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The vapour-liquid equilibrium of an angular Kihara model of propane is 
obtained from a very accurate perturbation theory proposed recently. Gibbs 
ensemble simulations are performed in order to determine the vapour-liquid 
equilibrium of this model. A comparison of the theoretical and simulation results 
for the vapour-liquid equilibria shows excellent agreement. In addition it is 
demonstrated that a simple extrapolation procedure of the theoretical results 
yields reliable estimates of the critical properties. Vapour-liquid equilibria of 
n-butane and n-pentane conformers were obtained by the perturbation theory. 
trans- and gauche-Butane differ in their vapour-liquid equilibria and in their 
critical properties. However, they do not differ significantly in their second virial 
coefficient. The critical temperature of gauche-butane is higher than that of the 
trans conformer by about 6%. For the different conformers of n-pentane similar 
results are obtained. The conclusion is that the more spherical is a molecule or 
conformer the higher the reduced critical temperature. The more anisotropic 
conformers present larger deviations from the principle of corresponding states. 
The critical temperature of the all-trans and of the all-gauche conformers appear 
as a lower and upper bound of the critical temperature of the n-alkane. That 
suggests that a good description of the vapour-liquid equilibria of the n-alkane 
could be obtained if a representative conformer of the n-alkane system were 
chosen. 

1. Introduction 

It is fair to say that the vapour-liquid equilibria of linear molecules are now well 
understood. Perturbation theories i-1-8], integral equations I-9-12], and computer 
simulation [13-16] have illustrated the role played by molecular anisotropy and 
polar forces in the vapour-liquid equilibria of linear molecules. Considerable progress 
has also been made towards an understanding of the vapour--liquid equilibria of 
fluids consisting of nonlinear molecules [17-19]. However, our understanding of the 
vapour-liquid equilibria of flexible molecules is not as satisfactory, although some 
progress has been made with computer simulations [20, 21]. This is an important 
problem, since molecules with internal flexibility, for instance, n-alkanes, are of 
great importance for the chemical industry. The main difference between rigid and 
flexible molecules is that for the former it is possible to define the shape of the 
molecule whereas for the flexible models the molecule may adopt conformations with 
different shapes. Among the different theoretical tools available for studying flexible 
molecules, perturbation theories appear to be quite promising. In perturbation 
theories the equation of state and the structure of the reference system (usually 
incorporating the repulsive forces) are needed. A great deal of work has been devoted 
recently to studying hard flexible molecules. Extension of Wertheim's theory of 
association to flexible molecules [22, 23], density functional theory [24], integral 
equations [25] and, finally, modifications of the Flory-Huggins theory of polymers 
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[26] have been developed. Furthermore, we have recently proposed a modification 
of Wertheim's theory that provides a very good description of the equation of state 
and virial coefficients of hard n-alkane models [27]. A comparison of the theory with 
simulation results for the equation of state and conformational equilibria of hard 
n-alkane models showed excellent agreement [28]. Therefore, good equations of state 
are now available for hard flexible models. This is an important intermediate step in 
the development of perturbation theories for flexible models. The next step in the 
area of flexible molecules is the incorporation of attractive forces, probably within a 
perturbation scheme. However, this is not without problems. In our treatment of 
hard n-alkanes [27] we regard the alkane as a multicomponent mixture in chemical 
equilibrium (i.e., all the components have the same chemical potential). When 
considering the chemical potential of each component, intramolecular energies (those 
arising from the torsional potential) and intermolecular forces are taken into account. 
The components of the mixture are just the conformers of the n-alkane, defined within 
the rotational isomeric state (RIS) approximation [29]. Within this theoretical 
framework, perturbation theories of mixtures are needed. The problem arises from 
the fact that, in the case of n-octane for instance, the system is regarded as a 
multicomponent mixture of 31 different conformers [27]. It is clear that developing 
a perturbation theory for such a mixture, in which each component presents a 
considerable anisotropy, appears now as a formidable problem. 

In this work we take a less ambitious approach. We have recently proposed a 
perturbation theory (PT) for rigid molecules of any shape interacting through the 
Kihara potential [19]. Comparison with simulation revealed the main deficiency of 
the theory and an improved version of the theory was proposed [30]. This improved 
perturbation theory (IPT) has been applied to the determination of the vapour-liquid 
equilibria of linear Kihara models. Theoretical predictions of vapour-liquid equilibria 
were compared with simulation results obtained from Gibbs ensemble simulations 
and agreement was found to be excellent [13]. In this work the theory is applied to 
a nonlinear molecular model. A simple model of propane is considered. Theoretical 
predictions of the vapour-liquid equilibrium are compared with simulation results. 
The purpose now is to show that the theory is successful, not only for linear models 
but for nonlinear ones as well. Therefore, the vapour-liquid equilibria of the different 
conformers of n-alkane molecules, treated as pure substances, will be considered. The 
kind of questions we would like to ask are: does the vapour-liquid equilibrium of 
gauche-butane differ from that of trans-butane? Do they have a different critical 
temperature? The interest in answering these questions is twofold. First, the properties 
of real butane must be related to those of the two conformers constituting butane. 
For instance, in chemical engineering approaches, mixtures are commonly described 
using the equation of state of a pure fluid and the parameters are obtained from 
certain mixing rules. To apply this procedure to vapour-liquid equilibria the equation 
of state of each component must be known. Experimentally, it is not possible to 
isolate a fluid made up of only trans-butane or only gauche-butane molecules. 
Butane in nature is always a mixture of these two conformers. However, in theoretical 
treatments trans-butane and gauche-butane c a__n be considered as pure fluids and the 
information required to apply the mixing rules can be obtained. Second, answer- 
ing these questions may help one to assess how to simplify the formidable problem of 
the theoretical determination of the vapour-liquid equilibria of n-alkanes. 

The scheme of this paper is as follows. In section 2 the perturbation theory applied 
in this work is briefly described and a method of obtaining critical properties from 
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Figure 1. The cores used in this work for (a) propane, (b) trans-butane, and (c) gauche-butane. 
The angle between the bonds is 109.5 °. In (c) the C-C bond on the right hand side is 
out of the plane of the paper. 

perturbation theory treatments is proposed. In section 3 results of the theory for the 
vapour-liquid equilibria of propane and n-alkane conformers are given. In section 
4 the main conclusions are presented. 

2. Theory 
To describe the interaction between a pair of molecules we use the Kihara 

potential [31]: 

u = 4~[(alp) 12 - (alp)6], (1) 

where ~ is the absolute value of the potential at the minimum, a is the distance where 
the potential is zero and p is the shortest distance between the molecular cores. The 
cores used to describe propane, trans-butane and gauche-butane are shown in figure 
1. The core is formed by rods defining the C-C  bonds of the n-alkane. The internal 
angle between rods is set to 109.5 °, and the bond length is given by L* = l/a = 0-4123 
where 1 is the C C bond length. In order to evaluate the pair potential in equation 
(1) p must be calculated. In the case of propane we compute the shortest distance 
between each rod of molecule 1 and each rod of molecule 2. Since each molecule of 
propane is made up of two rods, we compute four shortest distances. The smallest 
among them defines the value of p in equation (1). For  longer molecules we proceed 
in an analogous way. A very efficient algorithm for computing the shortest distance 
between a pair of rods is available [32]. 

In this work we use our improved perturbation theory. This IPT was proposed 
in [30] as an improvement over the theory described in 119]. Further details 
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concerning the theory may be found in the appendix, and here we outline only the 
main features. In this IPT the pair potential is divided into a reference part, containing 
the repulsive forces, and a perturbation part, containing the attractive forces. 
Perturbation terms up to second order are considered. The reference system is related 
to a hard non-spherical body through the 'blip function' methodology [33]. The free 
energy of the hard body is obtained from the equation of state of hard non-spherical 
particles [34]. The structure of the reference system is approximated by zero-order 
reference averaged Mayer (RAM) function theory [35] for the background correlation 
function. The structure of the RAM system is obtained by solving the Percus-Yevick 
equation. Finally, an empirical correction is introduced into the first-order perturba- 
tion term. Except for the final (but crucial) empirical correction to A1, IPT is just 
the extension to Kihara fluids of the perturbation theory proposed by Fischer [3]. 

IPT has been applied to the determination of the vapour-liquid equilibria of 
linear Kihara models. Comparison with Gibbs ensemble results was performed in 
[13]. This comparison showed that the IPT provides excellent predictions of 
coexistence densities and vapour pressures whenever T/T~ is less than 0"8, where Tc 
is the critical temperature of the model. However, at higher temperatures the 
agreement deteriorates. In fact, the critical temperature from IPT is too high by about 
15~o. A similar deviation has been found by other authors when using perturbation 
theories to estimate the critical temperature of several models [4, 6]. The reason for 
that failure is the mean-field character implicit in the perturbation treatment. In that 
respect it may be concluded that perturbation theories are not especially useful for 
an accurate determination of the critical point of a fluid. Rigorously speaking, the 
only way to overcome this situation is to improve the theoretical treatment around 
the critical region. However, if one is interested in an accurate estimate of the critical 
point based on PT results we shall show how a simple extrapolation procedure yields 
quite accurate results. We shall describe this procedure briefly. 

The vapour-liquid equilibrium is obtained with IPT for temperatures satisfying 
T/T~ < 0.8. The coexistence densities obtained in this way are fitted to the rectilinear 
diameters law [36], including a quadratic term in T: 

(n* + n*)/2 = A + BT* + C T  .2, (2) 

where n* and n* are the coexistence reduced number densities of the liquid and gas, 
respectively. The reduced density is defined as n* = na a, where n is the number density 
and T* = T/(E/k). The difference in the density between liquid and gas phases is fitted 
by assuming that the critical exponent f l - -~  [37] is valid even for temperatures 
relatively far from the critical point: 

(n* -- n*) = O(1 - TITs) 1/3. (3) 

By fitting the IPT vapour-liquid equilibrium results for T/T~ < 0"8 to equations 
(2) and (3), the parameters A, B, C, D, T~ are determined. Therefore, an estimate of 
the critical point temperature and density is obtained from the fit of equations (2) 
and (3). Within the same spirit the theoretical vapour pressures for T/T~ < 0.8 are 
fitted to the expression 

In p* = e o + ex(1/T*) + e2(1/T*) 2, (4) 

where p* = p/(r 3) is the reduced vapour pressure for a given temperature, The use 
of equation (4) provides an estimate of the critical pressure. Note that equations (2) 
and (3) are commonly used in order to estimate the critical point from Gibbs 
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ensemble data [38]. However, in this work we fit equations (2) and (3) by using 
coexistence data for T/T~ < 0.8 whereas in the Gibbs ensemble methodology they are 
commonly fitted in the range 0.8 < TIT  c < 1. The procedure proposed here will be 
successful only if two conditions are satisfied simultaneously. The first is that IPT 
theory should describe correctly the vapour-liquid equilibria of the model for 
T/T~ < 0.8, We know from previous work that this condition is indeed satisfied. The 
second condition is that the global shape of the vapour-l iquid coexistence should 
be described by the critical exponent p = ~. This is not obvious, since equation (3) 
holds rigorously only in the proximity of the critical point, and there is no a priori 
reason why it should hold far away from the critical point. This procedure for 
obtaining the vapour-l iquid equilibrium for T/T~ < 0"8 from IPT and then extra- 
polating to the critical point by using equations (2)-(4) will be denoted as IPTE. All 
theoretical results described in this work were obtained with IPTE. 

3. Results 

In table 1 the critical point properties of linear Kihara models obtained from 
IPTE are compared with those obtained from simulations. Agreement is quite good. 
The conclusion from the results of table 1 is that perturbation theory results (accurate 
at low temperatures) can be used to obtain a reasonable estimate of the critical point 
of a fluid. The success of IPTE methodology is due to the fact that equation (3) 
provides a very good description of the vapour-l iquid envelope even far from the 
critical point. The reason for that is not known since equation (3) should hold only 
in the neighbourhood of the critical point. However, it is found that equation (3) fits 
the vapour-l iquid equilibrium data of many real substances [39] and of many 
molecular models [40] quite well over the whole liquid range. For  our purposes the 
main conclusion of the results presented in table 1 is that perturbation theory results 
can be used to obtain estimates of the critical point in quite good agreement with 
simulation. 

Table 1. Critical properties of different Kihara models. Results are given in reduced units. 
Gibbs ensemble results are labelled as MC and critical estimates obtained from IPT 
plus the extrapolation scheme are labelled as IPTE. MC results of linear molecules are 
taken from 1-13-1. The trans conformer is denoted as t, and the gauche conformer is 
denoted as g. The reduced length is defined as L* = l/a where I is the length of the rod 
in the case of the linear models and the length of the bond for the n-alkane models. 

Model L* Method T* n~* p* 

Linear 0-3 MC 1" 114 0-219 0"073 
Linear 0"3 IPTE 1" 147 0"219 0"080 
Linear 0-6 MC 1-000 0-161 0.051 
Linear 0.6 IPTE 1"029 0.169 0.053 
Linear 0.8 MC 0"952 0.140 0"038 
Linear 0.8 IPTE 0.973 0-138 0.039 
Propane 0.4123 MC 0"942 0.139 0"037 
Propane 0.4123 IPTE 0.953 0"140 0-039 
t Butane 0.4123 IPTE 0.894 0.110 0.029 
g Butane 0-4123 IPTE 0"946 0.112 0-037 
tt Pentane 0.4123 IPTE 0.859 0-0937 0.025 
tg Pentane 0.4123 IPTE 0-885 0-0934 0.032 
gg Pentane 0.4123 IPTE 0"952 0.0945 0-036 
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IPT theory was developed for molecules of any shape [19, 30]. However, so far 
it has been tested only in the case of linear Kihara models [13]. A check of the theory 
for a molecular nonlinear model seems interesting. For that purpose an angular model 
of propane interacting through the Kihara potential equation (1)) was chosen. The 
core is shown in figure 1. The vapour-liquid equilibrium for this model was obtained 
from IPTE. To assess the quality of the theoretical results Gibbs ensemble simulations 
were performed. Gibbs ensemble simulations allow a direct determination of the 
vapour-liquid equilibrium. The technique was proposed by Panagiotopoulos, and 
we refer the reader to [41] for a description of the methodology. Details of the Gibbs 
ensemble simulations performed in this work are similar to those of our previous 
studies [13, 14]. We used 512 molecules, 4000 cycles for equilibration and 6000 cycles 
for running averages. The pair potential was truncated at r = 3tr, where r is the 
distance between the centres of mass of the molecules, and long tail corrections to 
the thermodynamic properties were included according to the procedure of [42]. The 
code was checked by comparing internal energies and pressures at some selected 
points with those obtained in a previous molecular dynamics study of propane [42]. 
Excellent agreement between the two kinds of simulation was found. At low 
temperatures the application of the Gibbs ensemble technique failed. The reason for 
this failure is that the insertion of particles in the liquid becomes very difficult when 
the density is high. At low temperatures the vapour pressure is very small and 
therefore the orthobaric density is very close to the zero pressure density of the liquid. 
For T* = 0.4 and 0.5 we performed N V T  Monte Carlo simulations and determined 
the density of the liquid at which the pressure becomes zero. A similar procedure 
was used in [13]. Results from Gibbs ensemble simulations are presented in table 2. 

In figure 2 (a) the coexistence densities obtained from simulation and from IPTE 
are shown. Figure 2 (b) presents a similar comparison for vapour pressures. In both 
cases the agreement between theory and simulation is remarkably good. Critical 
points as obtained from simulation and from IPTE are compared in table 1. The 

Table 2, Gibbs ensemble results of the vapour-liquid equilibria of a Kihara model of 
propane. The subscript g refers to gas phase results and subscript 1 to liquid phase 
results. Numbers in parentheses show the uncertainty of the simulation results: 
0"3688(28) means 0.3688 + 0"0028. 

r* nl n~ pl p~ 

0"6 0.00311(11) 0.3688(28) 0-00175(6) - 0-015(22) 
0"65 0"00467(19) 0-3522(46) 0"00282(11) -0-014(24) 
0"675 0"00695(46) 0-3450(43) 0"00421(25) - 0"013(20) 
0"7 0"00946(35) 0"3376(41) 0.00580(22) - 0"003(16) 
0-725 0"01040(85) 0-3255(32) 0-00656(51) - 0"013(19) 
0"75 0-01333(58) 0"3173(65) 0-00844(34) -0"005(21) 
0-775 0"0187(12) 0"3089(47) 0"01157(63) -0"002(15) 
0-8 0"0212(14) 0-2943(66) 0"01332(71) 0-003(17) 
0-825 0"0260(10) 0-2847(80) 0-01626(61) 0-008(15) 
0"85 0"0313(12) 0"269(11) 0"01953(70) 0.013(19) 
0-86 0"034(19) 0-256(13) 0"02092(86) 0-014(18) 
0"87 0"0410(48) 0"263(14) 0"0238(18) 0-020(22) 
0"875 0-0424(15) 0"260(12) 0-0246(11) 0"022(21) 
0"89 0"0516(27) 0"245 (15) 0"0284(17) 0"021 (18) 
0"9 0"0506(43) 0"227(15) 0"0289(17) 0"025(13) 
0-9 if0531 (25) 0"247(19) 0"0295(14) 0"030(26) 
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Figure 2. Vapour-liquid equilibrium of a Kihara model of propane as obtained from 
simulation (circles) and from perturbation theory with the extrapolation methodology 
explained in the main text (solid curve). (a) Coexistence densities. The critical point 
from IPTE is represented by an open square and from simulation by an open circle. 
The orthobaric densities at 7"* = 0.4, 0-5 are the zero pressure densities as obtained from 
NVT simulations. (b) Vapour pressures. The highest value of I/T* corresponds to the 
triple point temperature of real propane. 

agreement is again quite good. Two conclusions can be drawn immediately from 
these results. The first is that IPT  works for angular molecules as well as it does for 
linear models. The second is that, although the critical temperature obtained directly 
from IPT  is about 15~ too high, when IPTE is used then very good estimates of the 
critical point and coexistence properties at high temperatures are obtained. In fact, 
IPTE overestimates the critical temperature by only 2~.  

The results presented in figure 2 for propane suggest that IPTE will provide good 
results for the vapour-l iquid equilibria of complicated molecules, as for instance the 
conformers of an n-alkane fluid. We have applied IPTE to determine the vapour -  
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Figure 3. Vapour-liquid equilibria of n-butane conformers as obtained from IPTE: trans- 
butane (solid curve) and gauche-butane (dashed curve). Results are given in reduced 
units. (a) Coexistence densities. (b) Vapour pressures. 

liquid equilibrium of trans-butane treated as a pure fluid, trans-Butane molecules 
interact through the Kihara potential of equation (1) and the core is illustrated in 
figure 1 (b). The same treatment was applied to gauche-butane treated as a pure fluid, 
and the core is shown in figure 1 (c). Vapour-liquid coexistence densities of trans- 
and gauche-butane are shown in figure 3 (a). The orthobaric density of gauche-butane 
at a given temperature is larger than that of trans-butane. However, at low 
temperatures the orthobaric densities of trans- and gauche-butane are almost 
identical. The vapour pressure of trans- and gauche-butane are shown in figure 3 (b). 
For a given temperarure gauche-butane has a lower vapour pressure than trans- 
butane. Differences in vapour pressures are smaller than those found for the 
coexistence densities. 

The critical constants of trans- and gauche-butane are shown in table 1. The 
critical temperature of gauche-butane is higher than that of trans-butane, while the 
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critical densities are almost identical. The critical pressure of gauche-butane is higher 
than that of trans-butane owing to its higher critical temperature. The questions 
raised in the introduction of this work are now answered, trans- and gauche-Butane 
differ in their vapour-liquid equilibria and in their critical point. Taking ~/k = 480 K 
(which brings the reduced critical temperatures of butane conformers into reasonable 
agreement with the experimental critical temperature of butane [43]) as a reasonable 
estimate of ~ for butane it may be concluded that the critical temperature of 
trans-butane is about 25 K lower than that of gauche-butane. The volumes of trans- 
and gauche-butane models are almost identical [27] (although slightly smaller for 
the gauche conformer). The difference in volume between the two conformers does 
not therefore explain differences observed in figure 3. Differences in properties arise 
from differences in shape between the two conformers. A measure of the anisotropy 
of a given molecule is given by the non-sphericity parameter ~, defined as [44] 

B'~/V. = 1 + 3~,  (5)  

where B~ is the second virial coefficient of a hard molecule with the shape of the 
molecule and V a its volume, trans-Butane has a larger value of ~ than gauche-butane. 
For tables showing the differences in volume and ~ of different hard n-alkane 
conformers see [27] (the hard models used there are slightly different from those of 
this work but the differences are very small). As a general rule, the more anisotropic 
is a molecule the lower is the reduced critical temperature T*. This rule is in 
agreement with the decrease of T* with L* found in linear Kihara models, and with 
the lower critical temperature of trans-butane when compared with gauche-butane 
(see table 1). In figure 4(a) a corresponding states plot of coexistence densities of 
butane conformers is presented. The larger anisotropy of the trans conformer (larger 
value of ~) broadens the coexistence densities when represented in a corresponding 
states form. A corresponding states plot of the vapour pressures is shown in 
figure 4 (b). The slope of the vapour pressure curve of trans-butane is larger (in 
absolute terms) than that of gauche-butane. From our study of linear molecules [13] 
we know that molecular anisotropy increases the slope of the vapour pressure curve 
in a corresponding states plot. The results of figure 4 (b) are in agreement with this 
fact, because the anisotropy of trans-butane is larger than that of gauche-butane. The 
acentric factor [45] is related to the slope of the curves presented in figure 4 (b). It 
is clear from this figure that trans- and gauche-butane have a different acentric factor, 
being smaller for the gauche conformer. In chemical engineering applications the 
acentric factor is thought to be related to the anisotropy of the molecule [43, 45]. It 
is gratifying to find that our results assign a larger acentric factor to trans-butane in 
agreement with the intuitive idea that trans-butane is more anisotropic than the 
gauche conformer. 

In order to check whether the conclusion obtained from the study of butane 
extend to longer n-alkanes we considered the case of n-pentane. Within the RIS 
approximation, n-pentane is made up of three different conformers: trans-trans (tt), 
trans-gauche (tg), and gauche-gauche (gg). The gauche +-gauche - conformer was not 
considered since its population in n-pentane is very small due to the so-called 'pentane 
effect' [29]. Vapour-liquid equilibria of the three conformers of n-pentane obtained 
from the IPTE approach are shown in figure 5. Critical properties are presented in 
table 1. The highest critical temperature (see figure 5 (a) is that of the gg conformer 
and the lowest corresponds to the tt conformer. This is in agreement with the rule 
relating anisotropy to T*. At low temperature orthobaric densities are almost the 
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Figure 4. Corresponding states plot of the vapour-liquid equilibria of n-butane conformers 
as obtained from IPTE: trans-butane (solid curve) and gauche-butane (dashed curve). 
(a) Coexistence densities (symbols correspond to experimental data of butane 1-54]). (b) 
Vapour pressures. 

same for all of the conformers. Taking E/k = 523 K as a reasonable estimate of e for 
n-pentane (this approximately reproduces the experimental critical temperature of 
n-pentane [43-1) then the critical temperatures of the tt  and gg conformers differ by 
about 50 K. In figure 5 (b) vapour pressures of the three conformers of n-pentane are 
shown. For  a given reduced temperature the vapour pressure of the gg conformer is 
lower than that of the tg and tt  conformers. In figure 6 corresponding state plots of 
the coexistence densities and vapour pressures of the conformers of n-pentane are 
shown. The behaviour of the tg conformer is intermediate between that of the tt  and 
gg conformers. This is expected since the anisotropy of the tg conformer is 
intermediate between those of the tt  and gg conformers. In figure 6 (b) it can be seen 
that the largest slope (in absolute value) of the vapour pressure curve corresponds 
to the tt  conformer and the smallest to the gg conformer. The difference in acentric 
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Figure 5. Vapour-liquid equilibria of the different conformers of n-pentane as obtained from 
IPTE: results for tt (solid curve), t# (dashed curve), #0 (short dashed curve) conformers. 
(a) Coexistence densities in reduced units. (b) Vapour pressures. 

factors between the tt and gg conformers calculated from our theoretical results is 
about 0.13. This is a significant difference taking into account that the experimental 
acentric factor found for n-pentane is about 0-25 [43-1. 

Finally, we have considered differences in the second virial coefficient of n-alkane 
conformers. The second virial coefficient B 2 of a non-spherical molecule is given by 

B 2 -- --�89 f [<exp (--u(r,  o91, o92)/(kT))> - 1]4/tr 2 dr, (6) 

where r is the distance between the centres of mass of the two molecules and ogi 
denotes the set of angles which define the molecular orientation of molecule i. The 
pointed brackets in equation (6) stand for the geometrical average over all the relative 
orientations. In evaluating B 2 we used the Kihara potential with the cores shown in 
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Figure 6. Corresponding states plot of the vapour-liquid equilibria of the different con- 
formers of n-pentane as obtained from IPTE: results for tt (solid curve), tg (dashed 
curve), and gg (short dashed curve) conformers. (a) Coexistence densities. Open circles 
correspond to Gibbs ensemble simulation results of a site-site model of n-pentane [50]. 
Squares are experimental data for n-pentane [55]. (b) Vapour pressures. 

figure 1. When the core is a convex body, equation (6) can be integrated analytically 
[46]. However, the cores used in this work (see figure 1) are not convex and equation 
(6) must be computed numerically. To obtain the average of the bracketed terms in 
equation (6) we used Conroy's method with 4822 different relative orientations [47]. 
The Simpson rule was used for integration over r. The estimated uncertainty of our 
calculations for B 2 is of about 1~. In table 3 the computed second virial coefficients 
of trans- and gauche-butane are shown. At low temperatures, B2 of trans-butane is 
lower than that of gauche-butane. At high temperatures the opposite is true. 
Differences in B2 between the two conformers of butane are small. In figure 7 the 
second virial coefficient of these two conformers is plotted, clearly showing that the 
two conformers present similar values of B 2. The Boyle temperature (the temperature 
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Table 3. Second virial coefficient B 2 of the trans (t) and gauche (g) conformers of n-butane. 
The second virial coefficient has been computed with the Kihara potential of equation 
(1) and the cores shown in figure 1. B2 is given in 0-3 units. 

B2 

T* t g 

0.4 - 53.47 - 51.81 
0.6 -21.96 -21.30 
0-8 - 11-96 - 11.61 
1.0 -7.17 -6.97 
1.4 -2.57 -2.51 
1-6 - 1.30 - 1.28 
1.8 -0.37 -0-38 
2-0 0.35 0-32 
2.2 0.91 0.86 

where B 2 is zero) is almost the same for both conformers. We analysed B2 for the 
n-pentane conformers and similar conclusions were drawn. We conclude that B 2 for 
the different conformers of an n-alkane are similar. The reason is that B2 is given by 
an orientational average (see equation (6)) so that the differences in shape between 
conformers are lost after averaging. The fact that B2 is similar for the different 
conformers of an n-alkane has an important consequence: the second virial coefficients 
of n-alkane models will not be very sensitive to changes in the torsional potential. 
The torsional potential defines the relative populations of each conformer in the gas 
phase. Different populations will result in similar values of the second virial coefficient 

B2 
- 5 -  

- 1 0 -  

- 15 -  

- 20 -  

- 2 5  
0.4 

J 

J 

. , . . . . . - - J  

0.19 F I 1,4 1,9 2.4 

T* 
Figure 7. Second virial coefficient B 2 of n-butane conformers obtained from numerical 

integration of equation (6). Both conformers were modelled with the Kihara potential 
and the cores shown in figure 1. The results for B2 are shown in 0 -3 units, trans-Butane 
(solid curve), gauche-butane (dashed curve). 
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since the second virial coefficients of the different conformers are similar. The fact 
that the second virial coefficient of an n-alkane model is not very sensitive to changes 
in the torsional potential was noted before [48, 49]. The results in table 3 provide 
an explanation of this earlier finding. 

So far we have focused on the differences in vapour-liquid equilibrium, critical 
constants and second virial coefficients of short n-alkane models. What can be 
expected for longer chains? Differences in a between the all-trans conformer ( t t . . .  ttt) 
and the all-gauche conformer ( g g . . .  ggg) are of about 0-05, 0.10, and 0.25 in the case 
of n-butane, n-pentane, and n-octane, respectively [27]. Consequently, the difference 
between T* of the all-gauche and all-trans conformers will increase with the number 
of carbons of the n-alkane. It is also clear that the difference between these two 
conformers in corresponding states plots such as those presented in figures 4 and 6, 
will increase with the length of the chain. One could expect that properties of the 
n-alkane should be intermediate between those of these extreme conformers. For 
instance in figure 6 it is observed that the behaviour of the tg conformer is 
intermediate between that of the tt and gg conformers. That could open a new 
theoretical route for dealing with n-alkanes. It may be possible to choose a conformer 
for each n-alkane whose anisotropy is intermediate between that of the all-trans and 
the all-gauche conformers, and that approximately represents the behaviour of the 
real n-alkane. That being the case the formidable problem of developing a perturbation 
theory for a multicomponent system with a very large number of conformers could 
be replaced by the problem of developing a perturbation theory for a simple con- 
former representative of the 'average shape' of the n-alkane. In order to test this 
assumption, the vapour-liquid equilibria of the different conformers of the n-alkane, 
and the vapour-liquid equilibrium of the n-alkane (where all the conformers are 
present) should be compared. A good molecule where these ideas could be tested is 
n-pentane. According to our discussion the vapour-liquid equilibrium of n-pentane 
should be intermediate between that presented by the tt and gg conformers. If our 
assumption is correct, then the tg conformer could provide a good representation of 
the vapour-liquid equilibrium of n-pentane. Simulation results for a Kihara model of 
n-pentane, where the tt, tg, and gg conformers are present simultaneously in the 
liquid and gas are not yet available. However, quite recently Smit, Karaborni and 
Siepmann [50] have reported Gibbs ensemble results of a site-site model of 
n-pentane, where all the conformers appear in the coexistence phases. It is not possible 
to compare directly the results of the Kihara model with results of the site-site model 
since the pair potential is different. However, they can be compared in a corresponding 
states form. Such a comparison is shown in figure 6 (a). Vapour-liquid equilibria of 
the tt, tg, and gg conformers modelled with the Kihara model are shown. The 
vapour-liquid equilibria for those conformers are obtained from IPTE. Open circles 
correspond to the Gibbs ensemble simulation results of n-pentane modelled with the 
gite-site potential obtained by Smit, Karaborni and Siepmann 1-50]. The interesting 
result of figure 6 (a) is that the simulation results for the n-pentane system are between 
these of the tt and go conformers, and very close to those of the tg conformer. The 
filled squares in figure 6 (a) correspond to experimental results of the vapour-liquid 
equilibria of n-pentane. Again, the experimental data of n-pentane are close to the 
results obtained for the tO conformer. These results support our suggestion that the 
vapour-liquid equilibrium of an n-alkane can be described by choosing a representa- 
tive conformer and taking it as a pure fluid. As another independent test, in figure 
4 (a) experimental results of the vapour-liquid equilibria of n-butane are included in 
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Figure 8. Vapour-liquid equilibria of n-butane as obtained from experiment [54] (symbols), 
and from IPTE (solid curve). For the IPTE approach, n-butane is modelled as the trans 
conformer interacting through the Kihara potential. Temperatures are given in K. (a) 
Coexistence densities in tool din-3. (b) Vapour pressures in MPa. 

a corresponding states form. It is found that the experimental results for n-butane are 
intermediate between those for the trans and gauche conformers. For butane there 
is no intermediate conformer between the trans and the gauche forms (at least within 
the RIS approximation), but since experimental data are very close to the results of 
both conformers that suggests that a good description of n-butane may be obtained 
if it is modelled as a pure trans (or as pure gauche) fluid. 

In figure 8 experimental results of the vapour-liquid equilibrium of n-butane are 
compared with the results of IPTE theory from this work for the trans conformer of 
n-butane interacting through the Kihara potential. The parameter e and a of the 
Kihara potential were obtained by fitting the orthobaric density and vapour pressure 
obtained from the theory at T = 320 K to the experimental results. The parameters 
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obtained in this way are Elk --- 488.98 K and tr = 3-6378 A. The agreement between 
experiment and theory for the coexistence densities (figure 8 (a)) and vapour pressures 
(figure 8 (b)) is quite good from the triple point up to the critical point. The results 
of figure 8 show that the vapour-liquid equilibrium of n-butane can be described 
accurately by considering the vapour-liquid equilibria of only one of the conformers. 

4. Conclusion 

In this work our improved perturbation theory of Kihara fluids [30] has been 
tested for a nonlinear model. We have considered an angular model of propane. 
Gibbs ensemble simulations were performed in order to obtain the vapour-liquid 
equilibrium of this model. Perturbation theory provides very reliable predictions of 
vapour-liquid equilibrium for T/Tr less than 0.8 and breaks down for larger 
temperatures. We use an extrapolation procedure that allows an accurate estimate 
of the critical properties by using the low-temperature perturbation theory results. 
Thus, the coexistence properties obtained in this way in the range T/T~ = 0.8-1 are 
also quite good. When perturbation theory results are used in this way, predictions 
of the vapour-liquid equilibrium agree quite well with the simulation results for all 
of the liquid range. The success of the theory for the model of propane suggests that 
the theory will be equally successful for treating other anisotropic models of nonlinear 
shape. 

Following this approach we have considered the case of butane. The vapour-liquid 
equilibria of trans- and gauche-butane treated as pure fluids were obtained with the 
theory, trans- and gauche-butane differ in their vapour-liquid equilibria. The critical 
temperature of gauche-butane is larger than that of trans-butane by about 6~. 
However, differences in the second virial coefficient between these two conformers 
are small. We also obtained with the theory the vapour-liquid equilibria of the 
different conformers of n-pentane. The critical temperature of the tt conformer is 
much lower than that of the go conformer. We conclude that when the anisotropy 
of the molecule, as given by the non-sphericity parameter ~, increases, the reduced 
critical temperature decreases. The more anisotropic conformers present larger 
deviations from the principle of corresponding states, and this is shown in coexistence 
densities and vapour pressures. 

The modelling of the n-alkane as a multicomponent system which can be treated 
by using perturbation theories of non-spherical mixtures constitutes a formidable 
problem. It would be quite useful if the problem could be simplified somewhat. Results 
of this work suggest that the vapour-liquid equilibrium of the n-alkane could be 
obtained from that of a representative conformer treated as a pure fluid. This 
representative conformer should present an anisotropy intermediate between that of 
the all-trans and that of the all-gauche conformers. This suggestion seems to be 
confirmed for n-butane and n-pentane. Experimental results for the vapour-liquid 
equilibria of n-butane fall in a corresponding states plot between those of the trans 
and gauche conformers. For n-pentane, the simulation results of Smit, Karaborni 
and Siepmann [50] for a site-site model fall very close to the theoretical results 
obtained for the tO conformer when plotted in a corresponding states form. 

The idea of treating the n-alkane system as a pure fluid with a fixed shape is not 
new. In their study of the methane + n-pentane mixture, de Pablo et al. [20] explored 
the possibility of substituting the n-pentane molecule by a rigid model. Pavlicek and 
Boublik [51] have also described the behaviour of an n-alkane fluid by taking an 
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equivalent spherocylinder. In this work it is shown that good results can be obtained 
for short n-alkanes by considering only one conformer. For longer chains it may be 
necessary to include several conformers (probably those with the largest population). 
That would still be useful since, for instance in the case of n-octane, the problem of 
the multicomponent system (31 different conformers) could be reduced to the problem 
of a few conformers. 

Before finishing we would like to stress that the main conclusions of this work 
are not limited to Kihara models. We believe that they will hold also, at least 
qualitatively, for other potential models of n-alkanes. In support of this view is the 
fact that, for linear molecules, the trends of the vapour-liquid equilibria with changes 
in molecular elongation and/or polarity are similar, regardless of whether the Kihara 
or the multi-site model is chosen to describe the pair potential [13-16, 38]. 

This work has been supported financially by project PB91-0364 of the DGICYT. 
One of us (B.G.) would like to thank Universidad Complutense by the award of a 
pre-doctoral grant. 

A p p e n d i x  

This appendix presents the main details of the perturbation theory (PT) and of 
its improved version (IPT). 

In PT the pair potential u is divided into a reference u o and a perturbation term 
u 1 according to the prescription first suggested by Mo and Gubbins [52]: 

uo(r  , fD1,0)2) = u(r,  (.01, (.02) --  Umin(0)l, 0)2) r < rm, (m 1) 

uo(r, 0)1,0)2) = 0 r > rm, (A 2) 

where rm is the distance between the centres of mass of the molecules at which the 
minimum in the pair potential appears for the relative orientation given by ~o: and 
0)2. The value of the potential at the minimum at a given relative orientation is 
denoted as Umi.(0)l, 0)2)" According to equations (A 1) and (A 2), repulsive forces are 
incorporated into the reference system. The prescription of equations (A 1) and (A 2) 
may be considered as the extension to molecular fluids of the division of the potential 
first proposed for atomic fluids by Weeks, Chandler and Andersen [53]. 

When the prescription of equations (A 1) and (A2) is applied to the Kihara 
potential (see equation (1) of the main text) then u o is given by 

Uo(p) = u(p) + • p < 21/60 - (A 3) 

Uo(p) = 0 p > 21/60-. (A4) 

The perturbation potential u 1 is obtained as u 1 = u - Uo. The residual Helmholtz 
free energy of the Kihara fluid A is now expanded about the reference system to 
obtain up to second order: 

A A o A 1 A 2 
- + + - - .  ( A  5) 

NkT NkT NkT NkT 

To evaluate the perturbation terms the structure of the reference system as given by 
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the pair correlation go(r, cot, co2) is needed. This function is approximated as 

fro(r, cot, c02) = exp (--fluo(r, cot, CO2))YRAu(r), (A 6) 

where fl = 1/kT, and YRAU(r) is the background correlation function of the spherical 
RAM potential ~RAM(r) which is defined as 

exp ( - - f lORAM(r))  = (exp (--fluo(r, col, 0)2))), (A 7) 

where the pointed brackets stand for unweighted orientational average. This orienta- 
tional average is obtained numerically for a given value of r by using the Conroy 
integration method [47]. The background correlation function of the RAM potential 
~bl~AU(r) is obtained by solving the Ornstein-Zernike equation with the Percus- 
Yevick closure. 

The residual free energy of the reference system Ao is taken as that of a 
corresponding hard body A n whose diameter at every temperature and density is 
obtained by setting to zero the first order term of the blip expansion [33]: 

f ( e x p  (-f lUo) - exp (--flUH))YRAM(r) dcot  d(-o2 = 8) dr 0. (A 

The term within the parentheses in equation (A 8) is denoted as the 'blip function'. 
The residual free energy of the hardbody An is obtained from integration of the 
equation of state of hard bodies proposed by Boublik [34]. Therefore, AH is given by 

AH y(Cl + C2y) 
- -  - + c 3 In  (1 - y ) ,  ( A  9 )  
NkT (1 - -  y)2 

where the constants Cl, c2, and c 3 are given by ct = 6~ 2 - 2~, c 2 = 1.5a(3 - 5~) and 
c a = 6~ 2 - 5~ - 1. The non-sphericity parameter a is defined by equation (5). The 
packing fraction y is defined as 

y : /'/VH, (A 10) 

where V H is the volume of the equivalent hard body. 
When the structure of the reference fluid is approximated by equation (A 6), the 

first order perturbation term A t is given by 

fo A t / N  = 2ng (u t exp (--flUo))YaAM(r)r 2 dr. (A 11) 

The second order perturbation term A 2 is obtained from an extension to molecular 
systems [5] of the macroscopic compressibility equation. The final expression is then 

A 2 _ ~n (t~n~ f (u 2 exp (--flUo))YRAM(r)r 2 dr (A 12) 
N k T  ~ \ ~ P J o  

where (~n/t~p) o is the isothermal compressibility of the reference system, which can 
be obtained easily from the equation of state of the reference system. Equations 
(A 1)-(A 12) constitute the perturbation theory which will be denoted as PT. This 
perturbation theory can be applied to any pair potential. Fischer, who first proposed 
this theory [3] (with some minor changes), applied it to a site-site diatomic model. 
Lustig [17] applied to propane and other nonlinear molecules interacting through 
site-site potentials, and finally we have applied it to Kihara models [19]. The main 
defect of the theory is the neglect of ofientational structure in the background function 
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of the reference system Yo(r, o~x, 092) which, within the context of the theory, is 
approximated by YRAM(r). This is true for site-site models as well as for Kihara 
models. The neglect of orientational structure of the Yo function results in an error in 
the evaluation of A1 [19]. The error in A1 increases with the anisotropy of the 
molecule [30], and it is expected to be important for the anisotropies of some of the 
conformers treated in this work. A correction for this PT theory is needed if accurate 
predictions (when compared with simulation) of vapour-liquid equilibrium are 
required. Such a correction has been obtained in the case of the Kihara model. For 
Kihara models we have compared A~ as obtained from equation (A 11) with A~ as 
obtained from simulations of the reference system. Deviations between theoretical 
(a~ he~ given by equation (A 11)) and simulation (A~ imulati~ values were systematic 
and were fitted to the expression [30] 

AA 1 = 100 
~imulation __ Atlheory 

Asimulation 
1 

= (185.52~ - 188.42)(y - 0-12). (A 13) 

By solving equation (A 13) for A] imulati~ a very precise estimate of the first order 
perturbation term can be obtained by using the theoretical value At1 he~ The PT 
described by equations (A 1)-(A 12) but with a corrected value of A1 obtained 
through equation (A 13) is denot.ed as IPT. At the moment the IPT version of the 
theory is available only for Kihara models, since a correction term such as equation 
(A13) has not yet been reported for site-site models. Therefore, although PT 
(equations (A 1)-(A 12)) can be applied in the same way to site-site or to Kihara 
models, the improved version of the theory (IPT) has been reported only for Kihara 
models. One of the difficulties in proposing an IPT version of the theory for site- 
site models is that simulations of the reference system are quite involved. The reason is 
that for every relative orientation it is necessary to calculate the distance rm at which 
the global potential between a pair of molecules becomes repulsive, and this has to 
be done numerically. However, for Kihara models simulations of the reference system 
can be performed easily since the reference system is defined by the simple expressions 
equations (A 3) and (A 4). The fact that IPT is available for Kihara models whereas 
it is not yet available for site-site models motivated our choice of the Kihara potential 
in describing the interaction between n-alkane conformers. 

The vapour-liquid equilibrium can be calculated from the theory by imposing 
the condition of equal pressure and chemical potential between the gas and the liquid 
phases. For low temperatures it is not necessary to apply perturbation theory to 
describe the gas since the second virial coefficient provides a simple and accurate 
description of the gas phase. Typically, the evaluation of the complete vapour-liquid 
equilibrium curve for a given model requires about 3 min CPU time on any standard 
workstation, so that the theory is not computationally demanding. 

In addition to the perturbation scheme proposed by Fischer [3] which is used in 
this work (improved), other perturbation schemes have been proposed. For convex 
Kihara fluids, Boublik [5] has proposed a perturbation theory which is comparable 
in accuracy with IPT, although in principle it cannot be applied to non-convex 
Kihara models like those used in this work. For site-site potentials the perturbation 
scheme of I-1, 2, 6] can be used also. In those papers the site-site potential is divided 
into a reference term and a perturbation term, and the structure of the reference 
system is obtained from the site-site Ornstein-Zernike equation. Good results of 
vapour-liquid equilibria were obtained for linear molecules with this scheme 
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[15"1, although its ability to describe coexistence properties in nonlinear molecules 
has not yet been tested. 
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