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Theoretical calculations are presented of solid-liquid equilibrium for linear 
quadrupolar molecules, focusing especially on the ratio of the triple point 
temperature to the critical temperature. The proposed treatment uses the hard 
quadrupolar dumbbell model as the reference system, and incorporates the effect 
of dispersion forces through a mean-field term. The reference system of 
quadrt/polar hard dumbbells is described using perturbation theory for the liquid 
and cell theory for the solid. Good agreement with simulation results of 
quadrupolar hard dumbbells is obtained through the theoretical description. 
After incorporating attractive dispersion forces, the temperature dependence 
of solid-liquid and vapour-liquid equilibrium was studied and the triple point 
determined for two linear quadrupolar model systems. The two models were 
representative of carbon dioxide and acetylene, respectively. The ratio of the 
triple to critical point temperatures determined from the theory was about 0.7, 
in good agreement with experiment. 

1. Introduction 

During recent years our knowledge of the vapour liquid equilibria of linear fluids 
has increased considerably. Perturbation theories of linear molecules [1-4] and 
computer simulations of vapour-liquid equilibrium using such methods as the Gibbs 
ensemble [5] have contributed significantly to advances in this area [4, 6, 7]. The 
effect of polar forces (i.e. a dipole or quadrupole moment) on the vapour-liquid 
equilibrium of spherical [8-10] and linear fluids has also received considerable 
attention. It can be said that our understanding of the vapour-liquid equilibria of 
linear polar molecules is now quite good [6, 7, 11, 12]. 

On the other hand, much less is understood about the solid-liquid equilibrium 
in such systems, and how this is related to the anisotropy of the intermolecular forces. 
The relationship between the vapour-liquid and solid-liquid regions of the phase 
diagram is quite sensitive to details of the molecular anisotropy, and this relationship 
determines the relative size of the liquid range on the phase diagram. One way of 
quantifying this is the ratio of the triple point temperature to the critical temperature 
T~/T~. For instance, for argon, ethane, and carbon dioxide this ratio takes the values 
0.55, 0.30, and 0.71, respectively [13]. Evidently this ratio is sensitive to quite modest 
changes in molecular structure. 
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We have recently considered the problem of determining TJTr for linear 
molecules. This problem was approached in several steps. First, the fluid-solid 
equilibrium of hard dumbbells was obtained from computer simulations [14-16]. 
The main conclusion of these studies is that hard dumbbells freeze into a plastic 
crystal phase for L* < 0.38, and into a close-packed structure for L* > 0"38. The 
reduced length L* is defined as L* = L/a, where L is the bond length and a the 
diameter of the interaction site. In a second step, the cell theory of Lennard-Jones 
and Devonshire [17] was applied to the description of the solid phase of hard 
dumbbells, and good agreement with simulation was found [18]. This theory is less 
demanding computationally than simulations, by two orders of magnitude, and is 
more accurate quantitatively than the extensions of density functional theory which 
have been applied to these systems [19, 20]. The cell theory has also been applied 
to studying spherical particles with attractive forces [21]. Finally, the properties of 
hard dumbbells were used in a generalized van der Waals theory of solid-fluid 
equilibria [22], very similar to that used in the seminal work of Longuet-Higgins 
and Widom [23]. The variation of TJTc with L* obtained from this treatment was 
described in [22], and comparison with experimental data was made. Although the 
agreement between theory and experiment was not quantitative, trends in the 
variation of Tt/T~ with L* predicted by the theory were similar to those seen 
experimentally. However, CO 2 exhibits a rather high value of Tt/Tc which cannot be 
explained by considering the molecular shape only. In [22] it was conjectured that 
incorporation of the quadrupole moment of the molecule is necessary to explain the 
value of Tt/Tc found in CO2. A prelininary calculation using a simple treatment of 
the effect of quadrupolar forces on the phase yielded a value of Tt/T~ in good 
agreement with experiment. It was assumed that quadrupole forces stabilize the ~ - N  2 

structure instead of the close-packed structure of hard dumbbells. Recently, we have 
performed a computer simulation study of the phase diagram of quadrupolar hard 
dumbbells [24]. One of the conclusions of this work was that, for sufficiently high 
quadrupole moments, the solid phase in equilibrium with the fluid is the e-N z 
structure. In this paper the problem of the determination of T,/T~ for linear molecules 
with large quadrupole moments is considered on a more rigorous footing than that 
used in our earlier work [22]. Our goal is twofold. First, the ability of the cell theory 
to describe a quadrupolar hard dumbbell system is tested. Secondly, the van der 
Waals-like treatment proposed in [22] is applied to quadrupolar molecules, but with 
a more accurate treatment of the solid phase. Theoretical predictions of Tt/T~ for 
carbon dioxide and acetylene are compared with experimental results. 

2. Theoretical treatment of the properties of quadrupolar hard dumbbells 

To determine the fluid-solid equilibrium of quadrupolar hard dumbbells (HDQ) 
a description of the fluid and solid phases is nr In this work a point quadrupole 
will be considered [8]. For the fluid phase we have used a perturbation theory of 
HDQ described in [25]. The theory is an extension due to Boublik [26] to molecular 
fluids of the theory proposed for spherical polar molecules by Pople-Gubbins [8]. 
In this perturbation theory, the equation of state (EOS) of hard dumbbells is needed, 
and the one proposed by Tildesley and Streett has been used [27] (see [25] for further 
details). This theory provides the free energy and EOS of the HDQ fluid phase. In 
[25] the theory was tested by comparing theoretical predictions with simulations 
results of quadrupolar dumbbells with L* = 0.6. Since new simulation data have been 
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Figure 1. Equation of state of the fluid phase of quadrupolar hard dumbbells with Q,2 = 0"5 
as obtained from Monte Carlo simulations (symbols) [24], and from perturbation theory 
[25] (curves): triangles, L* = 0'8; squares, L* =  0'6; circles, L* =  0.3; solid curve, 
L* = 0"8; dashed curve, L* = 0"6; short dashed curve, L* = 0-3. Pressures and densities 
are reduced as in [24]. 

obtained recently for quadrupolar hard dumbbells [24], a more complete test of the 
theory can be performed. In figure 1 a comparison between the EOS obtained from 
the theory of [25] and computer simulations of the fluid phase of quadrupolar hard 
dumbbells is shown. The agreement is good, suggesting that we have a reasonable 
theoretical description of the fluid phase properties. Let us now focus on the solid 
phase. In 1-18] it was shown that the cell theory of Lennard-Jones and Devonshire 
[17] can be implemented to describe the behaviour of the solid phase of hard 
dumbbells. Here, we discuss the implementation of the cell theory for quadrupolar 
hard dumbbells. Gibbons and Klein [28] have previously applied the cell theory to 
the properties of solid CO2 but solid-fluid equilibrium was not considered. Let us 
define U(r 1, (01) as the potential energy experienced by a central molecule in a cell, 
labelled as 1 with a position given by r 1 and an orientation by co 1, owing to 
interactions with the rest of the molecules of the solid. Then U(rl, o91) is given by 

j = N  

O(1"1' (01) = 2 UHD(rt' r176 rj, (0j) q- UQQ(rt, 6Ol, rj, (0j), (1) 
j=2  

where UnD is the pair potential between hard dumbbells and uQo is the interaction 
between ideal quadrupoles [8]. In evaluating U(r~, o91) of equation (1) all the 
molecules of the solid remain at their equilibrium positions and orientations. The 
energy U will be divided into two terms 1-29]: 

U(r~, 0)1) = U ~ + AU(rl, (01), (2) 

where Uo is the lattice energy of molecule 1 when fixed on the lattice position with 
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the equilibrium orientation. For quadrupolar hard dumbbells Uo is just the quad- 
rupolar energy of a central molecule due to interaction with the other molecules of 
the crystal. The free energy of the solid phase A nDQ is approximated within the cell 
theory by [18, 29, 30] 

A nDQ = - N k T l n  ((q/V)Z'  0 + NUo/2, (3) 

where q is the molecular partition function which includes all the contributions from 
the internal degrees of freedom, and V is the volume of the system. The cell partition 
function Z'~ is given by 

Z t l  = 1/(4n) f exp (-flAU(rl, o)1) ) dr I do1, (4) 

where 17 = 1/kT. The lattice energy U o can be evaluated readily by lattice summation 
and in [24] it has been given for any value of Q* for several L* and solid structures. 
In order to evaluate Z'~ a Monte Carlo numerical integration procedure was 
performed. Details of the procedure may be found in [18]. The numerical evaluation 
of Z'~ at a given density of the solid takes only a few seconds on a typical workstation. 
Values of Z'I obtained in this way at several densities were fitted to the expression 
[18, 31] 

Z'I = C~ 5 exp (alex + a2cx 2 + a3cr (5) 

where ~ is defined as 

= (pep  - p ) / p o p ,  (6) 

here p is the number density and Pcp is the maximum packing density of the structure 
under consideration. Values of pep for different solid structures of hard dumbbells 
have been reported in [15]. In this work, we have performed cell theory calculations 
for quadrupolar hard dumbbells in the ~-N 2 structure. It has been shown recently 
that this is likely to be the stable solid structure of quadrupolar hard dumbbells when 
the quadrupole moment is sufficiently high [24]. The reduced quadrupole moment 
is defined via 

Q * Z  _ ,~2 / ~ k  T d  5 --Y-~ /~ HS/' (7) 

where Q is the quadrupole moment, and dHs is the diameter of a hard sphere with 
the same volume as the hard dumbbell, given by 

d3s = 63(1 + l'5L* -- 0"5L'3). (8) 

In figure 2 we present the EOS for the quadrupolar hard dumbbell system with 
L* = 0.8 and Q,2 = 1 as obtained from simulation, and by using the cell theory for 
the solid phase and the perturbation theory for the fluid phase. Tie lines corresponding 
to the fluid-solid equilibrium are given for both theory and simulation. The cell 
theory provides a good description of the propel :ies of the solid. In addition the 
fluid solid transition predicted by the theory is in good agreement with simulation. 
In these calculations the quadrupole quadrupole potential was truncated in the 
manner described in [24]. It is worth noting that we have found that the cell theory 
can be implemented without significant loss of accuracy by including only the nearest 
neighbour contribution to AU. This reduces the computer time by about a factor of 
four. The full cell theory has a computational requirement which is about two orders 
of magnitude smaller than an N VT Monte Carlo simulation of the solid. 
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Figure 2. Equation of state of quadrupolar hard dumbbell with L* = 0-8 and Q,2 _~ 1. The 
symbols correspond to Monte Carlo simulation results for the fluid phase (circles) and 
~ - N  2 solid structure (squares) [24]. The solid curves represent theoretical results from 
perturbation theory [25] for the fluid phase and from the cell theory for the solid phase. 
Tie lines for the fluid solid transitions as obtained from Monte Carlo simulations 
(dashed line) and from theory (solid line) are also shown. 

3. Generalized van der Waals theory 

Following our previous work [22], attractive forces have been incorporated 
through a mean-field term in the manner first proposed by Longuet-Higgins and 
Widom [23]. It was also applied by Rigby [32] to determine the vapour-l iquid 
equilibrium of molecular fluids. The basic equations of this theory are [22] 

A / N  = AHDQ(Q 2, p, T, L * ) / N  --  ap ,  

and 

(9) 

p = pHDQ(Q2, p, T, L*)  - ap 2, (10) 

and pHOO are the free energy and pressure, respectively, of a hard w h e r e  A HDQ 

quadrupolar dumbbell reference system. The parameter a measures the strength of 
the dispersion forces. Equation (9) can be regarded as the simplest way of incorporating 
the effect of attractive dispersion forces into the free energy of the fluid and solid 
phases. Eventually, for the solid phase the term - a p  could be replaced by the lattice 
energy due to the attractive dispersion forces [33]. 

Free energies and pressures of the H D Q  system are obtained in the manner just 
described. A useful parameter in these calculations is the ratio of the quadrupole 
moment energy to the dispersion energy. This can be expressed via the dimensionless 
parameter R as [22] 

R = (Q2/dSs) / (a /d~s)  (11) 
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Corresponding states plot of the phase diagram of carbon dioxide as obtained from 
the present theory. 

In order to apply equations (9) and (10) to a comparison of theory with experiment, 
a knowledge of L* and R is necessary. In this work two linear quadrupolar molecules 
were considered: acetylene and carbon dioxide (CO2). The elongations were fixed as 
L*--0'35 for acetylene and L* = 0"8 for CO2, which approximately reproduce the 
anisotropy of the molecules and are close to previous estimates of L* for diatomic 
models of these molecules [2, 34, 35]. The procedure for obtaining R is that adopted 
in [22] for carbon dioxide, now described briefly. By using the experimental critical 
temperature [13] and quadrupole moment [8] of these molecules, and an estimate 
for a [2, 34, 35], the value ,2 of Q .. . .  p = Q2/(kTf lSs)  was obtained. Here, the subscript 
c stands for the critical values. Then a trial value of R was chosen and the 
vapour-liquid equilibrium was computed from equations (9) and (10). The reduced 
quadrupole moment at the critical point obtained from theory is given by ,2 _ Qc, theory -- 

Ra/(kT~d~s). We proceeded in this way until ,z ,2 Qc. theory matched The experimental Qc, exp' 
quadrupole moment of carbon dioxide is known precisely [8]. However, for acetylene 
the uncertainty of the quadrupole moment is very large (up to 40~o). The experimental 
value of the quadrupole moment of acetylene was taken as Q = 19-34 cm 2. This value 
corresponds to the average of the quadrupole moments of acetylene reported in [8]. 
The values of R obtained as described earlier were R--0 .17  for acetylene and 
R = 0"11 for CO 2. In figure 3 the phase diagram for carbon dioxide obtained from 
equations (9) and (10) is presented in a reduced temperature versus reduced density 
plot. From our calculations Tt/T c = 0.69, which compares favourably with the 
experimental value TilT ~ = 0.71 [13]. The theory predicts a large change in density 
at freezing, which is in agreement with experimental results of CO2 at the triple point 
[36]. Results of this work agree with those presented in [22], although now the 
treatment of the solid phase of HDQ is performed in a more rigorous manner. 

Figure 4 shows the phase diagram of acetylene based on equations (9) and (10). 
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Corresponding states plot of the phase diagram of acetylene as obtained from the 
present theory. 

The value of T~/To found from our theoretical treatment is 0.79 and the experimental 
result is 0'62 [37]. The agreement may be considered as satisfactory given the large 
uncertainty in the experimental value of the quadrupole moment of acetylene. For 
acetylene the ratio Tt/T ~ is quite sensitive to the assumed value of the quadrupole 
moment. For instance, if the Q -- 14.67 cm 2 is assumed then we obtain Tt/T c = 0.68 
and the density change at freezing is reduced considerably, in better agreement with 
experiment. In addition to the issue of the large uncertainty of the quadrupole 
moment of acetylene, it should be mentioned that the dumbbell model may not be 
the best description of the molecular shape for this molecule. In any case, the 
significant result of our treatment is that acetylene should present a large value of 
Tt/Tc, and this is in agreement with experiment. The anisotropy of acetylene is similar 
to that of oxygen, and the experimental value of Tt/Tc for oxygen is 0.35. The present 
theory predicts that the quadrupole moment of acetylene is responsible for the large 
difference in Tt/T ~ between oxygen and acetylene. Note that in our theoretical 
treatment the ~-N~ structure (the stable structure on freezing for acetylene and CO2) 
is not imposed arbitrarily for the solid, since it is indeed the stable phase of the HDQ 
when the quadrupole moments of acetylene and carbon dioxide are used [24]. On 
the basis of lattice energy calculations, English and Venables [38] also concluded 
that the e-N 2 structure is the stable one for linear quadrupolar systems when the 
quadrupole moment is sufficiently high. 

4. Conclusions 

A simple theory for the solid-fluid equilibrium of quadrupolar linear molecules 
has been considered. Our theoretical treatment is based on considering the quad- 
rupolar hard dumbbell model as the reference system and incorporating attractive 
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forces through a mean-field term. Our calculations have focused on the ratio TriTe, 
which measures the relative size of the liquid region of the phase diagram, for two 
molecules: acetylene and carbon dioxide. These two molecules solidify into the ~-N z 
structure at the triple point. By using reasonable estimates of the molecular elongation 
and of the ratio of quadrupolar to dispersion attractive forces, we found values of 
Tt/T c in good agreement with the experimental results. 

The rare gases have a value of Tt/T~ of about 0.55 [-13]. In previous work [223, 
we showed how Tt/T c changes with molecular elongation when no multipolar forces 
are present. In this work it is shown that when a large quadrupole moment is present 
then Tt/T ~ is much larger than for spherical molecules. Consequently, linear molecules 
with a large quadrupole moment should present a rather small liquid range. The 
correlation between Tt/T c and the quadrupole moment has been noted before [37, 393. 
The present work provides the first theoretical description of the molecular pheno- 
mena underlying this behaviour. 

Our results lead us to speculate that whenever multipolar forces stabilize a solid 
structure with a much lower density than would be obtained by the optimal packing 
of the repulsive cores of the molecules, then a rather large value of Tt/Tc and, 
consequently, a small liquid range are expected. In our case the quadrupolar forces 
stabilize the ~-N 2 structure, which is not especially efficient in packing hard 
dumbbells. The density of the solid will be lower than for a more closely packed 
structure, and hence the triple point will occur at a higher temperature. Of course 
the treatment presented in this work is rather qualitative, and it cannot be expected 
to describe all the features of the phase diagram exhibited by linear quadrupolar 
molecules. However, it suggests that molecular shape and quadrupolar forces are 
principal factors in determining the phase diagram. 
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the US Department of Energy, Office of Basic Energy Sciences, under contract 
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