Equation of state for hard n-alkane models: Long chains
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An equation of stat€éEOS for hardn-alkane models is proposed. This equation requires a previous
knowledge of the second virial coefficient of the hamehlkane model. Since the numerical
determination of the second virial coefficient of chain molecules is computationally expensive, a
new method for estimating the second virial coefficient of hard polymer models is proposed. This
method yields predictions for the second virial coefficients in very good agreement with those
determined numerically. In order to test the proposed equation of state, molecular dynamics
simulations for repulsive-alkane chains were performed. Excellent agreement was found between
theoretical and simulated pressures fealkanes with up to 100 monomer units. The effect of
changes in the torsional potential, bond angle, and bond length, on the equation of state of hard
n-alkane models is analyzed. The equation of state is also extended to mixtures ofdikathe
models. The proposed methodology provides an accurate equation of state for realistic models of
hardn-alkane molecules. An empirical formula describing the EOS of reputsiaikane chains is

given. © 1995 American Institute of Physids$S0021-960606)51501-1

I. INTRODUCTION moment it is not clear which of the different proposed treat-
ments, namely, PRISM, GFD, DF, W, or MW theories, pro-
During the last years, a great amount of effort has beegides a better description of the behavior of hard chain mol-
devoted to the study of molecules with internal flexibility. ecules, so that they can be considered as complementary. For
Computer simulation studies of flexible chain models eithetthe particular case of hardalkane models, we have recently
by Monte Carlo(MC) or by molecular dynamicéMD) have  showed that the MW theory provides a very accurate de-
appeared;® and the vapor-liquid equilibrium of flexible scription of the equation of state from-butane up to
models has been computed recefti§.From a theoretical n-octane???*Motivated by this success, the extension of the
point of view, the interest has been focused on the determiMWw treatment to longen-alkane models and to binary mix-
nation of an equation of statgOS for hard flexible models. tures appears as the natural next step. That constitutes the
It is expected that the attractive forces will be incorporated inmain purpose of this work.
a perturbative way. Five different theoretical approaches The importance of having a good equation of state for
have been developed: the polymer reference interaction siteardn-alkane models and their mixtures should not be over-
model integral equatidh (PRISM); an extension of the looked. Perturbation theories and empirical equations of state
Flory theory to hard flexible models, denoted as the generalsually divide the total pressure in a contribution arising
ized Flory dimer theor?'? (GFD); the density functional from the repulsive forces, and another arising from the at-
(DF) theory!*' and Wertheim's theory of association, tractive ones. Therefore, it is quite important to have good
which has been extended to allow for the study of hard flexequations of state for the repulsive part. The importance of
ible molecule¥®~® and is commonly named as either the n-alkanes in the petrochemical industry is large and therefore
Wertheim theory(W) or the bonded hard spher@HS) the attempt of describing hardalkane models seems worth-
theory. The fifth theoretical scheme combines ideas of thevhile. In addition to that, some interesting issues such as the
scaled particle theory and those of the Wertheim theory, aneble played by bond length, bond angle, and torsional poten-
will be denoted as modified WertheirtMW). The MW tial on the equation of state of the repulsivalkane model
theory uses the EOS proposed by Wertheim, but with thenay be explored.
nonsphericity parametar replacing the number of spheres The scheme of this paper is as follows. In Sec. Il the
of the systent?=23 The freely jointed hard sphere motfel extension of the MW theory to long-alkane molecules is
has been the subject to which most of the treatments hayvgresented. In Sec. lll a new method for estimating the second
been applied. Although this is an interesting model, it is notirial coefficient of a hard conformer is proposed. Section IV
a good representation of real chain molecules such adescribes the main features of the MD simulations performed
n-alkanes, where the bond angles are fixed and the monomes test the theoretical predictions. In Sec. V the results are
units overlap. Some attempts of extending these theories &hown and discussed. Finally, Sec. VI is devoted to the con-
hard n-alkane models have recently appeated® At this  clusions of this work.
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Il. THE MODIFIED WERTHEIM EQUATION OF STATE vature,R, is ill defined, and therefore E(4) is not a suitable
definition for @. The reason is that in a nonconvex body

According to Wertheim’s first-order perturbation theory, there are several planes tangent to the surface and whose

the equation of state ofm jointed hard spheres is given

by16:17 normals are along the direction defined by the polar angles
Y (®,®d). This problem is usually overcome using any of the
p 1+y+y?—y? two following approaches:
Z= ,Tr:(m) (1-y)° Criterion 1: Equation(4) is kept as the definition o,
) butR is taken to be the mean radius of curvature of a convex
C(m=1) 1+y—y“/2 i body of “similar” shape to that of the original nonconvex

molecule.

" Criterion 2: In this case, one takes notice of the fact that
B is well defined for either convex or nonconvex molecules.
Thus, one can use E(p) as the definition ot, regardless of
y=pV, (20 the shape of the molecule. This was first proposed by
Rigby3?

For nonconvex bodies, these two choices yield slightly
different values ofw, but the differences are rather small
provided that a reasonable choice for the mean radius of
curvature is made. For instance, for hard diatomic molecules
these two criteria yield values af which differ about 396°
B/V=1.5m+2.5. 3) The connection between Wertheim’s treatment of hard

Boublik*® has shown that virial coefficients obtained from polym_erlgn;(())dels and scaled particle theory was made by
Eq. (1) are linear functions of. According to Eq.(1), the ~ Boublik,=“"and independently by Walsh and Gubb_?ﬁ_s.
EOS and virial coefficients ah jointed hard spheres do not 1hese authors were able to show that for the freely jointed
depend on the bonding angle between the spheres and d@pdel, the seco_nd_ vmgl coefﬁmentlof Wertheim’'s EOS,
pend only on the number of spheres forming the moleculedVen by Eq.(3), is identical to that given by EdS) pro-
This is obviously an approximation. For instance, for a rigid Vided thata is defined through criterion 1 aridis taken as
linear molecule(bonding angle equal to 180°the fourth that .of thg spherocylllnder envglop!ng f[he chain in its linear
virial coefficient becomes negatR/efor large values ofn, conf|gurat|on.' W|th this approximation it can be shown that,
whereas Eq(1) predicts positive values. Second, rigid linear Or the freely jointed hard sphere modei,anda are related
molecules form liquid—crystal phag8sor largem, whereas by
flexible models such as the freely jointed hard sphere do not
form liquid—crystal phasédor m as large as 200.

A body is called convex if any line segment connecting
two points on the surface of that body is completely con-
tained within that body. For a convex body there is one and 1+y+y>—y8 1+y—y2/2
only one plane which is in contact with the surface of the Z=(2a—1)————3——(2a—2) 7—————>.

) >e . (1-y) (1-y)(1-y/2)

convex body and whose normal is along the direction defined
by the polar angles®,®). This is called the supporting @)
plane for the direction especified b§) (P). The perpendicu- Equation(7) will be denoted as the modified Wertheim
lar distance from the origilocated inside the bodyto the  equation. With the choice made by Boublik and Walsh for
supporting plane is denoted as the supporting function. The of a freely jointed hard sphere model, Ed) reduces to
mean radius of curvaturd®, is just the average of the sup- Eg. (1). An important advantage of E¢7) over Eq.(1) ap-
porting function over all possible directions defined by thepears when dealing with hard polymer models in which over-
polar angles @,®). Further details concerning convex body lapping between bonded monomers is allowed. In this case,
geometry may be found elsewhére! In scaled particle the nonsphericity parameter can be estimated and inserted
theories of hard convex molecules, it is common to define @nto Eq. (7), whereas it is not so clear how to define the
nonsphericity parameter as parametem to be used in Eq1). Therefore, one of the main

a=RY3V ) applications of Eq(7) is the study of hard polymers where

’ there is overlapping between bonded spheres. In fact(7q.

whereS is just the area of the surface of the molecule. It canhas been tested with quite good results for a number of hard
be proved rigorously that the second virial coefficient of amodels?®?! and for realistic models of hantalkane<?23
hard convex particle is given By 3! In this work we are interested in obtaining an equation of

B/V =1+ 3a. (5) state for a polymer model which is composed of monomeric

units with fixed bond length, and with a Hamiltoni&hde-
Therefore, for hard convex bodies Bd) or (5) can be  scribed as

considered as the definition of, since both yield identical
results. For hard nonconvex particles the mean radius of cur- H=Hjat Hinter, (8

(1=y)(1-y/2)’

wherem is the number of spheres composing the polyme
molecule. The packing fractiop is defined as

whereV is the molecular volume angl is the number den-
sity defined ag=N/V'. N is the number of chains and is
the total volume of the system.

The second virial coefficier® as obtained from Eql)
is given by®

=2a—1. (6)

By replacing Eq(6) into Eq. (1) one obtains
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1 ) We shall define now the nonsphericity parameter of a
Hinga= 2 7 Ko(cod 0) —cod b)) +Ei Utor( &) given conformeii, «;, by the criterion 2 so that
Bii/Vi =1+3ai, (14)
+ inzt:’a UredTij ) ©) whereV; stands for the volume of conformerBy replacing

Eqg. (14) into Eq. (13),

Hinter= inzter urep(rij)a (10 B=2 X;i(V;+3a;V)). (15
1

wherek, is the force constant of the bending potential for the  In what follows we shall denote the average value of a

bond angled, 6. is the equilibrium bond angley,(#) isthe  given property A ag\, and will by obtained from the relation

torsional potential, which depends on the value of the tor-

sional angle¢, andu., means a short-range repulsive site— K:E XiA; (16)

site potential, for instance, a hard sphere site—site model, or

the repulsive potential proposed by Weeks, Chandler, ando that

Anderseri® (WCA). Obviously this is a formidable problem N

which can only be tackled after some approximations. Our B=V+3aV. 17

theoretical approach in search of an equation of state for the = Since the different conformers of awmalkane differ sig-

system described by Eq&)—(10) can be stated as follows: nificantly in «; but not inV;, Eq.(17) can be approximated
(i) We shall fix the bond angles to their equilibrium val- g5

ues. In Ref. 23 it was shown that bending vibrations do not - -

affect much the equation of state of thealkane, provided B=V+3aV (18
that the bending constaky is sufficiently large. Therefore, ¢, finally,

fixing bond angles to the equilibrium geometry appears as a _ _

reasonable approximation. B/V=1+3a. (19

_ (i) Following our treatment of Ref. 22, each molecule  gqation(19) allows an estimation of the second virial
will - be tr_eatAed within - the rotational isomeric state qefficient of a hardi-alkane model. The only requirement is
approximatiori” (RIS). For instance, for am-alkane model e knowledge of the second virial coefficieBt , and vol-

three rotational states, trangl), gau_ché (97), and umeV; , of each conformer of the flexible model. Since we
gauche (g-) are defined for each torsional degree of free-5.q ysing criterion 2 for defining; we can also state that an
dom. We assign a certain energy to the gauche state witBsimation of the second virial coefficient of the hard flexible
respect to the trans state, and this energy is denotddl, as 6qe| can be achieved, if the nonsphericity parameter of the
which is a function of the temperature, and a functional of§iterent conformers is known. We emphasize that @) is

the torsional potential used Within the RIS approximation, ot exact, but it should provide a reasonable estimate of the
the system is regarded as a multicomponent mixture. Fof e second virial coefficient B which is given by EdJ).
instance, n-butane is regarded as a mixture of trans, (iv) The EOS of the system described by E@—(10)
gauché and gauche conformers. is obtained by replaciny by V, and « by a in Eq. (7).

(i_ii) The next step is the estimation _01_‘ the sego_nd Viria'Therefore, the EOS proposed in this work is given by
coefficient of the system. The second virial coefficient of a

multicomponent mixture is given by — 1+y+y’-y? — 1+y—y?I2
Z=Qa-1)———F——(2a-2) s,
(e Dy~ a )
Bzizj XinBij , (11) (20)
a=2 a, (21)

wherex; andx; are the molar fractions of conformersand

j, respectively, and;; is the second virial coefficient be- _

tween conformer and conformeilj. Unfortunately, Eq(11) y=p>, XV,=pV. (22

is still quite involved for practical calculations. The number

of virial coefficients,B;;, to be evaluated increases rapidly It should be understood that the molar fraction of each

with the length of the chain. By approximatigy; as conformer,x;, is computed at zero densitideal-gas popu-
lation), and therefore it is a function of the temperature but

_ (B +Bjj) not of the density. In previous watkit has been shown that
i 2 ' (12 changes ok; with density at a given temperature are small,
and therefore the use of the ideal-gas population for defining
Equation(11) can be rewritten as: the averager introduces little error in the computed equation
of state. The second virial coefficient obtained from Ef)
= B is given by Eq.(19). Therefore, one expects good results for
B=2 xB; (13

i the equation of state at low densities when E2§) is used.
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The scheme represented by stéps(iv) has been ap- obtaina andV a MC simulation of an isolated chain will be
plied for hardn-alkanes up ta-octane?®* In Ref. 22 the  performed. For each conformer the valuesvpfandB;; (or
second virial coefficients of the different conformers of a;) are evaluated. The average valiesnd a are obtained
hard n-alkane model were computed numerically, and theat the end of the MC run. In order to keep the computer time
predictions from Eq.(20) were compared with simulation of the MC run within reasonable limits, the evaluation of
results forn-butane andh-pentane. The theory was further «; of each individual conformer must be obtained with little
tested® by comparing simulation results ofrhexane, computational effort.
n-heptane, and-octane with the theoretical results obtained  All that is now needed for a full development of the
from Eqg.(20). The results were again quite good. It would betheory is a method for estimating the second virial coefficient
quite useful if the theory could be extended to longerB;; (or «;) of a given conformer of a long chain molecule.
n-alkanes. An empirical method for estimating; is presented in the

There are two problems in extending the theory de-next section.
scribed by stepé)—(iv) to longern-alkanes models. The first
problem arises from the fact that a complete enumeration of
the conformers of am-alkane becomes almost impossible |||. ESTIMATING VIRIAL COEFFICIENTS OF HARD
for largen (the number of conformers of aralkane model CHAIN CONFORMERS
grows as 37%2). The second problem is that the exact _ ) o )
evaluation ofB;; (and hence ofy;) for each conformer must In this section an empirical procedure to estimate the
be performed numerically, as shown in Ref. 22. The numeri§econd virial cogfﬂuent of the d|ﬁeren_t conformers of a flex-
cal evaluation oB;; for a given conformer of, say-octane, ible molecule will be proposed. In this word of a given

takes several hours of CPU time in a common workstationconformer or molecule will be defined through Ed4), and

Therefore, the rigorous evaluation af cannot be achieved therefore the estimation of the second virial coefficient cor-

with the present computational resources. However, we Sharlpsponds to the estimation of the nonsphericity parameter

show how the problem can be treated if E(&l) and (22) i - .
are somewhat modified for long chains. An interesting obserl— Inlorde\r/to %St'm?t&éswglfga" us«la Ef"‘g' Th? WO'ITCL;)'
vation is that in order to use EqR0), all what is needed is ar volumeV and surfaces will be evaluated analytically by

= . ) using the algorithm proposed by Dodd and Theoddrom.
2 andV as d(-?-flned .by. Eq42]) and(22). The .evaluat|on.of general, the conformers appearing in a flexible hard chain are
a andV requires(within the RIS approximationto sum in

I bl ‘ ¢ th nonconvex bodies. Therefore, their mean radii of curvature
Egs.(21) and (22) over all possible conformers of the sys- . i\ defined. This problem is usually overcome by taking

tem. However, a good estimation of the average can be Oliq ean radius of curvature of a convex body with a similar
tained even if the summation in Eq1) and (22) is re-  ghape 1o that of the molecule. Alejandeeal3® have pro-
stricted over some representatiiiee., largex;) conformers ,qeq a numerical algorithm to evaluate the mean radius of
of the system. Notice that the same idea is used in COMPUtey,rature of the convex body enveloping the nonconvex
simulations, where reliable thermodynamic averages are obyglecule. This algorithm was us¥dto evaluate the non-
tained by sampling small regions of the phase space, insteaghnericity of the different conformers afbutane. The evalu-
of exploring exhaustively the phase space of the system. Weijon of R with the algorithm of Alejandret al. is computa-
can therefore perform a relatively short Monte Carlo 5imU|a‘tionaIIy faster than the evaluation of the second virial
tion of an isolated chain, generating, say, 50 000 conformergygefficient of the model. As it will be shown later, the algo-
and take the true average of the volume and nonsphericityfthm of Alejandreet al. for determiningR provides good
parameter as the average over the Monte Carlo run. We emgstimates of the second virial coefficient of short hard
phasize that our Monte Carlo refers to only one moleculen-alkane models, but it seems to deteriorate for longer ones.
since we are evaluating ideal-gas averages. For obtainingherefore, an algorithm for determiniiywith accuracy for
V, the volume of each individual conformeV,, is com-  short and long hard-alkane chains is needed. We shall de-
puted by using the efficient algorithm proposed by Dodd andcribe an algorithm which satisfies this condition.
Theodorou®® In order to computer, the nonsphericity pa- In this work, the mean radius of curvature, will be
rameter of the individual conformersy;, must be deter- taken from a parallelepiped with sides b, andc. The
mined. According to Eq(14) that requires the value of the parallelepiped is a convex body, so that its mean radius of
second virial coefficient for each individual conformer. It is curvature is well defined. The mean radius of curvature of a
not convenient to evaluate the exact second virial coeffiparallelepiped of sidea, b, andc is given by®
cients of each conformer generated in the MC run, since that atbic
would take a huge amount of computer time. From this dis- R=——. (23
cussion it is clear that a fast algorithm to estimate the second 4
virial coefficient of a given conformer of a long chain is also The problem is how to obtaia, b, c. It would be de-
required. Only in this way could the average valuengfbe  sirable that the parallelepiped have a similar shape to that of
computed in a reasonable amount of time. Therefore our stefie molecule. One possibility is to choose the parallelepiped
(iv) of the theory is modified for long chains: so that its three principal moments of inertia match those of
(iv) The EOS of the system is given by E@0). To the conformer. We shall use this choice in the present work.
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The three principal moments of inertid, 15, andl§, of a  TABLE I. Nonsphericity parameters; of hard models of-hexane, and

parallelepiped with sides, b, ¢, total masdM, and uniform  n-heptane conformers as determined from &0 from Eq.(34), and from
densitv through all the body are iven38 the method of Alejandret al. (see Ref. 3p Exact values are taken from the
y 9 y 9 y second virial coefficients of Ref. 22.

M
1P= 1_2( b%+c?), (24) Exact Eq.(4) Eq. (39 Alejandre
ttt 1.4253 1.4495 1.4174 1.4398
M ttg 1.3795 1.4119 1.3799 1.3889
5= 1—2(a2 +c?), (25) tgt 1.3807 1.4064 1.3743 1.3946
tgg 1.3215 1.3613 1.3292 1.3389
M gty 1.3282 1.3701 1.3380 1.3415
1P=__ (a2+Db?). 26 gtg’ 1.3371 1.3695 1.3374 1.3541
3 12( ) (26 099 1.2758 1.3192 1.2871 1.3031
o o ttt 1.5287 1.5506 1.5175 1.5459
Now the three principal moments of inertia of the hard g 1.4821 1.5130 1.4799 1.4959
conformer,l$, 15, andl§, should be calculated. This will be  ttgt 1.4813 1.5092 1.4761 1.4897
done by calculating the three eigenvalues of the inertia ten- 199 Laz27 1.4622 1.4291 1.4358
sor. The hard conformer is made up of hard spheres. We shall tgtg, 1.4310 1.4672 14341 L1.4475
1.4412 1.4659 1.4328 1.4599
assume that all the spheres have equal mass, and that they,q 1.4165 1.4532 1.4201 1.4294
mass is homogeneously distributed within each sphere. The gitg 1.4360 1.4746 1.4415 1.4426
reason for this is that we are trying to reproduce the shape of gttg' 1.4191 1.4646 1.4315 1.4246
the molecule and this goal is better achieved if the mass of 999 1.3745 1.4146 1.3815 1.3993
each nuclei is spread through all the site. According to that, g“g,’ , 1.3423 1.4088 1.3757 1.3r27
L ; 29 gtg'g 1.3839 1.4230 1.3899 1.4056
the element,k of the inertia tensot; , is calculated 9999 1.3307 13721 1.3390 13657

- 2(d\?2
| I 1
|i,k:|21 M g(f +; (fj)2)5i,k_rirk : (27)
whereu, andd, are the mass and diameter of diteespec-
tively, 6; \ stands for Kronecker’s delta{ is theith coordi-
nate of sitd referred to the center of masses of the molecule
and n is the number of monomer units. Although in this work

we_focus on_ cr;alns" r?lade up of |d§nt|palh5|t® th?t former (tt..t) is subtracted from that of the other conformers
'“'I_’“ and_d;]—d(_iﬁ or all the monomer umri:smt ece;se oha_ of Table 1, it can be seen that the differences obtained
gﬁoyl;?deL\év't 0 Ioftzce)zgln:grlﬁ??/z)lt r::z’;f ?hZiiz OTE;Cis Ssl(t)ethrough our estimate agree quite well with the exact ones.

proportiona . ' Tpis is important, since it indicates that the theory is espe-
because the contribution of each site to the general shape 8|ally good in describing differences in the nonsphericity pa-

the moIec.uIe S pro.portlonal to its volume, but not 10 1S - 1 eter between the different conformers. That suggests that
mass, which is an irrelevant variable when describing thghe estimate ofy, can be further improved. In fact, if the
| . l

;nrﬁzlaﬁlc ggﬁgﬁg&e{é ?hzeri\gl/eaczcljayigasgiltl::tt%rg n;iarl‘t?_s 4second virial coefficient of a given conformésay, the all
P P trans conformeris known, the difference of nonsphericity

galu;gr;fgigfs'eng?f Og:gﬁe?gnifoég]i; aéreuI;T?]:v;s,S'thte:hsuesa(; etween such a conformer and the all trans conformer can be
4 P PP q ’ stimated by using E¢4). Thus, a better prediction af; for

taining the parametess b, andc required for the evaluation the considered conformer is obtained. This improved predic-

conformers obtained from Ed4) are compared with their
exact valuegobtained from Eq(14) and the data of Ref.
22]. The model is that described in Ref. 22. It can be seen
that Eq.(4) yields quite reasonable estimatesaf. More-
over, when the nonsphericity parameter of the all trans con-

of R: tion of «; for a given conformer can be written as
pP—|cC
=11, (28) _ RiS  Ru.tSt.t 31
1B=1S, (29 GTOTI BT TV, ) (Y
[P=|c (30) where the subindekt..t stands for the all trans conformer.
37 '2-

For applying Eq(31) the second virial coefficient of the all
In Egs. (28)—(30) the total mass of the parallelepiped, trans conformefand hencex,; ;) must be known. In prin-
M, was set equal to the mass of thealkane, given by ciple, B of the all trans conformer could be evaluated nu-
nu. Oncea, b, andc are obtained from Eq$28)—(30), then  merically. However, an even simpler procedure yields quite
R is obtained from Eq(23). Thus our procedure to estimate good results. The all trans conformer is an almost linear mol-
a; can be summarized by saying that we use @jj.taking  ecule. Therefore it is a good idea for this particular con-
S andV as the surface and volume of the conformer, Brd former to takeR as that of a spherocylinder of lengthand
as the radius of curvature of a parallelepiped with principawidth d. ForL we take the distance between the first and last
moments of inertia identical to those of the conformer. Themonomeric units in the all trans configuration. The mean
estimate ofy; for a given conformer requires very little com- radius of curvature of a spherocylinder of lengtland width
putational effort. In Table | estimates af for somen-alkane  d is given by®
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TABLE II. Compressibility factorZ of repulsiven-alkane modelsn is the  the procedure proposed by Alejandzeal 3 These authors
number of carbon atoms . The reduced densify*is:N/V' 0%, Zryeo, and  used Eq(4) for estimatinge; but with a different choice for
Zyp are theoreticalfrom Eq.(20)] and simulation results, respectively. The g ¢ is seen that the estimate of from the method of
simulation results were obtained for the WCA model described in Sec. IVAI d 136 d h th |
MD results forn=6, 7, 8 were taken from Ref. 23 while those for12, 16, ejandreet al.™ is in good agreement with e_exaCt values
30 were obtained in this work. Forsg, and G, results were obtained for  Of a; . Therefore Eq(34) and the method of Alejandret al.
the n-alkane model of Ref. 5. Simulation results foggCand Ggo were yield similar predictions ofw; for short hardn-alkane con-
taken from Ref. 5. MD results for equimolar mixtures of WQ@Aalkane formers. However. for Iong chains. estimates of the nonsphe—
models are also given. The 48 mixture denotes an equimolar binary . .. . ! !

ricities obtained from Eq(34) and from the methodology of

mixture of Gq, and G. . . S .
Go © Alejandre et al. differ significantly. For instance, for the

n p* Zwo Zheory model of G, described in the next section, the valuesaof
5 0.11815 3.0) 3.04 [see Eq.{(21)] obtained from Eq(34), and from the method
6 0.20085 7.28) 711 of Alejandre et al. are 3.6838 and 3.2967, respectively. In
6 0.2954 20.7) 21.19 order to elucidate which one of these two methods gives the
7 0.10042 3.18) 3.09 best prediction for, low-density results for the equation of
7 0.17722 8.08) 7.80 state, obtained from E¢20), using the two values of
7 0.25401 21.48) 21.83 . . . )
8 0.08861 3.260) 323 mentioned above, were compared with MD S|mulat|on_ re-
8 0.15359 8.11) 7.98 sults. It was found that, whereas the value 3.6838 yields
8 0.2245 23.@) 23.57 quite good agreement with the MD results, the value 3.2967
12 0.030796 1.99) 1.98 yields too low pressures. Although this test is not conclusive
i; 8-222232 1?-;?3) 12‘;; it suggests that Eq34) yields better predictions of the sec-
16 0.023445 2_'1@0) 518 ond virial c_oefficients than the me_thod of AIejandeEaI._
16 0.058613 6.43) 6.38 Therefore, in what follows Eq.34) will be used as the esti-
16 0.093781 17.988) 18.21 mate of ; for a given conformer. The contribution of the
30 0.012773 2.8@) 2.80 correction[second term on the right-hand side of E8@)] is
gg 8-821832 22-2(‘3)4) Zg-gg important for harch-alkanes models with less than 16 carbon
50 0.04699 1182 127 95 atoms, and becomes very small for longer chains. Therefore,
100 0.02353 217.64 213.59 for chains longer than 30 carbon atoms the second term on
10+6 0.08861 3.2m) 3.23 the right-hand side of Eq34) can be neglected.
10+6 0.15359 8.1®) 7.98 Our algorithm for the determination of the EOS of the
1(2)12 g-ggggg Zggg; 2;-;32 molecule can be summarized as: B
1244 0.15359 8:095) 5.02 (1) Use of Wertheim’s EOS witim replaced by 2 —1

12+4 0.22450 23.00) 23.72 andV by V, as shown in Eq(20). B

(2) The average value of the nonsphericity, and vol-
umeV are obtained from a Monte Carlo run of an isolated
chain with fixed bond lengths and angles, and with torsional

L d degrees of freedom treated within the RIS approximation. If

R=7+5 (32 the model presents intramolecular interactions they will be
included in the MC run.
For the all trans conformemry, . can be estimated with (3) The value ofe; for each conformer appearing in the
very good results as Monte Carlo run is estimated from E(B4).
(L/4+ dI2)S, In order to check the proposed algorithm some MD
N (33)  simulations have been performed fealkane chains. In the
t.t next section some details concerning these simulations are
By replacing Eq.33) into Eq. (31) one obtains given.
RS (LIA+d2—Ry Sy

%= 3y, Vg . (34 V. SIMULATION METHODOLOGY

Equation(34) is the working expression for the estimate The theory described in Secs. Il and Il can be applied to
of «; proposed in this work. The subindéxstands for the hard polymer models. Hard models are not very convenient
properties of the conformer In Table | the value o;, as  for MD simulations since the potential is discontinuous. Be-
estimated from Eq34), is compared with the exact value of cause of that, MD simulations were performed for a repul-
a; from Ref. 22. It can be seen that E@®4) yields quite  siven-alkane model with a continuous potential. The studied
good predictions of the second virial coefficient of the dif- model is similar to that of Ryckaert and Belleman8ach
ferent conformers of the hardalkane model. This is impor- methylene or methyl group is modeled as a single site placed
tant since Eq(34) reduces the computational effort of deter- at the position of the carbon nucleus, as shown in Fig. 1. The
mining «a; by several orders of magnitude with respect to amasses of both the methylene and methyl groups are consid-
rigorous evaluation of the second virial coefficient of theered equal, and set to 2.44. 10" 26 kg. The bond distance is
conformer. We also include in Table | the estimaterpfrom  fixed tol=1.53 A by imposing holonomic constrairftsThe
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In order to compare the MD for the WCA potential with
the theoretical results it is necessary to define the hard model
which corresponds to the simulation model. We need:

(a) To define the hard body which corresponds to each

WCA conformer.

‘ (b) That the population of conformers at zero density of
the hard model, and of the WCA model be the same. Accord-
ing to that, excluded volume interactiofimteractions be-
tween carbons separated by more than three bandst be

. 4 described with the same potential in both theory and simula-
tion. Therefore, we shall use the WCA potential for describ-
ing excluded volume interactions within the theory.

For defining the hard body which corresponds to each
WCA conformer(step a each site will be replaced by a hard
‘ sphere of diameted. We shall use the Barker—Henderson

prescriptiof® for obtaining the effective hard sphere diam-
eterd, which corresponds to the WCA sites. Therefatas
obtained at each temperature from the relation

2106,
o d=f (1—exp(— Buwca))dr. (38
FIG. 1. Model used in this work. 0

Its value for the WCA potential of this work, when evaluated
at T=366.88 K, isd=3.7109 A.

value of the equilibrium bond angle—C-C is #,=109.5° The population of conformers of the hard model at zero
and the following bending potential was used: density is obtained within the RIS approximation. According
Up(COS 8) = Lk ,(COS O COs )2, (35) to our previous treatment, the energy of the gauche con-

former relative to the trans conformd, is temperature de-
where @ is the current value of thE—C—Cangle andk, is  pendent. It can be obtained for a given torsional potential
the force constant which has been set to 520 kJ/mol. In alirom Eq.(14) of Ref. 22. When evaluated &t=366.88 K for
the cases, the torsional potential used in the simulations i#he torsional potential of Ryckaert and Bellemaitsyields
that proposed by Ryckaert and Bellemanshich will be  3337.83 J/mol.

denoted asigg. Intermolecular and intramolecular interac- The theoretical EOS for the WCA model used in the MD
tions are given by a WCA-type potenti: simulations is obtained as follows:
1 6 (1) The EOS of the chain is given by EqR0).
g g 2) The average value of the nonsphericity and volume
UWCA— 2l (=] —[=] |+e r<2, @ _ A 9 y and !
r r a andV, are obtained from a Monte Carlo run of an isolated

chain with fixed bond lengths and angles, and with torsional
degrees of freedom treated within the RIS approximation.
with e/k=72 K and 0=3.923 A. Intramolecular interac- The energy of the gauche conformer relative to the trans is
tions, as given by Eq€36) and(37), are only included be- 3337.83 J/mol. Excluded volume interactions are described
tween carbons separated by more than three C—C bonds. by the WCA potential. In the MC a reptation algorithm is
all the studied systems the value of the temperature wassed for generating the conformers of the isolated chain.
T=366.88 K. During the simulation, the temperature was (3) The nonsphericitya; of a given conformer which
kept constant with the help of the Noddoover appears in the Monte Carlo run is estimated from &4).
thermostaf?! and the equations of motion were solved with The hard conformer is obtained by keeping the C—C dis-
the leap-frog algorithri? In all the cases, the simulation tances to 1.53 A and by using a hard sphere diameter of
sample was composed of 64 chains. The molecules werg=3.7109 A.

contained in a cubic box with periodic boundary conditions. ~ The reader may wonder why the WCA potential is con-
The time step was set to 1.0 fs. The typical time for equili-sidered for describing excluded volume effects in the MC
bration was 70 ps and after that the simulation run lengthrun, instead of using a hard body potential. The explanation
was 700 ps. Submeans were collected every 70 ps. The res as follows. When the WCA potential is used, thg se-
sults we present for the simulations are the average of thquence is somewhat unfavorakif@ositive energy, whereas
submeans. The uncertainty was estimated as the standard der the hard model this sequence is suppressed, since there is
viation. In addition to the MD simulations of pure WCA a small overlap between the first and the last carbon of the
n-alkane models a few simulations were performed forsequence. The characteristic propertiead—end distance,
equimolar WCAnN-alkane mixtures. Simulation details are mean radius of gyratigrof an n-alkane model in whiclyg
similar to that described for the pure compound simulationssequences are permitted are different from those of another

uWA=0, r>2"%g, (37)
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model in which they are suppressed. Properties of chain MOIFABLE 1il. Mean-square radius of gyratiots?) of WCA n-alkane models
ecules are sensitive to the details of intramolecularin o’ units) as predicted by the theory and as obtained from MD simula-
interaction? Conformational space should be sampled intions of this work. Simulation results forsg, and Ggo are from Ref. 5.

. educed densities as in Table II.
the same way in both theory and MD. Therefore, excludeciQ

volume interactions will be described by the WCA potential n p* () (Preon
within the theory.

The number of steps of the MC ranges from® for g 8'83232? g'gg 8'3528
short chains up to fofor a chain of 600 monomers. Long 12 0123185 0.908) 0.9280
runs are needed for the polymer model of 600 monomer 16 0.023445 1.488) 1.5088
units, since polymers of this size present long relaxation 16 0.058613 1.479) 1.5088
times* The first half of the MC run corresponds to the 16 0.093781 1.473) 1.5088
equilibration of the chain, and the second half was used for 28 gzgiggg g:gg jégfé
obtaining averages. All calculations described in this work 30 0.051093 3.940) 4.2042
were performed in a workstation Alpha 3000/600 and com- 50 0.04699 7.96) 8.44
puter times will refer to this machine. Determination of the 100 0.02353 18.891) 23.71

theoretical EOS for the £ chain requires about 10 min of
CPU time. That should be compared with the 200 h that
would require ten MD simulation runs at ten different densi-
ties. For the Gy, determination of the theoretical EOS took
about 24 h.

The methodology described in Secs. II-IV allows one to
obtain the EOS of a hard or soft repulsive polymer model.

sults show that the mean square radius of gyration decreases
with the density, and this effect is found to be more impor-
tant as the length of the chain increases. This is consistent
with Flory hypothesis which state that excluded volume in-
teractions are screened out in the dense liquid. The theory of
this work predicts a radius of gyration which does not de-
pend on density. Whereas this is reasonable for chains up to
Cio0, it is clear from the results of Table Il that for longer

In Table II, the compressibility factor for the repulsive chains that will be a poor approximation. To overcome this
models ofn-alkanes described in Sec. 1V, are presented agjiyation, the effect of density on the shape of the chain
obtained from MD simulations and from the theory of this gshould be taken into account. Some attempts to overcome

theory and simulation is remarkably good, and it does notpgins?®

deteriorate(at least for then-alkanes considergdvith the In Fig. 2, the compressibility factor of-hexane,
length of then-alkane. In Table II, we also compare theoreti- n.qodecanen-hexadecane, amtriacontane are represented
cal predictions for the EOS of a repulsive model gf, @nd
C100 With the MD results of Browret al® The agreement is
also good. From the results of Table Il it can be seen that the
theory yields quantitative agreement with simulation, and in )
most of the cases the theoretical predictions are within the 407 /
simulation uncertainty. To our knowledge, this is the first
time that a theory yields quantitative agreement with simu- K
lation for the EOS of a realistic model of aralkane chain at 30 !
liquidlike densities. The explanation of such a good agree-
ment is difficult. We believe that approximations made in ’
Sec. |l concerning the estimate af and thus of the second
virial coefficient of the chain, can be considered as satisfac-
tory. However, we do not have amypriori reason to explain
why Eqg.(1) with m replaced by 2 —1 is performing so well

for n-alkane models. One possible explanation is that Eq.
(20) predicts that virial coefficients of a flexible molecule are
linear functions of the nonsphericity, and that seems to be
true for shorn-alkane modelé? In spite of the quality of the
results presented in Table Il, we expect somewhat worse re- 0.0 0.1 0.2 y 0.3
sults for longer chains. The reason for that is that we are

using the shape of the molecule as determined at zero density

for describing the shape of the molecule at any density. ObFIG. 2. Compressibility factoZ against packing fractioy for the WCA
viously he shape of e molecule depends to some extent oS00 2 U akcie Tl o ekt 7 el e
th_e density. In Table ”!’ the mean radius of gyration as Ob'theory(lines) for variousn-alkanes are presentedﬁz(ﬂiar)r/londs(MD results
tained from the MD simulations, and from the theory arefom Ref. 23 and full line; G,: circles and long-dashed line; & squares
compared for several repulsivealkanes. The simulation re- and dashed line, &: triangles and short-dashed line.

V. RESULTS
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TABLE IV. Mean radius of curvature, surface, volume, nonsphericity parameter, effective tangent sphere
number[see Eq.(6)] , m, average of the square of the end—end ve¢tdy, and square radius of gyration
(s?) for n-alkane models. Results are given dnunits whered is the BH effective hard diameter of the

monomer.
n R s Vv a m (r?) (s?
4 0.7668 6.8379 1.4275 1.1992 1.398 0.8435 0.1413
5 0.8431 8.0451 1.7276 1.2820 1.564 1.5306 0.2176
6 0.9232 9.2410 2.0272 1.3852 1.770 2.2624 0.3039
7 1.0000 10.4479 2.3263 1.4732 1.946 3.2012 0.4028
8 1.0765 11.6424 2.6252 1.5738 2.148 4.0757 0.5063
10 1.2303 14.0554 3.2235 1.7714 2543 6.4049 0.7569
12 1.3827 16.4534 3.8220 1.9710 2.042 8.8797 1.0371
16 1.6824 21.2545 5.0191 2.3661 3.732 14.5015 1.6862
30 2.6751 38.0738 9.2083 3.6838 6.368 39.0526 4.6985
50 3.9941 62.1396 15.1967 5.4442 0.888 81.0721 10.5670
70 5.0796 86.1068 21.1792 6.8859  12.772 122.5029 16.8505
84 57733  102.9374 25.3687 78120  14.624 160.6647 21.8285
100 64173  122.1301 30.1516 8.6667  16.333 175.9288 25.7747
200  10.0135  242.4879 60.0930  13.4718 25943 439.3549 62.0719

400 16.6352 482.7336 120.0184 21.7120 42.424 1426.2912 187.6450
600 18.5510 723.4109 179.9526 24.8664 48.735 1451.3465 201.2699

as a function of the packing fractigndefined by Eq(22). It {<15<15. We found that the MC averages bf, 15, and
is seen that for a given packing fraction the pressure int§ were quite different, indicating that the individual con-
creases with the length of the chain. That corresponds to thi@rmers are rather anisotropic. This anisotropy is not a spe-
idea that the nonsphericity of the molecule increases with theial feature ofn-alkanes. It should be reminded that simula-
length of the chain. In fact, it is well known from the EOS of tion and theoretical studies have shown that a random walk
hard bodies arising from scaled particle theory that for apresents a rather elongated and nonspherical sidpeidea
given packing fraction, the pressure increases as the nomwf the strong anisotropy ai-alkane chains can be obtained
sphericity parameter increases. by comparing the value af with the value of the nonsphe-
The nonsphericity parameter for the model described ricity of the all trans conformeky, ; (which is almost an

in Sec. lll, has been estimated fioralkane chains up to 600 extended linear model For instance, for the & and Ggq
carbon atoms by using E¢34) and the Monte Carlo proce-

dure described in the previous section. Results doare

presented in Table 1V, and in Fig. 3. For short chajsmall

n), the nonsphericity parameter increases linearly with the 30
length of the chainn. That was also found by Pavlicek and

Boublik for short chainé® However, for largen the increase

of & with n is not linear. In Fig. 3, the value af for the

freely jointed hard sphere model, as obtained from the sec-

ond virial coefficient data of Yethiragt al.*’ is also repre- 204
sented. Trends in the variation afwith n are similar for the

n-alkane models, and for the freely jointed hard sphere 1S
model. For a givem, the value of« is larger for the freely

jointed hard sphere model than for thealkane model. This

is expected, since the freely jointed hard sphere model has a 107
larger bond length than thealkane model. The results pre-
sented in Fig. 3 show that increases witm. That appears

to be in conflict with the idea that for large the molecule

can be described as a random coil of spherical shape. This

idea is wrong. The shape of analkane molecule is rather 0 I . ! . . .
. . . 0 100 200 300 400 500 600

elongated(see, for instance, Fig. 1 of Ref. 35 and Fig. 7 of n

Ref. 48. We checked that idea in two different ways. First, a

number of conformers generated during the Monte Carlo run B
were plotted and we found thatalkane molecules are quite FIG. 3. Nonsphericity parameter against carbon atom number n. Open
eIongated. Second. the three principal moments of inertia churcles:a for our model alkane as obtained by the MC procedure proposed

c .o c in this work atT=366.88 K. Open squares: for the freely jointed hard
the confprmerﬂ; , 13, andlg Were_analyzed- We ordered the sphere model as obtained from the second virial coefficients of Ref. 47.
three principal moments of inertia of the conformer so thatLines through the points are only a guide to the eye.
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FIG. 4. Effect of bond length on the compressibility factor fo,@nd  FIG. 5. Effect of bond angle on the compressibility factor fgp &nd G as
Cso, as predicted by the theory presented in this work. Full line: results forPredicted by the theory presented in this work. Full line: results for our
our model, with =1.530 A. Long-dashed line: results fior1.299 A. Short- ~ Model, 6=109.5°. Long-dashed line: results f@t=100°. Short-dashed
dashed line: results fdr=1.670 A. line: results forg=120°.

(i)  When the torsional potential makes the gauche con-
I former more unfavorable, then the pressure at a given
packing fraction increases. In any case, the effect of
changes in the torsional potential on the EOS is small.

n-alkanes the all trans conformers present nonsphericity val
ues of 4.1092 and 12.1052, respectively. This should be com-
pared with the values ok presented in Table IV. It is seen
that the anisotropy of the-alkane is smaller than that of the
all trans conformer, but of the same order of magnitude, It is important to emphasize that comparisons presented
giving an idea of the strong anisotropy of the chains. Fromin Figs. 4—6 were performed at a constant packing fraction.
the results of Fig. 3 it is difficult to extrapolate the behavior For instance, when the bond length decreases im{al&ane
of a at very largen. model (Fig. 4), the molecular volume and the nonsphericity
The quality of the theoretical results presented in Tableparameter are reduced. Therefore, if the number density is
Il gives us some confidence in the proposed methodology.
Some questions concerning the effect of changes on the bond
length, bond angle, or torsional potential on the EOS of the
repulsiven-alkane model can be analyzed. We shall start by
analyzing the effect of a change in the bond length of the
molecule, when all the other parameters are kept constant.
This is made in Fig. 4, where the EOS for a#alkane model
with 1=1.299 A1=1.53 A, and =1.670 A are plotted. The
rest of the characteristics of the model, i.e., bond angle, tor-
sional potential, temperature, and the WCA poterifial de-
scribing excluded volume effegfscorrespond to those de-
scribed in Sec. IV and are the same for the three bond
lengths. In Fig. 5, the EOS for severalalkanes models,
which only differs in the internal angle between bonds, is
presented. Finally, in Fig. 6, the effect of changing the tor-
sional potential in the EOS is shown. Two torsional poten-
tials, that of Ryckaert and Bellemans and that of Scott and
Scherag¥® (SS9, are compared. For the SS torsional potential
the value of the gauche energy is=R207 J/mol. The results
presented in Figs. 4—6 can be summarized as follows:

(i) A decrease in the bond length provokes a decrease in toct of th ol - o ity .
the pressure for a given packing fraction. FIG. 6. Effect of the torsmna_t potential on the comprgssml ity factor for

. . . Cys, Cis, and Gy. The full line represents results using the Ryckaert—

(i) ~ The increase of the bond angle provokes an increasgejiemans torsional potential, while the dashed line represents results using

in the pressure for a given packing fraction. the Scott—Scheraga potential.
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TABLE V. Nonsphericity parametet iyure, @nd volumeV e @s defined
from Egs.(39) and(40) for equimolar binary mixtures afi-alkane models.
The equimolar mixture & 8 denotes the pure compoung.C

Mixture V mixture Xmixture
8+8 2.6252 1.5738
10+6 2.6254 1.5783
12+4 2.6248 1.5851
50+50 15.1967 5.4442
70+30 15.1938 5.2848
84+16 15.1939 5.0890

kept constant for two models differing only in the bond
length, a strong decrease in the pressure will be observed
with the shrinking of the bond length. This decrease in pres-
sure is due to two factors, the decrease of the molecular
volume and the decrease @f By comparing the two models

at the same packing fraction, the trivial effect on the pressure
due to the change of molecular volume is removed. The re-
sults presented in Figs. 4—6, thus, represent the change in thi&. 7. Compressibility factor for equimolar mixtures of the repulsive
EOS of then-alkane model due to the change of shape of th@—alkane model, as predicted b_y the theory in this workg—‘@rt" mixture:

. . . _full line, Cg+ Cg; long-dashed line, &+ C,q; short-dashed line, & Cy,.
m0|efCU|e' A higher value of the pressure at a given pack'_ngwth the scale of the plot the three lines are almost undistinguishable.
fraction corresponds to a larger value of the nonsphericity:c . -sort” mixture: full line, Cyy+ Cy: long-dashed line, g+ Cyo; short-
parameter. As shown in Fig. 5, the nonsphericity parametetashed line, G+ Cg,. Symbols correspond to MD results for thg-€brt
increases with the bond angle. The increase of the nonsphguxture; circles G+ Cq; squares ¢+ Cyy; triangles G+ Cyo.
ricity parameter with bond angle has also been observed in
tangent hard sphere triatomic modé&se Fig. 8 of Ref. 51

Finally, we shall extend Eq20) to polymer mixtures. CrotCgo, and G,+ Cyg are also shown in Fig. 7. As it can
For simplicity we shall consider a binary mixture, although be seen, the pressure for a given packing fraction increases in
the treatment can be easily extended to multicomponent mixthe order @+ Cyg, Crot Ca9, and Go+ Cso. The reason for
tures. The two polymers will be denoted)Xasindw, respec-  that is thataxyre increases in this order, as can be seen in
tively . According to thatg, andV, will represent the mean Table V. To our knowledge the results presented in Fig. 7
nonsphericity and volume of polymar, and a similar nota- constitute the first prediction of the EOS of a binary repul-
tion will be used for polymerw. Let us assume that the sivep-alkane mixture, although for other hard chain mixtures
values ofa, andV, are known from an MC run of an iso- Previous results have been reportéd. -
lated chain of polymen, and that the same is true for the Given the success of the theory for describing the EOS

corresponding values of the chain. We shall define the ©f WCA n-alkane models it would be quite useful if the
nonsphericity and volume of the Mixtureymue and theoretical results of this work were fitted to some analytical

Vmixure: respectively, as formula. We include an appendix where such an analytical
_ _ EOS for the WCA version of the Ryckaert and Bellemans
Amixture™ Xn O\ XXy (39 model ofn-alkanes is given.
Vmixture= Xa VAT XV 5 (40)
wherex, is the molar fraction of polymek andx, is the VI CONCLUSIONS
molar fraction of polymerw. The theoretical EOS of the In this work, a new method to estimate the second virial

mixture will be given by Eq(20), with « andV replaced by  coefficient of a hard flexible molecule is proposed. The basic
O mixture> ANAV ixure Obtained from Eqs(39)—(40). In Table  idea is to average the second virial coefficient of the different
V, values of @yixure @Nd Vmixiure fOr several binary mixtures conformers of the flexible molecule. To estimate the second
are shown. In Fig. 7, the EOSs for equimolecular binaryvirial coefficient of each conformer we used ideas arising
mixtures of G+ Cg, Cg+Cg, and G,+C, are represented from convex body theory. The proposed method requires the
as a function of the packing fraction. As it can be seen, thevaluation of the surface, volume, and mean radius of curva-
EOSs for these three binary mixtures are almost identicakure of each conformer. For the mean radius of curvature, we
This is in agreement with previous findings concerning thetake that of a parallelepiped with the same principal mo-
insensitivity of the EOS to polydispersit§.A comparison ments of inertia as the considered conformer. The surface
between simulation results and theoretical predictions foand volume of the conformer are evaluated analytically. It is
these binary mixtures is shown in Fig. 7 and in Table Il. Asshown that the method yields reliable prediction for the sec-
can be seen the agreement between theory and simulationdasd virial coefficient of different conformers of short

quite good. Results for the binary mixturessy€ Csg, n-alkane models. Moreover, the determination of the second
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virial coefficient for a given conformer is quite fast. In order TABLE VI. Coefficients of Eqs(A2) and(A3) for the equation of state of
to estimate the second virial coefficient of a flexible chainthe WCA version of ther-alkane model of Ryckaert and Bellemans.
model, a Monte Carlo simulation run of an isolated chain is

lecul | vy 0.252204 as 0.155984
performed, Wh_ere the mean values of the mo ecular vo umev2 _543846K10°  a, 261533102
and second virial coefficient are computed. In this way, sec- 3.3365%10*  a, 3.96961X10~3
ond virial coefficients of hard flexibla-alkane models upto o, —1.0293%10°° a4 —1.72388%10°*
Ceoo have been computed. It is shown that the nonsphericity vs 0.277304 g *1-58987><10’j
increases with the length of the chain, first linearly for small Vs 5.9051K10°% 78212310
li ly for large. The increase of with v 36548410 Bu ~127818<10°
n, and then, nonlinearly ge , , / ve 9.9778%10°°  ay, 57172310
n found forn-alkanes is related to the increasing anisotropy 5, 0.4436 ass 1.95817%10°5
of the chains for largen. Molecules tend to be somewhat a, 0.152527 ay —6.9305%10°°
stretched and that explains the increases ofith n. ag —2.2193%10°%  a 1-0911%10’2
The EOS of hard flexible models has also been consid- 24 9.5792710°"  ay —4.78837<10

ered. We use Wertheim’s EOS for chain molectfiégswith
the number of monomeric unitsn, replaced by &—1.
Comparison with MD results of repulsivealkane models,
up to Ggo, shows that Wertheim’s EOS, combined with the of n-alkanes, we shall provide in this appendix an analytical
methodology proposed in this work, yields excellent predic-equation of state for the WCA version of thealkane model
tions of the EOS of hard-alkane models, ranging from proposed by Ryckaert and Belleman$his may be useful
n-butane up ton-100. Further work in order to obtain an for other workers in the area of flexible models and for future
explanation of such a good agreement is needed. work concerningn-alkane models. By applying the method-
The effect of a change in bond length, bond angle, anadlogy described in this paper, the valuesaofvere obtained
torsional potential on the EOS is analyzed. Reduction ofor severaln-alkanes with the number of carbon atoms rang-
bond length, bond angle, and gauche energy decreases tingy from 4 up to 100 and at several temperatures between
pressure for a given packing fraction. Finally, the EOS isT=180 and 1000 K. The obtained values ®@fwere fitted,
extended to mixtures. Good agreement between the theoretising a least squares procedure, to the following expression:
cal predictions for the EOS of the considered mixtures and
the simulations results was obtained. T=Tl72, (AL)
~ The significance of this work is that an almost quantita- 5 — (a, +a,T, +asT2+a,T3) + (as+agT, +a; T2
tive EOS can be obtained for relatively realistic repulsive
n-alkane models. The theoretical determination of the whole +a8T,3)n+(ag+a10T,+a11Tr2+ alsz‘)nz
EOS for ann-alkane model requires abioll h of CPUtime 2 3.3
in a workstation Alpha 3000/600. The determination of the + (gt an T +asTr+agel,)n’, (A2)

EOS of am-alkane model by MD simulations would require whereT is the temperature in Kelvin anis the number of

about 100 h of CPU time. It is clear that, in such COﬂditionS,Carbon atoms of the-alkane. We proceeded in an ana|ogous
the theory is still a useful tool. The code used to perform theyay for V which was fitted to the expression

calculations described in this work can be obtained from the — _ .

authors upon request. The methodology proposed in this Vv _[d ) 3
work may be quite useful for the application of perturbation o3 | o (03 +oaTrtvaTrtv,Ty)
theories to flexible molecul@since these theories require a

2 3

good equation of state for the reference repulsive system. In +(vstvel torTy +vglTr)n), (A3)
particular, a better understanding of the phase equilibria of T
n-alkanes can be anticipated. T =K (A4)
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obtained from Eq(Al) and Eq.(A4), respectivelya is ob-

APPENDIX tained from Eq(A2), and the packing fraction is obtained as

The theory proposed in this paper can be applied to dif-
ferent kinds of hard polymer models. Given the importance

*

%l <1

y=p (AB)
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FIG. 8. Compressibility factor at different temperatures for the WCA poten-

tial of the Ryckaert—Bellemans model of4C From top to bottom results
correspond to the temperatufgs-180, 366.88, 700, and 1000 K. The com-
pressibility factors were obtained from Eq#1)—(A6). Reduced density
p* as in Table II.

By substitutinga andy in Eq. (20), the estimate of the

compressibility factor for these conditions is obtained. As ars

example of the application of EqéA1)—(A6), in Fig. 8 the
compressibility factor for the WCA of £ at three different
temperatures as obtained from E¢&1)—(A6) is presented.
Equations(A1)—(A6) should not be used fon-alkanes or
temperatures out of the range of the fit.

1J. P. Ryckaert and A. Bellemans, J. Chem. Soc. Faraday Dis86s85
(1978.

2N. G. Almarza, E. Enciso, J. Alonso, F. J. Bermejo, and M. Alvarez, Mol.
Phys.70, 485 (1990.

3J. R. Elliott and U. S. Kanetkar, Mol. Phyg1, 871 (1990.

4D. Brown and J. H. R. Clarke, J. Chem. Phg98, 3062(1990.

713

13C. P. Bokis, Y. Cui, and M. D. Donohue, J. Chem. Pt88.5023(1993.

14E. Kierlik and M. L. Rosinberg, J. Chem. Phy&Z, 9222(1992.

I5E. Kierlik and M. L. Rosinberg, J. Chem. Phy89, 3950(1993.

16M. S. Wertheim, J. Chem. Phy87, 7323(1987).

W. G. Chapman, G. Jackson, and K. E. Gubbins, Mol. Pl{s.1057
(1988.

M. D. Amos, and G. Jackson, J. Chem. PH§8, 4604 (1992.

19T, Boublik, Mol. Phys.68, 191 (1989.

20T, Boublik, C. Vega, and M. D. Pena, J. Chem. PH83.730(1990.

213. M. Walsh and K. E. Gubbins, J. Phys. Ched¥, 5115(1990.

22C. Vega, S. Lago, and B. Garzon, J. Chem. Phys) 2182(1994.

23p, padilla and C. Vega, Mol. Phy84, 435(1995.

2R. P. Sear, M. D. Amos, and G. Jackson, Mol. Pt86;.777 (1993.

253, Phan, E. Kierlik, and M. L. Rosinberg, J. Chem. Phi®1, 7997
(1994).

2| A Costa, Y. Zhou, C. K. Hall, and S. Carra, J. Chem. PHy¥, 6212
(1995.

27C. Vega, S. Lago, and B. Garzon, Mol. Ph@g, 1233(1994.

M. R. Wilson, Mol. Phys81, 675(1994.

29T, Boublik and 1. Nezbeda, Collect. Czech. Chem. Comnfih. 2301
(1986.

30T, Kihara, Adv. Chem. Phys, 147 (1963.

3IM. P. Allen, G. T. Evans, D. Frenkel, and B. M. Mulder, Adv. Chem. Phys.
86, 1 (1993.

32M. Rigby, Mol. Phys.32, 575(1976.

33J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Piay$237
(1972.

34J. P. Flory,Statistical Mechanics of Chain Moleculég/iley, New York,
1969.

35, R. Dodd and D. N. Theodorou, Mol. Phy®2, 1313(1991).

36J. Alejandre, S. E. Martinez-Casas, and G. A. Chapela, Mol. FéBys.
1185(1988.

S7E. Enciso, J. Alonso, N. G. Almarza, and F. J. Bermejo, J. Chem. Pbys.

413(1989.

H. Hadwiger,Altes und Neues uber konvexe KorpBirkhauser, Basel,

1955.

L. D. Landau and E. M. LifshitzMecanica Vol. 1 of Curso de Fisica
Teorica(Reverte, Barcelona, 19Y5

“0R. Edberg, D. J. Evans, and G. P. Morris, J. Chem. P8¥,55933(1986.

“15ee, for example, S. NosBrog. Theor. Phys. Supdl03 1 (1991).

423, Toxvaerd, Mol. Phys72, 159 (1991).

433, A. Barker and D. Henderson, Rev. Mod. P8, 587 (1976.

44K. Binder, Observation, Prediction and Simulation of Phase Transitions in
Complex Fluidsedited by M. Baus, L. F. Rull, and J. P. Ryckaert, NATO
ASI (Kluwer, Dordrecht, 1996

48], Melenkevitz, J. G. Curro, and K. S. Schweizer, J. Chem. FBIy&§571
(1993.

46J. Pavlicek and T. Boublik, J. Phys. Che®6, 2298(1992.

SD. Brown, J. H. R. Clarke, M. Okuda, and T. Yamazaki, J. Chem. Phys."’A. Yethiraj, K. G. Honnell, and C. K. Hall, Macromolecul&5, 3979

100, 1684(1994).

5p. Padilla and S. Toxvaerd, J. Chem. PH34.5650(1991).

7J. Gao and J. H. Weiner, J. Chem. Ph9%, 3168(1989.

8R. Dickman and C. K. Hall, J. Chem. Phy&9, 3168(1988.

®B. Smit, S. Karaborni, and J. I. Siepmann, J. Chem. Phg® 2126
(1995.

10A. D. Mackie, A. Z. Panagiotopoulos, and S. Kumar, J. Chem. PH33.
1014 (1995.

13, G. Curro and K. S. Schweizer, J. Chem. PI8/%.1842(1987.

12K, G. Honnell and C. K. Hall, J. Chem. Phy80, 1841(1989.

(1992.

483, J. de Pablo, M. Laso, and U. W. Suter, J. Chem. P9,s2395(1992.

49K, Solc, J. Chem. Phys&5, 335(1971).

50R. A. Scott and H. A. Scheraga, J. Chem. Phi4.3054(1966.

S51E. A. Muller and K. E. Gubbins, Mol. Phy80, 957 (1993.

523, Phan, E. Kierlik, M. L. Rosinberg, H. Yu, and G. Stell, J. Chem. Phys.
99, 5326(1993.

53J. M. Wichert and C. K. Hall, Chem. Eng. Sdi9, 2793(1994.

%4C. Vega, E-mail address: cvega at eucmos.sim.ucm.es

5G. Jackson and K. E. Gubbins, Pure Appl. Ché&h.1021(1989.

J. Chem. Phys., Vol. 104, No. 2, 8 January 1996



