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RESEARCH NOTE

Solid-liquid equilibrium for quadrupolar molecules
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Theoretical calculations are presented of solid—liquid equilibrium for linear
quadrupolar molecules, focusing especially on the ratio of the triple point
temperature to the critical temperature. The proposed treatment uses the hard
quadrupolar dumbbell model as the reference system, and incorporates the effect
of dispersion forces through a mean-field term. The reference system of
quadrupolar hard dumbbells is described using perturbation theory for the liquid
and cell theory for the solid. Good agreement with simulation results of
quadrupolar hard dumbbells is obtained through the theoretical description.
After incorporating attractive dispersion forces, the temperature dependence
of solid-liquid and vapour-liquid equilibrium was studied and the triple point
determined for two linear quadrupolar model systems. The two models were
representative of carbon dioxide and acetylene, respectively. The ratio of the
triple to critical point temperatures determined from the theory was about 07,
in good agreement with experiment.

1. Introduction

During recent years our knowledge of the vapour-liquid equilibria of linear fluids
has increased considerably. Perturbation theories of linear molecules [1-4] and
computer simulations of vapour—liquid equilibrium using such methods as the Gibbs
ensemble [S] have contributed significantly to advances in this area [4, 6, 7]. The
effect of polar forces (i.e. a dipole or quadrupole moment) on the vapour-liquid
equilibrium of spherical [8-107 and linear fluids has also received considerable
attention. It can be said that our understanding of the vapour-liquid equilibria of
linear polar molecules is now quite good [6, 7, 11, 12].

On the other hand, much less is understood about the solid-liquid equilibrium
in such systems, and how this is related to the anisotropy of the intermolecular forces.
The relationship between the vapour-liquid and solid-liquid regions of the phase
diagram is quite sensitive to details of the molecular anisotropy, and this relationship
determines the relative size of the liquid range on the phase diagram. One way of
quantifying this is the ratio of the triple point temperature to the critical temperature
T.,/T.. For instance, for argon, ethane, and carbon dioxide this ratio takes the values
0-55, 0-30, and 0-71, respectively [13]. Evidently this ratio is sensitive to quite modest
changes in molecular structure.
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We have recently considered the problem of determining 7;/7; for linear
molecules. This problem was approached in several steps. First, the fluid—-solid
equilibrium of hard dumbbells was obtained from computer simulations [14-16].
The main conclusion of these studies is that hard dumbbells freeze into a plastic
crystal phase for L* < 0-38, and into a close-packed structure for L* > 0-38. The
reduced length L* is defined as L* = L/o, where L is the bond length and ¢ the
diameter of the interaction site. In a second step, the cell theory of Lennard-Jones
and Devonshire [17] was applied to the description of the solid phase of hard
dumbbells, and good agreement with simulation was found [18]. This theory is less
demanding computationally than simulations, by two orders of magnitude, and is
more accurate quantitatively than the extensions of density functional theory which
have been applied to these systems [19, 20]. The cell theory has also been applied
to studying spherical particles with attractive forces [21]. Finally, the properties of
hard dumbbells were used in a generalized van der Waals theory of solid—fluid
equilibria [22], very similar to that used in the seminal work of Longuet-Higgins
and Widom [23]. The variation of T;/7, with L* obtained from this treatment was
described in [22], and comparison with experimental data was made. Although the
agreement between theory and experiment was not quantitative, trends in the
variation of T/T, with L* predicted by the theory were similar to those seen
experimentally. However, CO, exhibits a rather high value of 7;/7, which cannot be
explained by considering the molecular shape only. In [22] it was conjectured that
incorporation of the quadrupole moment of the molecule is necessary to explain the
value of T/T, found in CO,. A prelininary calculation using a simple treatment of
the effect of quadrupolar forces on the phase yielded a value of 7;/T, in good
agreement with experiment. It was assumed that quadrupole forces stabilize the «-N,
structure instead of the close-packed structure of hard dumbbells. Recently, we have
performed a computer simulation study of the phase diagram of quadrupolar hard
dumbbells [24]. One of the conclusions of this work was that, for sufficiently high
quadrupole moments, the solid phase in equilibrium with the fluid is the a-N,
structure. In this paper the problem of the determination of 7;/T, for linear molecules
with large quadrupole moments is considered on a more rigorous footing than that
used in our earlier work [22]. Our goal is twofold. First, the ability of the cell theory
to describe a quadrupolar hard dumbbell system is tested. Secondly, the van der
Waals-like treatment proposed in [22] is applied to quadrupolar molecules, but with
a more accurate treatment of the solid phase. Theoretical predictions of T;/7, for
carbon dioxide and acetylene are compared with experimental results.

2. Theoretical treatment of the properties of quadrupolar hard dumbbells

To determine the fluid—solid equilibrium of quadrupolar hard dumbbells (HDQ)
a description of the fluid and solid phases is ne=ded. In this work a point quadrupole
will be considered [8]. For the fluid phase we have used a perturbation theory of
HDQ described in [257. The theory is an extension due to Boublik [26] to molecular
fluids of the theory proposed for spherical polar molecules by Pople—Gubbins [8].
In this perturbation theory, the equation of state (EOS) of hard dumbbells is needed,
and the one proposed by Tildesley and Streett has been used [27] (see [25] for further
details). This theory provides the free energy and EOS of the HDQ fluid phase. In
[25] the theory was tested by comparing theoretical predictions with simulations
results of quadrupolar dumbbells with L* = 0-6. Since new simulation data have been
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Figure 1. Equation of state of the fluid phase of quadrupolar hard dumbbells with Q** = 0-5
as obtained from Monte Carlo simulations (symbols) [24], and from perturbation theory
[25] (curves): triangles, L* = 0:8; squares, L* = 0-6; circles, L* = 0-3; solid curve,
L* = 0-8; dashed curve, L* = 0-6; short dashed curve, L* = 0-3. Pressures and densities
are reduced as in [24].

obtained recently for quadrupolar hard dumbbelis [24], a more complete test of the
theory can be performed. In figure 1 a comparison between the EOS obtained from
the theory of [25] and computer simulations of the fluid phase of quadrupolar hard
dumbbells is shown. The agreement is good, suggesting that we have a reasonable
theoretical description of the fluid phase properties. Let us now focus on the solid
phase. In [18] it was shown that the cell theory of Lennard-Jones and Devonshire
[17] can be implemented to describe the behaviour of the solid phase of hard
dumbbells. Here, we discuss the implementation of the cell theory for quadrupolar
hard dumbbells. Gibbons and Klein [28] have previously applied the cell theory to
the properties of solid CO, but solid—fluid equilibrium was not considered. Let us
define U(r,, w,) as the potential energy experienced by a central molecule in a cell,
labelled as 1 with a position given by r, and an orientation by w;, owing to
interactions with the rest of the molecules of the solid. Then U(r,, ,) is given by
J=N
Ulry, @) = Zz unp(ry, 01, ¥y, ;) + Ugolry, Wy, 1), ©;), (1)
=

where uyy, is the pair potential between hard dumbbells and uq is the interaction
between ideal quadrupoles [8]. In evaluating U(r, w,) of equation (1) all the
molecules of the solid remain at their equilibrium positions and orientations. The
energy U will be divided into two terms [297:

U(ry, 0y) = U° + AU(ry, o), @)

where U is the lattice energy of molecule 1 when fixed on the lattice position with
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the equilibrium orientation. For quadrupolar hard dumbbells U, is just the quad-
rupolar energy of a central molecule due to interaction with the other molecules of
the crystal. The free energy of the solid phase A"P? is approximated within the cell
theory by [18, 29, 30]

AHPQ — _ NKT'In ((¢/V)Z') + NU,/2, 3)

where ¢ is the molecular partition function which includes all the contributions from
the internal degrees of freedom, and V is the volume of the system. The cell partition
function Z is given by

Z' = 1/(4m) JCXP (—BAU(r, ,)) dr, doy, “)

where § = 1/kT. The lattice energy U, can be evaluated readily by lattice summation
and in [24] it has been given for any value of Q* for several L* and solid structures.
In order to evaluate Z| a Monte Carlo numerical integration procedure was
performed. Details of the procedure may be found in [18]. The numerical evaluation
of Z'| at a given density of the solid takes only a few seconds on a typical workstation.
Values of Z; obtained in this way at several densities were fitted to the expression
[18, 31]

Z' = Ca® exp (a,0 + a,&* + a;a®), (5)
where « is defined as
o= (pcp - p)/pcpa (6)

here p is the number density and p_, is the maximum packing density of the structure
under consideration. Values of p, for different solid structures of hard dumbbells
have been reported in [15]. In this work, we have performed cell theory calculations
for quadrupolar hard dumbbells in the «-N, structure. It has been shown recently
that this is likely to be the stable solid structure of quadrupolar hard dumbbells when
the quadrupole moment is sufficiently high [24]. The reduced quadrupole moment
is defined via

Q**=Q*/(kTds), Q)

where @ is the quadrupole moment, and dyg is the diameter of a hard sphere with
the same volume as the hard dumbbell, given by

diis = (1 + 1'5L* — 0-5L*3). 8)

In figure 2 we present the EOS for the quadrupolar hard dumbbell system with
L* = 0-8 and 0*? = 1 as obtained from simulation, and by using the cell theory for
the solid phase and the perturbation theory for the fluid phase. Tie lines corresponding
to the fluid-solid equilibrium are given for both theory and simulation. The cell
theory provides a good description of the prope: :ies of the solid. In addition the
fluid—solid transition predicted by the theory is in good agreement with simulation.
In these calculations the quadrupole—quadrupole potential was truncated in the
manner described in [24]. It is worth noting that we have found that the cell theory
can be implemented without significant loss of accuracy by including only the nearest
neighbour contribution to AU. This reduces the computer time by about a factor of
four. The full cell theory has a computational requirement which is about two orders
of magnitude smaller than an NVT Monte Carlo simulation of the solid.
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Figure 2. Equation of state of quadrupolar hard dumbbell with L* = 0-8 and Q*? = 1. The
symbols correspond to Monte Carlo simulation results for the fluid phase (circles) and
a-N solid structure (squares) [24]. The solid curves represent theoretical results from
perturbation theory [25] for the fluid phase and from the cell theory for the solid phase.
Tie lines for the fluid—solid transitions as obtained from Monte Carlo simulations
(dashed line) and from theory (solid line) are also shown.

3. Generalized van der Waals theory

Following our previous work [22], attractive forces have been incorporated
through a mean-field term in the manner first proposed by Longuet-Higgins and
Widom [23]. It was also applied by Rigby [32] to determine the vapour—liquid
equilibrium of molecular fluids. The basic equations of this theory are [22]

A/N = A"PYQ?, p, T, L*)/N — ap, &)
and
p= pHDQ(Q23 05 Ts L*) - aPZa (10)

where A"P? and pHPQ are the free energy and pressure, respectively, of a hard
quadrupolar dumbbell reference system. The parameter @ measures the strength of
the dispersion forces. Equation (9) can be regarded as the simplest way of incorporating
the effect of attractive dispersion forces into the free energy of the fluid and solid
phases. Eventually, for the solid phase the term —ap could be replaced by the lattice
energy due to the attractive dispersion forces [33].

Free energies and pressures of the HDQ system are obtained in the manner just
described. A useful parameter in these calculations is the ratio of the quadrupole
moment energy to the dispersion energy. This can be expressed via the dimensionless
parameter R as [22]

R =(0%/d35)/(a/d}is) 1)
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Figure 3. Corresponding states plot of the phase diagram of carbon dioxide as obtained from
the present theory.
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In order to apply equations (9) and (10) to a comparison of theory with experiment,
a knowledge of L* and R is necessary. In this work two linear quadrupolar molecules
were considered: acetylene and carbon dioxide (CO,). The elongations were fixed as
L*=0-35 for acetylene and L* = 0-8 for CO,, which approximately reproduce the
anisotropy of the molecules and are close to previous estimates of L* for diatomic
models of these molecules [2, 34, 35]. The procedure for obtaining R is that adopted
in [22] for carbon dioxide, now described briefly. By using the experimental critical
temperature [13] and quadrupole moment [8] of these molecules, and an estimate
for o [2, 34, 35], the value of Q*%,, = Q%/(kT.dj}s) was obtained. Here, the subscript
¢ stands for the critical values. Then a trial value of R was chosen and the
vapour-liquid equilibrium was computed from equations (9) and (10). The reduced
quadrupole moment at the critical point obtained from theory is given by Q¥%.ory =
Ra/(kT,d3s). We proceeded in this way until Q*%,..,, matched Q¥2, . The experimental
quadrupole moment of carbon dioxide is known precisely [8]. However, for acetylene
the uncertainty of the quadrupole moment is very large (up to 40%). The experimental
value of the quadrupole moment of acetylene was taken as Q = 19-34 cm?. This value
corresponds to the average of the quadrupole moments of acetylene reported in [8].
The values of R obtained as described earlicr were R = 0-17 for acetylene and
R = 011 for CO,. In figure 3 the phase diagram for carbon dioxide obtained from
equations (9) and (10) is presented in a reduced temperature versus reduced density
plot. From our calculations 7;/T, = 069, which compares favourably with the
experimental value 7;/T, = 0-71 [13]. The theory predicts a large change in density
at freezing, which is in agreement with experimental results of CO, at the triple point
[36]. Results of this work agree with those presented in [22], although now the
treatment of the solid phase of HDQ is performed in a more rigorous manner.
Figure 4 shows the phase diagram of acetylene based on equations (9) and (10).
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Figure 4. Corresponding states plot of the phase diagram of acetylene as obtained from the
present theory.
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The value of 7;/T, found from our theoretical treatment is 0-79 and the experimental
result is 0-62 [37]. The agreement may be considered as satisfactory given the large
uncertainty in the experimental value of the quadrupole moment of acetylene. For
acetylene the ratio 7;/T, is quite sensitive to the assumed value of the quadrupole
moment. For instance, if the Q = 14-67 cm? is assumed then we obtain 7,/T, = 0-68
and the density change at freezing is reduced considerably, in better agreement with
experiment. In addition to the issue of the large uncertainty of the quadrupole
moment of acetylene, it should be mentioned that the dumbbell model may not be
the best description of the molecular shape for this molecule. In any case, the
significant result of our treatment is that acetylene should present a large value of
T./T., and this is in agreement with experiment. The anisotropy of acetylene is similar
to that of oxygen, and the experimental value of T;/T, for oxygen is 0-35. The present
theory predicts that the quadrupole moment of acetylene is responsible for the large
difference in 7;/7, between oxygen and acetylene. Note that in our theoretical
treatment the «-N, structure (the stable structure on freezing for acetylene and CO,)
is not imposed arbitrarily for the solid, since it is indeed the stable phase of the HDQ
when the quadrupole moments of acetylene and carbon dioxide are used [24]. On
the basis of lattice energy calculations, English and Venables [38] also concluded
that the a-N, structure is the stable one for linear quadrupolar systems when the
quadrupole moment is sufficiently high.

4. Conclusions

A simple theory for the solid—fluid equilibrium of quadrupolar linear molecules
has been considered. Our theoretical treatment is based on considering the quad-
rupolar hard dumbbell model as the reference system and incorporating attractive
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forces through a mean-field term. Our calculations have focused on the ratio T;/T,,
which measures the relative size of the liquid region of the phase diagram, for two
molecules: acetylene and carbon dioxide. These two molecules solidify into the «-N,
structure at the triple point. By using reasonable estimates of the molecular elongation
and of the ratio of quadrupolar to dispersion attractive forces, we found values of
T,/T. in good agreement with the experimental results.

The rare gases have a value of T,/T, of about 0-55 [13]. In previous work [22],
we showed how T,/T, changes with molecular elongation when no multipolar forces
are present. In this work it is shown that when a large quadrupole moment is present
then T;/T, is much larger than for spherical molecules. Consequently, linear molecules
with a large quadrupole moment should present a rather small liquid range. The
correlation between T,/T, and the quadrupole moment has been noted before [37, 39].
The present work provides the first theoretical description of the molecular pheno-
mena underlying this behaviour.

Our results lead us to speculate that whenever multipolar forces stabilize a solid
structure with a much lower density than would be obtained by the optimal packing
of the repulsive cores of the molecules, then a rather large value of 7,/T, and,
consequently, a small liquid range are expected. In our case the quadrupolar forces
stabilize the o-N, structure, which is not especially efficient in packing hard
dumbbells. The density of the solid will be lower than for a more closely packed
structure, and hence the triple point will occur at a higher temperature. Of course
the treatment presented in this work is rather qualitative, and it cannot be expected
to describe all the features of the phase diagram exhibited by linear quadrupolar
molecules. However, it suggests that molecular shape and quadrupolar forces are
principal factors in determining the phase diagram.
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