q*2. Results forT* =0 correspond to extrapolation of the results obtained at higher temperatures.
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45
1000
40 .
357 800
a—Ng
304
600
* 25_ *
& PC P
204 400
cP3
154 FLUID
/— 200
10
5 T 0
0.90 1.00 1.10 1.20 1.30 1.20 1.30 1.40 1.50
* *
e P

FIG. 3. Equation of state for HDQ with* =0.3 andQ*2=0.30.Symbols stand for MC results: triangléiuid phasg; open circlesplastic crystal PE
squarega-N,); filled circles(CP3. The tie lines show the phase transitiqaslow pressure resultgb) high pressure results.

pressures this O2 structure becomes unstable with respecttite experimental orthorhombi©?1) structure found in halo-

a close packingbase centered monoclinistructure(CP3. gens. To analyze this point further we performed MC simu-
The a-N, phase is absent for this model. The appearance ditions of HDQ models by using the O1 structure of halo-
an orthorhombic structure is a new feature. It appears fogens. Results are shown in Table VII. Free energy
elongated molecules with moderate values of the quadrupolealculations show that fo*?=0.2 this structure is less
moment. It should be recalled that for the correspondingstable than the O2 solid. We conclude that for this model
nonpolar HD model withL* =0.8 no orthorhombic phase although an orthorhombic phase appears at freezing it is not
was found. The conditions for the appearance of orthorhomidentical to that found in real halogens. It seems possible that
bic phases are elongated molecules with moderate quadrdispersion forces would favor the O1 structure over the O2
poles. This is not surprising. In fact £IBr,, I, (which cor-  structure.

respond to values of.* ranging from 0.6 to 0.8 have We now consider the results far* =0.8 andQ* =1.
orthorhombic structures at freezifhOn the basis of static When starting from am-N, structure at high pressurésee
lattice energy summations, English and Venalleson-  Table V) this structure becomes mechanically unstable and it
cluded that for quadrupolar two center Lennard-Jones modsransforms into the orthorhombic structure O2. When this 02
els the orthorhombic structure was the most stable one fastructure is expanded it finally melts. We also compressed
large elongation and moderate quadrupole. This is in agreghe O2 structure starting from the state @t=40. These
ment with the findings of this work. However it should be results are shown in Fig.(8. Results for the CP3 structure
pointed out that the orthorhombic structure O2 differs fromare shown in Table V and in Fig.(18. As is shown in Fig.

30 2600
2400
254 2200
2000
. =Ny 1800
. , 1600
P P 14004
15
1200 -
1000
107 800
600
51 FLUD 400
200
[¢] T T T T T T T 0
06 07 08 09 1.0 11 12 13 14 1.35

(a) (b)
FIG. 4. Equation of state for HDQ with* =0.3 andQ*?=1. Notation as in Fig. 3{a) low pressure resultgh) high pressure results.
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p .
40 a—N; p
40
30
PC 304
20-
20
197 FLUID .
1
o N; CaHy 0.95 1.05 1.15 1.25 1.35
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2 1Y
Q*

FIG. 7. Equation of state for HDQ with* =0.8 andQ*?=0.2. Symbols

FIG. 5. Phase diagram for quadrupolar hard dumbbells with-0.3 for ~ Stand for MC results: trianglegfluid phasg; open squaresa-N,); filled
several values 0f)*2=Q¥(kTd?). Lines correspond to first-order phase squaregorthorhombic structure Q2filled circles (CP3); stars(orthorhom-

transitions. Approximate values 6* 2 for N, and GH, at the triple point ~ Di¢ Structure O1 The tie lines show the phase transitions.
are indicated.

is increased there is a phase transition to the O2 structure,
and at very high pressures there is a phase transition from the
8(b) there is a crossing between the EOS of the O2 and CP®2 structure to a CP structure.
structures suggesting the possibility of a phase transition Figure 9 summarizes all the results obtained for hard
from the O2 to the CP3 at high pressures. So far the resuligumbbells withL* =0.8. Forvery small quadrupole mo-
are quite similar to those presented f@**=0.2 and ment the fluid freezes into the CP3 structure, at moderate
L*=0.8.However there is an important difference. We per-quadrupole moment freezing occurs into the O2 structure
formed free energy calculations at lower pressure and foungnd at large quadrupole moment freezing intodki, phase
the a-N, structure to be more stable than the O2 structure agccurs. Once again at high pressures the CP3 structure is the
melting. According to the results of this work for this model stable one. In Fig. 9 estimated values @f/(kT,,d°) for
the fluid freezes into the-N, structure, then as the pressure CO, and |, are shown obtained from experimental daaad
reasonable estimation af?®3° assuming an elongation of
L*=0.8 for these molecules. The guadrupolar hard dumb-
bell model explains the freezing of a molecule likérlto an

110 orthorhombic structure or one like G@nto the a-N, struc-
1004 ture. Moreover for CQit predicts a transition from tha-N,
. CP3 to an orthorhombic structure in agreement with recent ex-
perimental resultd!
80 For all the elongations considered in this work tad,
704 phase was the stable phase at freezing when the quadrupole
moment was sufficiently high. This is due to the fact that the
. %07 a-N, is the more favorable structure for quadrupolar interac-
P 50 tions. The most favorable relative orientation between a pair
4o of quadrupoles is the so-calléfd configuratior®® The a-N,
structure allows a large number of pair of molecules to have
304 this T configuration.
20 =N,
104 FLUID IV. CONCLUSIONS
0 e Solid—fluid equilibrium of quadrupolar hard dumbbells
0.6 0.7 08 09 1.0 1.1 1.2 1.3 1.4 15 has been determined by Monte Carlo computer simulation
P for a number of elongations and values of the quadrupole
moment. The principal findings of this work are as follows.
FIG. 6. Equation of state for HDQ with* =0.6 andQ*2=0.5. Notation (i) Short molecules with moderate values of the quadru-
as in Fig. 3. pole moment freeze into a plastic crystal phase. At higher
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FIG. 8. Equation of state for HDQ with* =0.8 andQ*?=1. Symbols stand for MC results: trianglékiid phasg; open square&x-N,); filled squareg02);
circles(CP3. Tie lines correspond to the fluid #@N, and to thea-N, to O2 transitions(a) Low pressure resultgb) high pressure results.

pressures the plastic crystal phase is unstable with respect 88N, structure for large quadrupoles. At sufficiently high
the a-N, solid and at very high pressures theN, structure  pressure the stable phase is always a monoclinic close
becomes unstable with respect to a base centered monocliq@acked structure.
structure that provides the highest packing density for hard (iv) The quadrupole moment is responsible for the ap-
dumbbells. pearance of thex-N, and orthorhombic structures into the
(i) Short molecules with large quadrupole momentphase diagram of hard dumbbells.
freeze into thea-N, phase. This becomes unstable with re-  (v) The quadrupolar hard sphere system exhibits only
spect to a monoclinic close packed structure at higher pressolid—fluid equilibrium, with the fluid density becoming
sures. quite low for high quadrupole moment. Such behavior is also
(iii) More elongated molecules freeze into the mono-expected for the HDQ models.
clinic structure for small quadrupole moment, into an ortho-  (vi) Freezing into thex-N, structure is accompanied by
rhombic structure for moderate quadrupoles, and into am relatively large fractional density change on freezing. The
is consistent with experimental results for £@nd acety-
lene.
The stable solid phase at freezing for quadrupolar hard

70 dumbbells is shown schematically in Fig. 10 as a function of

the molecular elongation and quadrupole moment. Figure 10
60 also includes the results of our previous wodn nonpolar

oP3 hard dumbbells. The boundaries marked on Fig. 10 are only
50 qualitative estimates made on the basis of our simulation
results. There are a number of qualitative similarities be-

40 tween Fig. 10 of this work and Fig. 5 of the paper by English

p* Orthorhombic (0r2) and Venable¥ which was based on calculations of the static
30 lattice energy for the Lennard-Jones diatomic plus quadru-

pole potential. The regions of stability of the orthorhombic

204 and a-N, structures are quite similar. The most important
differences arise from the appearance of a plastic crystal

104 phase for mildly anisotropic molecules and that of the close
packed monoclinic structures which are the stable structures

o ¢ for hard dumbbells in the high pressure limit irrespective of
0.0 0.2 0.4 0.6 08 1.0 1.2 the quadrupole moment. Also O2 rather than O1 appears as

Q* the stable orthorhombic structure for the HDQ model.
Figure 10 can help in our understanding of the stable
hase d . drunolar hard dumbbels whte0.8 f phases at freezing found for several substances such as the
FIG. 9. Phase diagram for quadrupolar hard dumbbells Wwith-0.8 for
several values 0Q*2=Q?%/(kTd®). Lines correspond to first order phase rare gases, the halogensy,ND,, CO,, and acetylene. As

transitions. Approximate values f* 2 for I, and CQ at the triple point are amiCipated by Kiharashape and polar_forces appear as the
shown. most important factors determining solid structure. Of course
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