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The problem of calculating the structure of square-well (SW) fluids in the 
context of non-conformal fluids is reviewed briefly. New and extensive results 
over a wide range of SW systems and thermodynamic states were obtained by 
means of the reference hypernetted chain (RHNC) integral equation. The results 
show that RHNC theory is in excellent agreement with the results of simulation, 
thus providing a reliable and fast procedure for obtaining the structure of fluids 
with discontinuous potentials. A few representative results are presented and 
compared with new Monte Carlo simulation data. The bridge functions 
obtained with the RHNC procedure are also compared with those calculated 
directly from the Monte Carlo radial distribution functions. 

1. Introduction 

The behaviour of simple models of non-conformal fluids (NCFs) has been of 
interest over the years due to their application in modelling colloids [1], investigating 
the dependence of liquid-phase stability on the range of the attractive forces [2, 3], 
and studying the effect of non-conformal changes in the liquid-vapour phase diagram 
I-4, 5]. A class of fluids used widely to model NCFs is described by a system of 
spherical particles of diameter ~r interacting with a potential of the form 

u(r; o', r 2) = ~oo r < a (1) 
-r 2) r ~> a,  

which consists of a hard-sphere-like repulsive interaction plus an attractive term 
-e~b(r). This last term is characterized by the depth e of the well, and the parameter 
2 describing the range of the attractive forces. Changes in 2 modify the shape of the 
potential, and hence produce a non-conformal variation in the system. 

Typical models given by equation (1) and which have been studied extensively 
are the variable-width square-well (SW) and Yukawa fluids. Both interactions 
provide simple examples with both repulsive and attractive parts which furnish two 
important NCF limits: the adhesive hard spheres for very deep wells, r ~ o% and 
short ranges 2, and the Kac limit for shallow wells, E ~ 0, and 2 ~ oo [5]. The SW 
fluid has been used also as a reference system in perturbation and mapping theories 
of more realistic potentials [4, 6]. 
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Because of this wide interest, the structure of SW fluids has been investigated 
amply by both computer simulation and integral equation methods. The results in 
the literature up to 1976 were reviewed by Barker and Henderson [7]. Up to that 
year, simulation studies concentrated on particular values of the SW range (almost 
all of them for 2 = 1.5) and hence did not exhibit the effects of non-conformal 
behaviour. Later, Henderson et al. [8] studied SW fluids with 1.25 ~< )~ ~< 2.00 by 
Monte Carlo simulations and perturbation theory. Molecular dynamics simulations 
for fluids with 1.1 ~< 2 ~< 3.00 have also been performed [9, 10]. The latter have been 
used to display NCF behaviour and in particular show that the SW fluid with ,~ = 3.0 
is already very close to the van der Waals limit [5, 10]. The liquid-vapour coexistence 
of variable width SW fluids has been investigated also using the Gibbs ensemble 
technique by Vega et al. [11], and its non-conformal thermodynamic behaviour 
analysed explicitly [5]. 

Simulation studies have played a very important role in developing and testing 
theories for the SW fluid, and in understanding the properties of this system. 
Simulations can nowadays be performed quite accurately but, in spite of the speed 
of present day computers, they are still too time consuming for several applications. 
On the other hand, perturbation theory for the structure of the SW fluids, i.e., for 
the radial distribution function 9sw(r), has been shown to be rather inaccurate [8]. 

Integral equation theories for the SW fluid are the most extensively studied. 
Among those considered up to 1976 were the Percus-Yevick, the hypernetted chain 
(HNC), the mean spherical approximation (MSA), the optimized random phase 
approximation (ORPA), the exponential (EXP), and the linear exponential (LEXP) 
closures [7]. Of the simpler closures, the MSA appears to give the best results and 
the same relative virtue has been exhibited recently for SW fluid mixtures [12]. These 
integral equations are in many cases better than perturbation theory, and always 
much faster to use than simulations; nevertheless, they are still not accurate enough 
to give reliable information on non-conformal behaviour. 

Analytical solutions within the MSA for the structure and thermodynamics of 
SW and Yukawa fluids have been obtained recently by Tang and Lu [13] for the 
SW case, and by Henderson et al. [14] for the Yukawa. These solutions are explicit 
in the density, temperature, and range 2, which make them adequate for applications 
like modelling the P V T  diagram of real substances. 

Although the MSA is suitable for applications where the knowledge of an 
analytical solution is more important than accuracy, when the latter is required the 
structural properties demand a better closure. The original version of the 'corrected' 
HNC equation, developed by Smith and Henderson [15] for the SW fluid with 
)~---1.5, showed a significant improvement in accuracy over the closures used 
previously. Later, the development of the reference hypernetted chain equation 
(RHNC) [16-19] opened the route to an accurate and fast calculation of 9(r). This 
equation has been proved to work very well for continuous potentials [20]. More 
recently, Lomba and Almarza [3] have shown that, in the Yukawa case, the liquid- 
vapour phase equilibria calculated with the RHNC equation are in excellent 
agreement with Gibbs ensemble simulation results. 

In this short communication we show that the RHNC theory is also excellent for 
discontinuous potentials such as the SW of variable width and can hence be used 
with confidence to obtain the properties of this and similar NCFs. We display the 
accuracy of RHNC theory for the structure of SW fluids by comparing the 9sw(r) 
obtained from it with Monte Carlo results. The virtues of RHNC theory for this 
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type of system are analysed further by comparing the bridge function obtained from 
the R H N C  equation with that obtained by direct inversion of the MC g~w(r). 

2. Theory 

The radial distribution function of a fluid whose particles interact with the 
spherical intermolecular potential u(r) is obtained from the total correlation function 
h(r) = g(r) - 1. The total correlation is obtained using the Ornstein-Zernike (OZ) 
equation 

h(rl2 ) = c(r12 ) + p J dr3h(r13)c(r23), (2) 

where c(r) is the direct correlation function. Usually, equation (2) is taken as the 
definition of c(r). The OZ relation must be complemented by a further relation 
between the correlation functions and the intermolecular potential, i.e., 

c(r) = -~Su(r) + h(r) - In h(r) + B(r), (3) 

an expression which involves a third function, the so-called bridge function B(r). In 
order to close the set of equations (2) and (3) an approximation for B(r) is required. 
The R H N C  assumes that the bridge function has a universal shape described correctly 
by the hard-sphere bridge function [17] 

B(r) = Bns(r, a). (4) 

The hard-sphere diameter a needed in equation (4) is obtained by a minimum 
free-energy criterion [-18] from 

f ~ c3Brts(r; a ) l  = O. (5) dr[g(r) - gns(r)] o- L Oa 

In this work we have used the parametrization of BHs(r) proposed by Malikevsky 
and Labik (ML), which gives [21] 

B(r) = b2(r), (6) 

where, for x = r - 1 ~< a4, 

b(r) = (a 1 + a2x)(x - a3)(x - a4)/a3a4, (7) 

and, for x > a4, 

b(r) = A1 exp ( - a s ( x  - a4)) sin [A2(x - a4)]/r. (8) 

The parameters A i are given in terms of the coefficients ai, i = 1, 6. In the 
hard-sphere (HS) case, ai = a~(q), where q is the packing fraction q = rrp~3/6, and a 
is the HS diameter. 

3. Results 

We solved the R H N C  equation, given by equations (2)-(5), with the ML 
parametrization of BHs(r; or) [21, 22]. Due to the discontinuity of the SW potential, 
a fine grid of 4096 points in the interval [0, 5a] was necessary. Then the OZ equation 
with the R H N C  closure was solved using the numerical procedure due to Labik 
et al. [23]. 
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We studied extensively 18 SW fluid systems with ). between 1.1 and 2.0. The 
densities ranged from p* = pa 3 = 0.05 to p* = 0'8 or 0.9, and the temperatures from 
T* = k T / e  = 0-6 to T* = 10. In all of the one-phase states, and where independent 
simulation studies were available, the solutions of the R H N C  equation are very close 
to the simulations. In all systems, the R H N C  procedure did not have solutions close 
to the critical point, and deep within the l iquid-vapour  coexistence region (although 
solutions were found for some metastable states). Here, we present only a few selected 
results as an illustration. They are compared with new N V T  Monte Carlo (MC) 
simulations performed with 256 particles and averaged over 15 million configurations. 
Figures 1 3 show the radial distribution function for three different SW systems, with 
values of )~ commonly used in applications (). = 1.3, 1.5, and 1.8), and for densities 
typical of dense liquids. It can be seen from the figures that the agreement between 
the R H N C  theory and the MC results is excellent. Similar or better agreement was 
found for all other SW ranges, temperatures, and densities. 

A more precise and wider comparison is presented in table 1, which includes 
values of gsw(r) at r = a  and r = 2 ~  +, as well as the values of the pressure 
obtained from the virial equation. Deviations Ag(r) = gRHYc(r) -- gMc(r) are generally 
smaller than 1~o; they reach a maximum of 1~o at contact r = a and of 1"5~o at r = 2or, 
with similar behaviour for the pressure. 

To test the adequacy of the R H N C  theory further we calculated the bridge 
function Bsw(r ) from the simulated values gMc(r). This was done by assuming 
the same parametric form of Maliljevsky and Labik for Bsw(r; ai), equations 
(6-8), but considering the coefficients ai as adjustable parameters. For given 
assumed values of a i, i = 1, 6, the radial distribution function g(r; ai) was obtained 
by the procedure of Labik et al. [23]. The final values of the ai for a given state and 
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Figure 1. Comparison of theoretical and Monte Carlo radial distribution functions of a SW 
fluid with ). = 1-3 at p* = 0-7 and T* = 2.0. The continuous curve is an interpolation 
of the MC results (the actual points are too close to be noticed at this scale), and + 
the RHNC results. 
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Figure 2. Comparison of theoretical and Monte Carlo radial distribution functions of 
a SW fluid with 2 = 1'5 at p* = 0.8 and T* = 1.35. Symbols have the same meaning as 
in figure 1. 
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Figure 3. Comparison of theoretical and Monte Carlo radial distribution functions of a 
SW fluid with 2 = 1.8 at p* = 0"8 and T* = 3.0. Symbols have the same meaning as in 
figure 1. 

system were then obtained by min imiz ing  the square deviat ion 

L [gMc(r") -- g(r"; gMC-( rn ) ai)] 2 

This min imizat ion  procedure al lowed us to obtain g(r.) within the uncertainty of 
the s imulated gMc(r.) in all cases (these are given in table 1). The functions Bsw(r ) 
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Table 1. Comparison of contact values of gsw(r) and the compressibility factor Z = P V / N k T  
for RHNC theory and Monte Carlo simulations. The values g(2) correspond to r = ).a +. 

s p* T* gMc(O-) gRHNC(O') g M C ( 2 )  gRHNC{,s ZMC ZRHNC 

1.3 0.7 2.00 2"914 2.919 0.901 0"903 3.389 3.393 
1.50 2.818 2.825 0.826 0"827 2.611 2.617 

1"5 0"7 2"00 2"881 2"886 0"664 0-650 3"156 3"145 
1"50 2"777 2'783 0"596 0'589 2'311 2"285 
1"35 2'729 2"753 0"565 0"573 1"932 1-925 

0"8 10"00 3"983 4'008 0"691 0"691 7"262 7.305 
4"00 3"867 3"885 0"638 0-640 6'481 6"455 
2"00 3'749 3"753 0559 0"562 5"232 5"227 
1"50 3"647 3"662 0"508 0"513 4'390 4"386 
1'35 3"643 3"639 0"487 0"493 4-081 4-038 

1'8 0'7 3'00 3'365 3"398 0"745 0"746 3"412 3"458 
0"8 3-00 4"378 4"357 0-776 0775 5"338 5-304 
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Figure 4. An example of a bridge function for the SW fluid. The continuous line is B(r) from 
the RHNC theory, and + are the values from direct inversion of the MC g(r). The 
system has 2 = 1-8, p* = 0-8 and T* = 3'0. 

were found to be quite similar,  but  not  ident ical  to BRnyc(r). A typical  c o m p a r i s o n  
is shown in figure 4. 

The differences between bo th  br idge funct ions can be apprec ia ted  bet ter  when 
compar ing  the ai coefficients used in the M L  paramet r i za t ion .  In  R H N C  theory,  ai 
depend  on the state var iables  th rough  one single parameter :  the HS d iamete r  ans 
de te rmined  from equa t ion  (5) and  used in the packing  fraction.  This is not  true for 
the br idge  funct ion ob ta ined  from the M C  data ,  with ad jus tab le  parameters .  Never-  
theless, the la t ter  were found to change  smoo th ly  and sys temat ica l ly  with the state 
variables.  F igures  5 and 6 show the change with t empera tu re  of these pa rame te r s  
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Figure 5. The temperature dependence of the first three bridge coefficients of the Malijevsky- 
Labik pararnetrization. The continuous curve represents the direct inversion of the MC 
data, and the dashed curves are the RHNC results. The SW system has 2 = 1-5 and 
p* = 0.8. 
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Figure 6. The temperature dependence of the first three bridge coefficients of the Malijevsky- 
Labik pararnetrization. The continuous curve represents the direct inversion of the MC 
data, and the dashed curves are the RHNC results. The SW system is the same as in 
figure 5. 

in bo th  cases. At  high tempera tures ,  where the S W  fluid tend to behave  like a HS 
system, the direct  br idge funct ions tend to their  R H N C  value. The  large differences 
in a s at higher  densit ies affect only  the ra ther  small  ' t a i l '  of B(R), and  do not  have 
a no t iceable  effect on 9@. The sys temat ic  behav iou r  of  arts with p* and T* al lows 
us to de te rmine  the R H N C  results by  pa ramet r i z ing  % s  in terms of the state variables.  
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4. Conclusion 

We have shown that the optimized version of the RHNC [17-19] together with 
the ML parametrization of Bns(r; ~r) [20, 21] provide an excellent description of the 
structure of SW fluids with 1.1 ~< ). ~ 2.0. The high accuracy of the ans obtained 
means that RHNC theory, with a fine enough grid, can be used with confidence in 
calculating the structure of fluids with discontinuous potentials with a considerable 
saving in time. 

The bridge functions obtained with RHNC theory are very close to those obtained 
directly from Monte Carlo results for Crns. The fact that the effective diameters in 
the RHNC procedure vary smoothly with the thermodynamic state provides a further 
time-saving step in solving the integral equation. 

This work was supported partially by the Consejo Nacional de Ciencia y 
Tecnologia (M6xico) project #0611-E9110. 
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