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An equation of state~EOS! for hardn-alkane models is proposed. This equation requires a previous
knowledge of the second virial coefficient of the hardn-alkane model. Since the numerical
determination of the second virial coefficient of chain molecules is computationally expensive, a
new method for estimating the second virial coefficient of hard polymer models is proposed. This
method yields predictions for the second virial coefficients in very good agreement with those
determined numerically. In order to test the proposed equation of state, molecular dynamics
simulations for repulsiven-alkane chains were performed. Excellent agreement was found between
theoretical and simulated pressures forn-alkanes with up to 100 monomer units. The effect of
changes in the torsional potential, bond angle, and bond length, on the equation of state of hard
n-alkane models is analyzed. The equation of state is also extended to mixtures of hardn-alkane
models. The proposed methodology provides an accurate equation of state for realistic models of
hardn-alkane molecules. An empirical formula describing the EOS of repulsiven-alkane chains is
given. © 1995 American Institute of Physics.@S0021-9606~96!51501-7#

I. INTRODUCTION

During the last years, a great amount of effort has been
devoted to the study of molecules with internal flexibility.
Computer simulation studies of flexible chain models either
by Monte Carlo~MC! or by molecular dynamics~MD! have
appeared,1–8 and the vapor–liquid equilibrium of flexible
models has been computed recently.9,10 From a theoretical
point of view, the interest has been focused on the determi-
nation of an equation of state~EOS! for hard flexible models.
It is expected that the attractive forces will be incorporated in
a perturbative way. Five different theoretical approaches
have been developed: the polymer reference interaction site
model integral equation11 ~PRISM!; an extension of the
Flory theory to hard flexible models, denoted as the general-
ized Flory dimer theory12,13 ~GFD!; the density functional
~DF! theory;14,15 and Wertheim’s theory of association,
which has been extended to allow for the study of hard flex-
ible molecules16–18 and is commonly named as either the
Wertheim theory~W! or the bonded hard sphere~BHS!
theory. The fifth theoretical scheme combines ideas of the
scaled particle theory and those of the Wertheim theory, and
will be denoted as modified Wertheim~MW!. The MW
theory uses the EOS proposed by Wertheim, but with the
nonsphericity parametera replacing the number of spheres
of the system.19–23 The freely jointed hard sphere model12

has been the subject to which most of the treatments have
been applied. Although this is an interesting model, it is not
a good representation of real chain molecules such as
n-alkanes, where the bond angles are fixed and the monomer
units overlap. Some attempts of extending these theories to
hard n-alkane models have recently appeared.22–26 At this

moment it is not clear which of the different proposed treat-
ments, namely, PRISM, GFD, DF, W, or MW theories, pro-
vides a better description of the behavior of hard chain mol-
ecules, so that they can be considered as complementary. For
the particular case of hardn-alkane models, we have recently
showed that the MW theory provides a very accurate de-
scription of the equation of state fromn-butane up to
n-octane.22,23Motivated by this success, the extension of the
MW treatment to longern-alkane models and to binary mix-
tures appears as the natural next step. That constitutes the
main purpose of this work.

The importance of having a good equation of state for
hardn-alkane models and their mixtures should not be over-
looked. Perturbation theories and empirical equations of state
usually divide the total pressure in a contribution arising
from the repulsive forces, and another arising from the at-
tractive ones. Therefore, it is quite important to have good
equations of state for the repulsive part. The importance of
n-alkanes in the petrochemical industry is large and therefore
the attempt of describing hardn-alkane models seems worth-
while. In addition to that, some interesting issues such as the
role played by bond length, bond angle, and torsional poten-
tial on the equation of state of the repulsiven-alkane model
may be explored.

The scheme of this paper is as follows. In Sec. II the
extension of the MW theory to longn-alkane molecules is
presented. In Sec. III a new method for estimating the second
virial coefficient of a hard conformer is proposed. Section IV
describes the main features of the MD simulations performed
to test the theoretical predictions. In Sec. V the results are
shown and discussed. Finally, Sec. VI is devoted to the con-
clusions of this work.
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II. THE MODIFIED WERTHEIM EQUATION OF STATE

According to Wertheim’s first-order perturbation theory,
the equation of state ofm jointed hard spheres is given
by16,17

Z5
p

rkT
5~m!

11y1y22y3

~12y!3

2~m21!
11y2y2/2

~12y!~12y/2!
, ~1!

wherem is the number of spheres composing the polymer
molecule. The packing fractiony is defined as

y5rV, ~2!

whereV is the molecular volume andr is the number den-
sity defined asr5N/V8. N is the number of chains andV8 is
the total volume of the system.

The second virial coefficientB as obtained from Eq.~1!
is given by19

B/V51.5m12.5. ~3!

Boublik19 has shown that virial coefficients obtained from
Eq. ~1! are linear functions ofm. According to Eq.~1!, the
EOS and virial coefficients ofm jointed hard spheres do not
depend on the bonding angle between the spheres and de-
pend only on the number of spheres forming the molecule.
This is obviously an approximation. For instance, for a rigid
linear molecule~bonding angle equal to 180°!, the fourth
virial coefficient becomes negative27 for large values ofm,
whereas Eq.~1! predicts positive values. Second, rigid linear
molecules form liquid–crystal phases28 for largem, whereas
flexible models such as the freely jointed hard sphere do not
form liquid–crystal phases7 for m as large as 200.

A body is called convex if any line segment connecting
two points on the surface of that body is completely con-
tained within that body. For a convex body there is one and
only one plane which is in contact with the surface of the
convex body and whose normal is along the direction defined
by the polar angles (Q,F). This is called the supporting
plane for the direction especified by (Q,F). The perpendicu-
lar distance from the origin~located inside the body! to the
supporting plane is denoted as the supporting function. The
mean radius of curvature,R, is just the average of the sup-
porting function over all possible directions defined by the
polar angles (Q,F). Further details concerning convex body
geometry may be found elsewhere.29–31 In scaled particle
theories of hard convex molecules, it is common to define a
nonsphericity parametera as

a5 RS/3V, ~4!

whereS is just the area of the surface of the molecule. It can
be proved rigorously that the second virial coefficient of a
hard convex particle is given by29–31

B/V5113a. ~5!

Therefore, for hard convex bodies Eq.~4! or ~5! can be
considered as the definition ofa, since both yield identical
results. For hard nonconvex particles the mean radius of cur-

vature,R, is ill defined, and therefore Eq.~4! is not a suitable
definition for a. The reason is that in a nonconvex body
there are several planes tangent to the surface and whose
normals are along the direction defined by the polar angles
(Q,F). This problem is usually overcome using any of the
two following approaches:

Criterion 1: Equation~4! is kept as the definition ofa,
butR is taken to be the mean radius of curvature of a convex
body of ‘‘similar’’ shape to that of the original nonconvex
molecule.

Criterion 2: In this case, one takes notice of the fact that
B is well defined for either convex or nonconvex molecules.
Thus, one can use Eq.~5! as the definition ofa, regardless of
the shape of the molecule. This was first proposed by
Rigby.32

For nonconvex bodies, these two choices yield slightly
different values ofa, but the differences are rather small
provided that a reasonable choice for the mean radius of
curvature is made. For instance, for hard diatomic molecules
these two criteria yield values ofa which differ about 3%.29

The connection between Wertheim’s treatment of hard
polymer models and scaled particle theory was made by
Boublik,19,20 and independently by Walsh and Gubbins.21

These authors were able to show that for the freely jointed
model, the second virial coefficient of Wertheim’s EOS,
given by Eq.~3!, is identical to that given by Eq.~5! pro-
vided thata is defined through criterion 1 andR is taken as
that of the spherocylinder enveloping the chain in its linear
configuration. With this approximation it can be shown that,
for the freely jointed hard sphere model,m anda are related
by

m52a21. ~6!

By replacing Eq.~6! into Eq. ~1! one obtains

Z5~2a21!
11y1y22y3

~12y!3
2~2a22!

11y2y2/2

~12y!~12y/2!
.

~7!

Equation~7! will be denoted as the modified Wertheim
equation. With the choice made by Boublik and Walsh for
a of a freely jointed hard sphere model, Eq.~7! reduces to
Eq. ~1!. An important advantage of Eq.~7! over Eq.~1! ap-
pears when dealing with hard polymer models in which over-
lapping between bonded monomers is allowed. In this case,
the nonsphericity parameter can be estimated and inserted
into Eq. ~7!, whereas it is not so clear how to define the
parameterm to be used in Eq.~1!. Therefore, one of the main
applications of Eq.~7! is the study of hard polymers where
there is overlapping between bonded spheres. In fact, Eq.~7!
has been tested with quite good results for a number of hard
models,20,21 and for realistic models of hardn-alkanes.22,23

In this work we are interested in obtaining an equation of
state for a polymer model which is composed of monomeric
units with fixed bond length, and with a HamiltonianH de-
scribed as

H5H intra1H inter, ~8!
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whereku is the force constant of the bending potential for the
bond angleu, ue is the equilibrium bond angle,utor(f) is the
torsional potential, which depends on the value of the tor-
sional anglef, andurep means a short-range repulsive site–
site potential, for instance, a hard sphere site–site model, or
the repulsive potential proposed by Weeks, Chandler, and
Andersen33 ~WCA!. Obviously this is a formidable problem
which can only be tackled after some approximations. Our
theoretical approach in search of an equation of state for the
system described by Eqs.~8!–~10! can be stated as follows:

~i! We shall fix the bond angles to their equilibrium val-
ues. In Ref. 23 it was shown that bending vibrations do not
affect much the equation of state of then-alkane, provided
that the bending constantku is sufficiently large. Therefore,
fixing bond angles to the equilibrium geometry appears as a
reasonable approximation.

~ii ! Following our treatment of Ref. 22, each molecule
will be treated within the rotational isomeric state
approximation34 ~RIS!. For instance, for ann-alkane model
three rotational states, trans~t!, gauche1 (g1), and
gauche2 (g2) are defined for each torsional degree of free-
dom. We assign a certain energy to the gauche state with
respect to the trans state, and this energy is denoted asD,
which is a function of the temperature, and a functional of
the torsional potential used.22Within the RIS approximation,
the system is regarded as a multicomponent mixture. For
instance, n-butane is regarded as a mixture of trans,
gauche1 and gauche2 conformers.

~iii ! The next step is the estimation of the second virial
coefficient of the system. The second virial coefficient of a
multicomponent mixture is given by

B5(
i , j

xixjBi j , ~11!

wherexi andxj are the molar fractions of conformersi and
j , respectively, andBi j is the second virial coefficient be-
tween conformeri and conformerj . Unfortunately, Eq.~11!
is still quite involved for practical calculations. The number
of virial coefficients,Bi j , to be evaluated increases rapidly
with the length of the chain. By approximatingBi j as

Bi j5
~Bii1Bj j !

2
. ~12!

Equation~11! can be rewritten as:

B5(
i
xiBii . ~13!

We shall define now the nonsphericity parameter of a
given conformeri , a i , by the criterion 2 so that

Bii /Vi 5113a i , ~14!

whereVi stands for the volume of conformeri . By replacing
Eq. ~14! into Eq. ~13!,

B5(
i
xi~Vi13a iVi !. ~15!

In what follows we shall denote the average value of a
given property A asĀ, and will by obtained from the relation

Ā5( xiAi ~16!

so that

B5V13aV. ~17!

Since the different conformers of ann-alkane differ sig-
nificantly in a i but not inVi , Eq. ~17! can be approximated
as

B5V̄13āV̄ ~18!

or, finally,

B/V̄5113ā. ~19!

Equation~19! allows an estimation of the second virial
coefficient of a hardn-alkane model. The only requirement is
the knowledge of the second virial coefficientBii , and vol-
umeVi , of each conformeri of the flexible model. Since we
are using criterion 2 for defininga i we can also state that an
estimation of the second virial coefficient of the hard flexible
model can be achieved, if the nonsphericity parameter of the
different conformers is known. We emphasize that Eq.~19! is
not exact, but it should provide a reasonable estimate of the
true second virial coefficient B which is given by Eq.~11!.

~iv! The EOS of the system described by Eqs.~8!–~10!
is obtained by replacingV by V̄, and a by ā in Eq. ~7!.
Therefore, the EOS proposed in this work is given by

Z5~2ā21!
11y1y22y3

~12y!3
2~2ā22!

11y2y2/2

~12y!~12y/2!
,

~20!

ā5( xia i , ~21!

y5r( xiVi5rV̄. ~22!

It should be understood that the molar fraction of each
conformer,xi , is computed at zero density~ideal-gas popu-
lation!, and therefore it is a function of the temperature but
not of the density. In previous work23 it has been shown that
changes ofxi with density at a given temperature are small,
and therefore the use of the ideal-gas population for defining
the averageā introduces little error in the computed equation
of state. The second virial coefficient obtained from Eq.~20!
is given by Eq.~19!. Therefore, one expects good results for
the equation of state at low densities when Eq.~20! is used.
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The scheme represented by steps~i!–~iv! has been ap-
plied for hardn-alkanes up ton-octane.22,23 In Ref. 22 the
second virial coefficients of the different conformers of a
hard n-alkane model were computed numerically, and the
predictions from Eq.~20! were compared with simulation
results forn-butane andn-pentane. The theory was further
tested23 by comparing simulation results ofn-hexane,
n-heptane, andn-octane with the theoretical results obtained
from Eq.~20!. The results were again quite good. It would be
quite useful if the theory could be extended to longer
n-alkanes.

There are two problems in extending the theory de-
scribed by steps~i!–~iv! to longern-alkanes models. The first
problem arises from the fact that a complete enumeration of
the conformers of ann-alkane becomes almost impossible
for largen ~the number of conformers of ann-alkane model
grows as 3n23/2). The second problem is that the exact
evaluation ofBii ~and hence ofa i) for each conformer must
be performed numerically, as shown in Ref. 22. The numeri-
cal evaluation ofBii for a given conformer of, say,n-octane,
takes several hours of CPU time in a common workstation.
Therefore, the rigorous evaluation ofā cannot be achieved
with the present computational resources. However, we shall
show how the problem can be treated if Eqs.~21! and ~22!
are somewhat modified for long chains. An interesting obser-
vation is that in order to use Eq.~20!, all what is needed is
ā andV̄ as defined by Eqs.~21! and~22!. The evaluation of
ā and V̄ requires~within the RIS approximation! to sum in
Eqs. ~21! and ~22! over all possible conformers of the sys-
tem. However, a good estimation of the average can be ob-
tained even if the summation in Eqs.~21! and ~22! is re-
stricted over some representative~i.e., largexi) conformers
of the system. Notice that the same idea is used in computer
simulations, where reliable thermodynamic averages are ob-
tained by sampling small regions of the phase space, instead
of exploring exhaustively the phase space of the system. We
can therefore perform a relatively short Monte Carlo simula-
tion of an isolated chain, generating, say, 50 000 conformers,
and take the true average of the volume and nonsphericity
parameter as the average over the Monte Carlo run. We em-
phasize that our Monte Carlo refers to only one molecule,
since we are evaluating ideal-gas averages. For obtaining
V̄, the volume of each individual conformer,Vi , is com-
puted by using the efficient algorithm proposed by Dodd and
Theodorou.35 In order to computeā, the nonsphericity pa-
rameter of the individual conformers,a i , must be deter-
mined. According to Eq.~14! that requires the value of the
second virial coefficient for each individual conformer. It is
not convenient to evaluate the exact second virial coeffi-
cients of each conformer generated in the MC run, since that
would take a huge amount of computer time. From this dis-
cussion it is clear that a fast algorithm to estimate the second
virial coefficient of a given conformer of a long chain is also
required. Only in this way could the average value ofā, be
computed in a reasonable amount of time. Therefore our step
~iv! of the theory is modified for long chains:

~iv! The EOS of the system is given by Eq.~20!. To

obtainā andV̄ a MC simulation of an isolated chain will be
performed. For each conformer the values ofVi andBii ~or
a i) are evaluated. The average valuesV̄ and ā are obtained
at the end of the MC run. In order to keep the computer time
of the MC run within reasonable limits, the evaluation of
a i of each individual conformer must be obtained with little
computational effort.

All that is now needed for a full development of the
theory is a method for estimating the second virial coefficient
Bii ~or a i) of a given conformer of a long chain molecule.
An empirical method for estimatinga i is presented in the
next section.

III. ESTIMATING VIRIAL COEFFICIENTS OF HARD
CHAIN CONFORMERS

In this section an empirical procedure to estimate the
second virial coefficient of the different conformers of a flex-
ible molecule will be proposed. In this worka i of a given
conformer or molecule will be defined through Eq.~14!, and
therefore the estimation of the second virial coefficient cor-
responds to the estimation of the nonsphericity parameter
a i .

In order to estimatea i we shall use Eq.~4!. The molecu-
lar volumeV and surfaceSwill be evaluated analytically by
using the algorithm proposed by Dodd and Theodorou.35 In
general, the conformers appearing in a flexible hard chain are
nonconvex bodies. Therefore, their mean radii of curvature
are ill defined. This problem is usually overcome by taking
the mean radius of curvature of a convex body with a similar
shape to that of the molecule. Alejandreet al.36 have pro-
posed a numerical algorithm to evaluate the mean radius of
curvature of the convex body enveloping the nonconvex
molecule. This algorithm was used37 to evaluate the non-
sphericity of the different conformers ofn-butane. The evalu-
ation ofR with the algorithm of Alejandreet al. is computa-
tionally faster than the evaluation of the second virial
coefficient of the model. As it will be shown later, the algo-
rithm of Alejandreet al. for determiningR provides good
estimates of the second virial coefficient of short hard
n-alkane models, but it seems to deteriorate for longer ones.
Therefore, an algorithm for determiningR with accuracy for
short and long hardn-alkane chains is needed. We shall de-
scribe an algorithm which satisfies this condition.

In this work, the mean radius of curvature,R, will be
taken from a parallelepiped with sidesa, b, and c. The
parallelepiped is a convex body, so that its mean radius of
curvature is well defined. The mean radius of curvature of a
parallelepiped of sidesa, b, andc is given by38

R5
a1b1c

4
. ~23!

The problem is how to obtaina, b, c. It would be de-
sirable that the parallelepiped have a similar shape to that of
the molecule. One possibility is to choose the parallelepiped
so that its three principal moments of inertia match those of
the conformer. We shall use this choice in the present work.
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The three principal moments of inertia,I 1
p , I 2

p , andI 3
p , of a

parallelepiped with sidesa, b, c, total massM , and uniform
density through all the body are given by39

I 1
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M
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~b21c2!, ~24!

I 2
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I 3
p5

M

12
~a21b2!. ~26!

Now the three principal moments of inertia of the hard
conformer,I 1

c , I 2
c , andI 3

c , should be calculated. This will be
done by calculating the three eigenvalues of the inertia ten-
sor. The hard conformer is made up of hard spheres. We shall
assume that all the spheres have equal mass, and that the
mass is homogeneously distributed within each sphere. The
reason for this is that we are trying to reproduce the shape of
the molecule and this goal is better achieved if the mass of
each nuclei is spread through all the site. According to that,
the elementi ,k of the inertia tensorI i ,k is calculated as39

I i ,k5(
l51

n

m lF S 25 S dl2 D 21(
j

~r j
l !2D d i ,k2r i

l r k
l G , ~27!

wherem l anddl are the mass and diameter of sitel , respec-
tively, d i ,k stands for Kronecker’s delta,r i

l is the i th coordi-
nate of sitel referred to the center of masses of the molecule,
and n is the number of monomer units. Although in this work
we focus on chains made up of identical sites~so that
m l5m anddl5d for all the monomer units!, in the case of a
polymer with different monomer units, the mass of each site
should be proportional to the volume of the site. This is so,
because the contribution of each site to the general shape of
the molecule is proportional to its volume, but not to its
mass, which is an irrelevant variable when describing the
molecular shape~i.e., a heavy and very small atom makes a
small contribution to the molecular shape!. Once the princi-
pal moments of inertia of the conformer are known, these are
equated to those of a parallelepiped of equal mass, thus ob-
taining the parametersa, b, andc required for the evaluation
of R:

I 1
p5I 1

c , ~28!

I 2
p5I 2

c , ~29!

I 3
p5I 2

c . ~30!

In Eqs. ~28!–~30! the total mass of the parallelepiped,
M , was set equal to the mass of then-alkane, given by
nm. Oncea, b, andc are obtained from Eqs.~28!–~30!, then
R is obtained from Eq.~23!. Thus our procedure to estimate
a i can be summarized by saying that we use Eq.~4!, taking
S andV as the surface and volume of the conformer, andR
as the radius of curvature of a parallelepiped with principal
moments of inertia identical to those of the conformer. The
estimate ofa i for a given conformer requires very little com-
putational effort. In Table I estimates ofa i for somen-alkane

conformers obtained from Eq.~4! are compared with their
exact values@obtained from Eq.~14! and the data of Ref.
22#. The model is that described in Ref. 22. It can be seen
that Eq.~4! yields quite reasonable estimates ofa i . More-
over, when the nonsphericity parameter of the all trans con-
former ~tt..t! is subtracted from that of the other conformers
of Table I, it can be seen that the differences obtained
through our estimate agree quite well with the exact ones.
This is important, since it indicates that the theory is espe-
cially good in describing differences in the nonsphericity pa-
rameter between the different conformers. That suggests that
the estimate ofa i can be further improved. In fact, if the
second virial coefficient of a given conformer~say, the all
trans conformer! is known, the difference of nonsphericity
between such a conformer and the all trans conformer can be
estimated by using Eq.~4!. Thus, a better prediction ofa i for
the considered conformer is obtained. This improved predic-
tion of a i for a given conformeri can be written as

a i5a tt..t1SRiSi
3Vi

2
Rtt..tStt..t
3Vtt..t

D , ~31!

where the subindextt..t stands for the all trans conformer.
For applying Eq.~31! the second virial coefficient of the all
trans conformer~and hencea tt..t) must be known. In prin-
ciple, B of the all trans conformer could be evaluated nu-
merically. However, an even simpler procedure yields quite
good results. The all trans conformer is an almost linear mol-
ecule. Therefore it is a good idea for this particular con-
former to takeR as that of a spherocylinder of lengthL and
width d. ForL we take the distance between the first and last
monomeric units in the all trans configuration. The mean
radius of curvature of a spherocylinder of lengthL and width
d is given by29

TABLE I. Nonsphericity parametersa i of hard models ofn-hexane, and
n-heptane conformers as determined from Eq.~4!, from Eq. ~34!, and from
the method of Alejandreet al. ~see Ref. 36!. Exact values are taken from the
second virial coefficients of Ref. 22.

Exact Eq.~4! Eq. ~34! Alejandre

ttt 1.4253 1.4495 1.4174 1.4398
ttg 1.3795 1.4119 1.3799 1.3889
tgt 1.3807 1.4064 1.3743 1.3946
tgg 1.3215 1.3613 1.3292 1.3389
gtg 1.3282 1.3701 1.3380 1.3415
gtg8 1.3371 1.3695 1.3374 1.3541
ggg 1.2758 1.3192 1.2871 1.3031
tttt 1.5287 1.5506 1.5175 1.5459
tttg 1.4821 1.5130 1.4799 1.4959
ttgt 1.4813 1.5092 1.4761 1.4897
ttgg 1.4227 1.4622 1.4291 1.4358
tgtg 1.4310 1.4672 1.4341 1.4475
tgtg8 1.4412 1.4659 1.4328 1.4599
tggt 1.4165 1.4532 1.4201 1.4294
gttg 1.4360 1.4746 1.4415 1.4426
gttg8 1.4191 1.4646 1.4315 1.4246
tggg 1.3745 1.4146 1.3815 1.3993
gttg 1.3423 1.4088 1.3757 1.3727
gtg8g8 1.3839 1.4230 1.3899 1.4056
gggg 1.3307 1.3721 1.3390 1.3657
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4
1
d

2
. ~32!

For the all trans conformer,a tt..t can be estimated with
very good results as

a tt..t5
~L/41 d/2!Stt..t

3Vtt..t
. ~33!

By replacing Eq.~33! into Eq. ~31! one obtains

a i5
RiSi
3Vi

1
~L/41 d/22Rtt..t!Stt..t

3Vtt..t
. ~34!

Equation~34! is the working expression for the estimate
of a i proposed in this work. The subindexi stands for the
properties of the conformeri . In Table I the value ofa i , as
estimated from Eq.~34!, is compared with the exact value of
a i from Ref. 22. It can be seen that Eq.~34! yields quite
good predictions of the second virial coefficient of the dif-
ferent conformers of the hardn-alkane model. This is impor-
tant since Eq.~34! reduces the computational effort of deter-
mining a i by several orders of magnitude with respect to a
rigorous evaluation of the second virial coefficient of the
conformer. We also include in Table I the estimate ofa i from

the procedure proposed by Alejandreet al.36 These authors
used Eq.~4! for estimatinga i but with a different choice for
R. It is seen that the estimate ofa i from the method of
Alejandreet al.36 is in good agreement with the exact values
of a i . Therefore Eq.~34! and the method of Alejandreet al.
yield similar predictions ofa i for short hardn-alkane con-
formers. However, for long chains, estimates of the nonsphe-
ricities obtained from Eq.~34! and from the methodology of
Alejandre et al. differ significantly. For instance, for the
model of C30 described in the next section, the values ofā
@see Eq.~21!# obtained from Eq.~34!, and from the method
of Alejandreet al. are 3.6838 and 3.2967, respectively. In
order to elucidate which one of these two methods gives the
best prediction forā, low-density results for the equation of
state, obtained from Eq.~20!, using the two values ofā
mentioned above, were compared with MD simulation re-
sults. It was found that, whereas the value 3.6838 yields
quite good agreement with the MD results, the value 3.2967
yields too low pressures. Although this test is not conclusive
it suggests that Eq.~34! yields better predictions of the sec-
ond virial coefficients than the method of Alejandreet al.
Therefore, in what follows Eq.~34! will be used as the esti-
mate ofa i for a given conformer. The contribution of the
correction@second term on the right-hand side of Eq.~34!# is
important for hardn-alkanes models with less than 16 carbon
atoms, and becomes very small for longer chains. Therefore,
for chains longer than 30 carbon atoms the second term on
the right-hand side of Eq.~34! can be neglected.

Our algorithm for the determination of the EOS of the
molecule can be summarized as:

~1! Use of Wertheim’s EOS withm replaced by 2ā21
andV by V̄, as shown in Eq.~20!.

~2! The average value of the nonsphericity,ā, and vol-
ume V̄ are obtained from a Monte Carlo run of an isolated
chain with fixed bond lengths and angles, and with torsional
degrees of freedom treated within the RIS approximation. If
the model presents intramolecular interactions they will be
included in the MC run.

~3! The value ofa i for each conformer appearing in the
Monte Carlo run is estimated from Eq.~34!.

In order to check the proposed algorithm some MD
simulations have been performed forn-alkane chains. In the
next section some details concerning these simulations are
given.

IV. SIMULATION METHODOLOGY

The theory described in Secs. II and III can be applied to
hard polymer models. Hard models are not very convenient
for MD simulations since the potential is discontinuous. Be-
cause of that, MD simulations were performed for a repul-
siven-alkane model with a continuous potential. The studied
model is similar to that of Ryckaert and Bellemans.1 Each
methylene or methyl group is modeled as a single site placed
at the position of the carbon nucleus, as shown in Fig. 1. The
masses of both the methylene and methyl groups are consid-
ered equal, and set to 2.413 10226 kg. The bond distance is
fixed to l51.53 Å by imposing holonomic constraints.40 The

TABLE II. Compressibility factorZ of repulsiven-alkane models.n is the
number of carbon atoms . The reduced density isr*5N/V8s3. ZTheory, and
ZMD are theoretical@from Eq.~20!# and simulation results, respectively. The
simulation results were obtained for the WCA model described in Sec. IV.
MD results forn56, 7, 8 were taken from Ref. 23 while those forn512, 16,
30 were obtained in this work. For C50 , and C100 results were obtained for
the n-alkane model of Ref. 5. Simulation results for C50, and C100 were
taken from Ref. 5. MD results for equimolar mixtures of WCAn-alkane
models are also given. The 1016 mixture denotes an equimolar binary
mixture of C10 , and C6 .

n r* ZMD ZTheory

6 0.11815 3.1~1! 3.04
6 0.20085 7.25~8! 7.11
6 0.2954 20.7~1! 21.19
7 0.10042 3.15~6! 3.09
7 0.17722 8.07~8! 7.80
7 0.25401 21.45~9! 21.83
8 0.08861 3.26~6! 3.23
8 0.15359 8.1~1! 7.98
8 0.2245 23.0~2! 23.57
12 0.030796 1.99~7! 1.98
12 0.076991 5.45~6! 5.41
12 0.123185 14.85~13! 14.89
16 0.023445 2.17~10! 2.18
16 0.058613 6.42~8! 6.38
16 0.093781 17.98~18! 18.21
30 0.012773 2.80~8! 2.80
30 0.031933 9.80~9! 9.56
30 0.051093 28.88~24! 29.05
50 0.04699 118.2 127.96
100 0.02353 217.64 213.59
1016 0.08861 3.27~7! 3.23
1016 0.15359 8.10~6! 7.98
1016 0.22450 23.00~7! 23.59
1214 0.08861 3.27~6! 3.24
1214 0.15359 8.09~6! 8.02
1214 0.22450 23.00~7! 23.72

706 Vega, MacDowell, and Padilla: Hard n-alkane models

J. Chem. Phys., Vol. 104, No. 2, 8 January 1996



value of the equilibrium bond angleC–C–C isue5109.5°
and the following bending potential was used:

ub~cosu!5 1
2 ku~cosu2cosue!

2, ~35!

whereu is the current value of theC–C–Cangle andku is
the force constant which has been set to 520 kJ/mol. In all
the cases, the torsional potential used in the simulations is
that proposed by Ryckaert and Bellemans,1 which will be
denoted asuRB. Intermolecular and intramolecular interac-
tions are given by a WCA-type potential:33

uWCA54eS S s

r D
12

2S s

r D
6D1e, r,21/6s, ~36!

uWCA50, r.21/6s, ~37!

with e/k572 K and s53.923 Å. Intramolecular interac-
tions, as given by Eqs.~36! and ~37!, are only included be-
tween carbons separated by more than three C–C bonds. In
all the studied systems the value of the temperature was
T5366.88 K. During the simulation, the temperature was
kept constant with the help of the Nose´–Hoover
thermostat,41 and the equations of motion were solved with
the leap-frog algorithm.42 In all the cases, the simulation
sample was composed of 64 chains. The molecules were
contained in a cubic box with periodic boundary conditions.
The time step was set to 1.0 fs. The typical time for equili-
bration was 70 ps and after that the simulation run length
was 700 ps. Submeans were collected every 70 ps. The re-
sults we present for the simulations are the average of the
submeans. The uncertainty was estimated as the standard de-
viation. In addition to the MD simulations of pure WCA
n-alkane models a few simulations were performed for
equimolar WCAn-alkane mixtures. Simulation details are
similar to that described for the pure compound simulations.

In order to compare the MD for the WCA potential with
the theoretical results it is necessary to define the hard model
which corresponds to the simulation model. We need:

~a! To define the hard body which corresponds to each
WCA conformer.

~b! That the population of conformers at zero density of
the hard model, and of the WCAmodel be the same. Accord-
ing to that, excluded volume interactions~interactions be-
tween carbons separated by more than three bonds! must be
described with the same potential in both theory and simula-
tion. Therefore, we shall use the WCA potential for describ-
ing excluded volume interactions within the theory.

For defining the hard body which corresponds to each
WCA conformer~step a! each site will be replaced by a hard
sphere of diameterd. We shall use the Barker–Henderson
prescription43 for obtaining the effective hard sphere diam-
eterd, which corresponds to the WCA sites. Therefore,d is
obtained at each temperature from the relation

d5E
0

21/6s
„12exp~2buWCA!…dr. ~38!

Its value for the WCA potential of this work, when evaluated
at T5366.88 K, isd53.7109 Å.

The population of conformers of the hard model at zero
density is obtained within the RIS approximation. According
to our previous treatment, the energy of the gauche con-
former relative to the trans conformer,D, is temperature de-
pendent. It can be obtained for a given torsional potential
from Eq.~14! of Ref. 22. When evaluated atT5366.88 K for
the torsional potential of Ryckaert and Bellemans1 it yields
3337.83 J/mol.

The theoretical EOS for the WCAmodel used in the MD
simulations is obtained as follows:

~1! The EOS of the chain is given by Eqs.~20!.
~2! The average value of the nonsphericity and volume,

ā andV̄, are obtained from a Monte Carlo run of an isolated
chain with fixed bond lengths and angles, and with torsional
degrees of freedom treated within the RIS approximation.
The energy of the gauche conformer relative to the trans is
3337.83 J/mol. Excluded volume interactions are described
by the WCA potential. In the MC a reptation algorithm is
used for generating the conformers of the isolated chain.

~3! The nonsphericitya i of a given conformer which
appears in the Monte Carlo run is estimated from Eq.~34!.
The hard conformer is obtained by keeping the C–C dis-
tances to 1.53 Å and by using a hard sphere diameter of
d53.7109 Å.

The reader may wonder why the WCA potential is con-
sidered for describing excluded volume effects in the MC
run, instead of using a hard body potential. The explanation
is as follows. When the WCA potential is used, thegg se-
quence is somewhat unfavorable~positive energy!, whereas
for the hard model this sequence is suppressed, since there is
a small overlap between the first and the last carbon of the
sequence. The characteristic properties~end–end distance,
mean radius of gyration! of an n-alkane model in whichgg
sequences are permitted are different from those of another

FIG. 1. Model used in this work.

707Vega, MacDowell, and Padilla: Hard n-alkane models

J. Chem. Phys., Vol. 104, No. 2, 8 January 1996



model in which they are suppressed. Properties of chain mol-
ecules are sensitive to the details of intramolecular
interactions.34 Conformational space should be sampled in
the same way in both theory and MD. Therefore, excluded
volume interactions will be described by the WCA potential
within the theory.

The number of steps of the MC ranges from 105 for
short chains up to 106 for a chain of 600 monomers. Long
runs are needed for the polymer model of 600 monomer
units, since polymers of this size present long relaxation
times.44 The first half of the MC run corresponds to the
equilibration of the chain, and the second half was used for
obtaining averages. All calculations described in this work
were performed in a workstation Alpha 3000/600 and com-
puter times will refer to this machine. Determination of the
theoretical EOS for the C30 chain requires about 10 min of
CPU time. That should be compared with the 200 h that
would require ten MD simulation runs at ten different densi-
ties. For the C600, determination of the theoretical EOS took
about 24 h.

The methodology described in Secs. II–IV allows one to
obtain the EOS of a hard or soft repulsive polymer model.

V. RESULTS

In Table II, the compressibility factor for the repulsive
models ofn-alkanes described in Sec. IV, are presented as
obtained from MD simulations and from the theory of this
work. As it can be seen in Table II, the agreement between
theory and simulation is remarkably good, and it does not
deteriorate~at least for then-alkanes considered! with the
length of then-alkane. In Table II, we also compare theoreti-
cal predictions for the EOS of a repulsive model of C50 and
C100 with the MD results of Brownet al.5 The agreement is
also good. From the results of Table II it can be seen that the
theory yields quantitative agreement with simulation, and in
most of the cases the theoretical predictions are within the
simulation uncertainty. To our knowledge, this is the first
time that a theory yields quantitative agreement with simu-
lation for the EOS of a realistic model of ann-alkane chain at
liquidlike densities. The explanation of such a good agree-
ment is difficult. We believe that approximations made in
Sec. II concerning the estimate ofā, and thus of the second
virial coefficient of the chain, can be considered as satisfac-
tory. However, we do not have anya priori reason to explain
why Eq.~1! with m replaced by 2ā21 is performing so well
for n-alkane models. One possible explanation is that Eq.
~20! predicts that virial coefficients of a flexible molecule are
linear functions of the nonsphericity, and that seems to be
true for shortn-alkane models.22 In spite of the quality of the
results presented in Table II, we expect somewhat worse re-
sults for longer chains. The reason for that is that we are
using the shape of the molecule as determined at zero density
for describing the shape of the molecule at any density. Ob-
viously, the shape of the molecule depends to some extent on
the density. In Table III, the mean radius of gyration as ob-
tained from the MD simulations, and from the theory are
compared for several repulsiven-alkanes. The simulation re-

sults show that the mean square radius of gyration decreases
with the density, and this effect is found to be more impor-
tant as the length of the chain increases. This is consistent
with Flory hypothesis which state that excluded volume in-
teractions are screened out in the dense liquid. The theory of
this work predicts a radius of gyration which does not de-
pend on density. Whereas this is reasonable for chains up to
C100, it is clear from the results of Table III that for longer
chains that will be a poor approximation. To overcome this
situation, the effect of density on the shape of the chain
should be taken into account. Some attempts to overcome
this problem have been performed for short22,23 and long
chains.45

In Fig. 2, the compressibility factor ofn-hexane,
n-dodecane,n-hexadecane, andn-triacontane are represented

TABLE III. Mean-square radius of gyration̂s2& of WCA n-alkane models
~in s2 units! as predicted by the theory and as obtained from MD simula-
tions of this work. Simulation results for C50 , and C100 are from Ref. 5.
Reduced densities as in Table II.

n r* ^sMD
2 & ^sTheory

2 &

12 0.030796 0.917~4! 0.9280
12 0.076991 0.913~4! 0.9280
12 0.123185 0.909~4! 0.9280
16 0.023445 1.488~7! 1.5088
16 0.058613 1.479~7! 1.5088
16 0.093781 1.474~7! 1.5088
30 0.012773 4.06~5! 4.2042
30 0.031933 3.97~3! 4.2042
30 0.051093 3.92~10! 4.2042
50 0.04699 7.91~5! 8.44
100 0.02353 18.89~11! 23.71

FIG. 2. Compressibility factorZ against packing fractiony for the WCA
version of then-alkane model of Ryckaert and Bellemans for the isotherm
T5366.88 K. Results obtained from MD simulation~symbols! and from
theory~lines! for variousn-alkanes are presented. C6: diamonds~MD results
from Ref. 23! and full line; C12 : circles and long-dashed line; C16 : squares
and dashed line, C30 : triangles and short-dashed line.
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as a function of the packing fractiony defined by Eq.~22!. It
is seen that for a given packing fraction the pressure in-
creases with the length of the chain. That corresponds to the
idea that the nonsphericity of the molecule increases with the
length of the chain. In fact, it is well known from the EOS of
hard bodies arising from scaled particle theory that for a
given packing fraction, the pressure increases as the non-
sphericity parameter increases.29

The nonsphericity parameterā for the model described
in Sec. III, has been estimated forn-alkane chains up to 600
carbon atoms by using Eq.~34! and the Monte Carlo proce-
dure described in the previous section. Results forā are
presented in Table IV, and in Fig. 3. For short chains~small
n!, the nonsphericity parameter increases linearly with the
length of the chain,n. That was also found by Pavlicek and
Boublik for short chains.46 However, for largen the increase
of ā with n is not linear. In Fig. 3, the value ofā for the
freely jointed hard sphere model, as obtained from the sec-
ond virial coefficient data of Yethirajet al.,47 is also repre-
sented. Trends in the variation ofā with n are similar for the
n-alkane models, and for the freely jointed hard sphere
model. For a givenn, the value ofā is larger for the freely
jointed hard sphere model than for then-alkane model. This
is expected, since the freely jointed hard sphere model has a
larger bond length than then-alkane model. The results pre-
sented in Fig. 3 show thatā increases withn. That appears
to be in conflict with the idea that for largen the molecule
can be described as a random coil of spherical shape. This
idea is wrong. The shape of ann-alkane molecule is rather
elongated~see, for instance, Fig. 1 of Ref. 35 and Fig. 7 of
Ref. 48!. We checked that idea in two different ways. First, a
number of conformers generated during the Monte Carlo run
were plotted and we found thatn-alkane molecules are quite
elongated. Second, the three principal moments of inertia of
the conformersI 1

c , I 2
c , andI 3

c were analyzed. We ordered the
three principal moments of inertia of the conformer so that

I 1
c,I 2

c,I 3
c . We found that the MC averages ofI 1

c , I 2
c , and

I 3
c were quite different, indicating that the individual con-
formers are rather anisotropic. This anisotropy is not a spe-
cial feature ofn-alkanes. It should be reminded that simula-
tion and theoretical studies have shown that a random walk
presents a rather elongated and nonspherical shape.49An idea
of the strong anisotropy ofn-alkane chains can be obtained
by comparing the value ofā with the value of the nonsphe-
ricity of the all trans conformera tt..t ~which is almost an
extended linear model!. For instance, for the C30 and C100

TABLE IV. Mean radius of curvature, surface, volume, nonsphericity parameter, effective tangent sphere
number@see Eq.~6!# , m, average of the square of the end–end vector^r 2&, and square radius of gyration
^s2& for n-alkane models. Results are given ind units whered is the BH effective hard diameter of the
monomer.

n R̄ S̄ V̄ ā m ^r 2& ^s2&

4 0.7668 6.8379 1.4275 1.1992 1.398 0.8435 0.1413
5 0.8431 8.0451 1.7276 1.2820 1.564 1.5306 0.2176
6 0.9232 9.2410 2.0272 1.3852 1.770 2.2624 0.3039
7 1.0000 10.4479 2.3263 1.4732 1.946 3.2012 0.4028
8 1.0765 11.6424 2.6252 1.5738 2.148 4.0757 0.5063
10 1.2303 14.0554 3.2235 1.7714 2.543 6.4049 0.7569
12 1.3827 16.4534 3.8220 1.9710 2.942 8.8797 1.0371
16 1.6824 21.2545 5.0191 2.3661 3.732 14.5015 1.6862
30 2.6751 38.0738 9.2083 3.6838 6.368 39.0526 4.6985
50 3.9941 62.1396 15.1967 5.4442 9.888 81.0721 10.5670
70 5.0796 86.1068 21.1792 6.8859 12.772 122.5029 16.8505
84 5.7733 102.9374 25.3687 7.8120 14.624 160.6647 21.8285
100 6.4173 122.1301 30.1516 8.6667 16.333 175.9288 25.7747
200 10.0135 242.4879 60.0930 13.4718 25.943 439.3549 62.0719
400 16.6352 482.7336 120.0184 21.7120 42.424 1426.2912 187.6450
600 18.5510 723.4109 179.9526 24.8664 48.735 1451.3465 201.2699

FIG. 3. Nonsphericity parameterā against carbon atom number n. Open
circles: ā for our model alkane as obtained by the MC procedure proposed
in this work atT5366.88 K. Open squares:ā for the freely jointed hard
sphere model as obtained from the second virial coefficients of Ref. 47.
Lines through the points are only a guide to the eye.
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n-alkanes the all trans conformers present nonsphericity val-
ues of 4.1092 and 12.1052, respectively. This should be com-
pared with the values ofā presented in Table IV. It is seen
that the anisotropy of then-alkane is smaller than that of the
all trans conformer, but of the same order of magnitude,
giving an idea of the strong anisotropy of the chains. From
the results of Fig. 3 it is difficult to extrapolate the behavior
of ā at very largen.

The quality of the theoretical results presented in Table
II gives us some confidence in the proposed methodology.
Some questions concerning the effect of changes on the bond
length, bond angle, or torsional potential on the EOS of the
repulsiven-alkane model can be analyzed. We shall start by
analyzing the effect of a change in the bond length of the
molecule, when all the other parameters are kept constant.
This is made in Fig. 4, where the EOS for ann-alkane model
with l51.299 Å,l51.53 Å, andl51.670 Å are plotted. The
rest of the characteristics of the model, i.e., bond angle, tor-
sional potential, temperature, and the WCA potential~for de-
scribing excluded volume effects!, correspond to those de-
scribed in Sec. IV and are the same for the three bond
lengths. In Fig. 5, the EOS for severaln-alkanes models,
which only differs in the internal angle between bonds, is
presented. Finally, in Fig. 6, the effect of changing the tor-
sional potential in the EOS is shown. Two torsional poten-
tials, that of Ryckaert and Bellemans and that of Scott and
Scheraga50 ~SS!, are compared. For the SS torsional potential
the value of the gauche energy is D52207 J/mol. The results
presented in Figs. 4–6 can be summarized as follows:

~i! A decrease in the bond length provokes a decrease in
the pressure for a given packing fraction.

~ii ! The increase of the bond angle provokes an increase
in the pressure for a given packing fraction.

~iii ! When the torsional potential makes the gauche con-
former more unfavorable, then the pressure at a given
packing fraction increases. In any case, the effect of
changes in the torsional potential on the EOS is small.

It is important to emphasize that comparisons presented
in Figs. 4–6 were performed at a constant packing fraction.
For instance, when the bond length decreases in then-alkane
model ~Fig. 4!, the molecular volume and the nonsphericity
parameter are reduced. Therefore, if the number density is

FIG. 4. Effect of bond length on the compressibility factor for C12 and
C30 , as predicted by the theory presented in this work. Full line: results for
our model, withl51.530 Å. Long-dashed line: results forl51.299 Å. Short-
dashed line: results forl51.670 Å.

FIG. 5. Effect of bond angle on the compressibility factor for C12 and C30 as
predicted by the theory presented in this work. Full line: results for our
model, u5109.5°. Long-dashed line: results foru5100°. Short-dashed
line: results foru5120°.

FIG. 6. Effect of the torsional potential on the compressibility factor for
C12 , C16 , and C30 . The full line represents results using the Ryckaert–
Bellemans torsional potential, while the dashed line represents results using
the Scott–Scheraga potential.
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kept constant for two models differing only in the bond
length, a strong decrease in the pressure will be observed
with the shrinking of the bond length. This decrease in pres-
sure is due to two factors, the decrease of the molecular
volume and the decrease ofā. By comparing the two models
at the same packing fraction, the trivial effect on the pressure
due to the change of molecular volume is removed. The re-
sults presented in Figs. 4–6, thus, represent the change in the
EOS of then-alkane model due to the change of shape of the
molecule. A higher value of the pressure at a given packing
fraction corresponds to a larger value of the nonsphericity
parameter. As shown in Fig. 5, the nonsphericity parameter
increases with the bond angle. The increase of the nonsphe-
ricity parameter with bond angle has also been observed in
tangent hard sphere triatomic models~see Fig. 8 of Ref. 51!.

Finally, we shall extend Eq.~20! to polymer mixtures.
For simplicity we shall consider a binary mixture, although
the treatment can be easily extended to multicomponent mix-
tures. The two polymers will be denoted asl andv, respec-
tively . According to that,āl andV̄l will represent the mean
nonsphericity and volume of polymerl, and a similar nota-
tion will be used for polymerv. Let us assume that the
values ofāl and V̄l are known from an MC run of an iso-
lated chain of polymerl, and that the same is true for the
corresponding values of the chainv. We shall define the
nonsphericity and volume of the mixture,amixture and
Vmixture, respectively, as

amixture5xlāl1xvāv , ~39!

Vmixture5xlV̄l1xvV̄v , ~40!

wherexl is the molar fraction of polymerl and xv is the
molar fraction of polymerv. The theoretical EOS of the
mixture will be given by Eq.~20!, with ā andV̄ replaced by
amixture, andVmixture obtained from Eqs.~39!–~40!. In Table
V, values ofamixture andVmixture for several binary mixtures
are shown. In Fig. 7, the EOSs for equimolecular binary
mixtures of C101C6, C81C8, and C121C4 are represented
as a function of the packing fraction. As it can be seen, the
EOSs for these three binary mixtures are almost identical.
This is in agreement with previous findings concerning the
insensitivity of the EOS to polydispersity.52 A comparison
between simulation results and theoretical predictions for
these binary mixtures is shown in Fig. 7 and in Table II. As
can be seen the agreement between theory and simulation is
quite good. Results for the binary mixtures C501C50,

C701C30, and C841C16 are also shown in Fig. 7. As it can
be seen, the pressure for a given packing fraction increases in
the order C841C16, C701C30, and C501C50. The reason for
that is thatamixture increases in this order, as can be seen in
Table V. To our knowledge the results presented in Fig. 7
constitute the first prediction of the EOS of a binary repul-
siven-alkane mixture, although for other hard chain mixtures
previous results have been reported.53

Given the success of the theory for describing the EOS
of WCA n-alkane models it would be quite useful if the
theoretical results of this work were fitted to some analytical
formula. We include an appendix where such an analytical
EOS for the WCA version of the Ryckaert and Bellemans
model ofn-alkanes is given.

VI. CONCLUSIONS

In this work, a new method to estimate the second virial
coefficient of a hard flexible molecule is proposed. The basic
idea is to average the second virial coefficient of the different
conformers of the flexible molecule. To estimate the second
virial coefficient of each conformer we used ideas arising
from convex body theory. The proposed method requires the
evaluation of the surface, volume, and mean radius of curva-
ture of each conformer. For the mean radius of curvature, we
take that of a parallelepiped with the same principal mo-
ments of inertia as the considered conformer. The surface
and volume of the conformer are evaluated analytically. It is
shown that the method yields reliable prediction for the sec-
ond virial coefficient of different conformers of short
n-alkane models. Moreover, the determination of the second

TABLE V. Nonsphericity parameteramixture, and volumeVmixture as defined
from Eqs.~39! and~40! for equimolar binary mixtures ofn-alkane models.
The equimolar mixture 818 denotes the pure compound C8 .

Mixture Vmixture amixture

818 2.6252 1.5738
1016 2.6254 1.5783
1214 2.6248 1.5851
50150 15.1967 5.4442
70130 15.1938 5.2848
84116 15.1939 5.0890

FIG. 7. Compressibility factor for equimolar mixtures of the repulsive
n-alkane model, as predicted by the theory in this work. ‘‘C8-sort’’ mixture:
full line, C81C8; long-dashed line, C61C10; short-dashed line, C41C12.
With the scale of the plot the three lines are almost undistinguishable.
‘ ‘C 50-sort’’ mixture: full line, C501C50; long-dashed line, C301C70; short-
dashed line, C161C84. Symbols correspond to MD results for the C8-sort
mixture; circles C81C8; squares C41C12; triangles C61C10.
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virial coefficient for a given conformer is quite fast. In order
to estimate the second virial coefficient of a flexible chain
model, a Monte Carlo simulation run of an isolated chain is
performed, where the mean values of the molecular volume
and second virial coefficient are computed. In this way, sec-
ond virial coefficients of hard flexiblen-alkane models up to
C600 have been computed. It is shown that the nonsphericity
increases with the length of the chain, first linearly for small
n, and then, nonlinearly for largen. The increase ofā with
n found forn-alkanes is related to the increasing anisotropy
of the chains for largen. Molecules tend to be somewhat
stretched and that explains the increases ofā with n.

The EOS of hard flexible models has also been consid-
ered. We use Wertheim’s EOS for chain molecules16,17 with
the number of monomeric units,m, replaced by 2ā21.
Comparison with MD results of repulsiven-alkane models,
up to C100, shows that Wertheim’s EOS, combined with the
methodology proposed in this work, yields excellent predic-
tions of the EOS of hardn-alkane models, ranging from
n-butane up ton-100. Further work in order to obtain an
explanation of such a good agreement is needed.

The effect of a change in bond length, bond angle, and
torsional potential on the EOS is analyzed. Reduction of
bond length, bond angle, and gauche energy decreases the
pressure for a given packing fraction. Finally, the EOS is
extended to mixtures. Good agreement between the theoreti-
cal predictions for the EOS of the considered mixtures and
the simulations results was obtained.

The significance of this work is that an almost quantita-
tive EOS can be obtained for relatively realistic repulsive
n-alkane models. The theoretical determination of the whole
EOS for ann-alkane model requires about 1 h of CPUtime
in a workstation Alpha 3000/600. The determination of the
EOS of ann-alkane model by MD simulations would require
about 100 h of CPU time. It is clear that, in such conditions,
the theory is still a useful tool. The code used to perform the
calculations described in this work can be obtained from the
authors upon request.54 The methodology proposed in this
work may be quite useful for the application of perturbation
theories to flexible molecules55 since these theories require a
good equation of state for the reference repulsive system. In
particular, a better understanding of the phase equilibria of
n-alkanes can be anticipated.
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APPENDIX

The theory proposed in this paper can be applied to dif-
ferent kinds of hard polymer models. Given the importance

of n-alkanes, we shall provide in this appendix an analytical
equation of state for the WCA version of then-alkane model
proposed by Ryckaert and Bellemans.1 This may be useful
for other workers in the area of flexible models and for future
work concerningn-alkane models. By applying the method-
ology described in this paper, the values ofā were obtained
for severaln-alkanes with the number of carbon atoms rang-
ing from 4 up to 100 and at several temperatures between
T5180 and 1000 K. The obtained values ofā were fitted,
using a least squares procedure, to the following expression:

Tr5T/72 , ~A1!

ā5~a11a2Tr1a3Tr
21a4Tr

3!1~a51a6Tr1a7Tr
2

1a8Tr
3!n1~a91a10Tr1a11Tr

21a12Tr
3!n2

1~a131a14Tr1a15Tr
21a16Tr

3!n3, ~A2!

whereT is the temperature in Kelvin andn is the number of
carbon atoms of then-alkane. We proceeded in an analogous
way for V̄ which was fitted to the expression

V̄

s3 5S ds D 3„~v11v2Tr1v3Tr
21v4Tr

3!

1~v51v6Tr1v7Tr
21v8Tr

3!n…, ~A3!

T*5
T

e/k
, ~A4!

d/s 51.0153523.7985531022 ln~T* !22.87644

31023
„ln~T* !…2. ~A5!

The values of the coefficientsai and v i are given in
Table VI. Equation~A5! is a polynomial fit to the diameter
obtained from the Barker–Henderson43 prescription. If the
compressibility factor of the WCA version of the Ryckaert
and Bellemansn-alkane model for, say,n537, T5450 K,
and r*5(N/V8)s350.02 is needed then,Tr and T* are
obtained from Eq.~A1! and Eq.~A4!, respectively,ā is ob-
tained from Eq.~A2!, and the packing fraction is obtained as

y5r*
V̄

s3 . ~A6!

TABLE VI. Coefficients of Eqs.~A2! and~A3! for the equation of state of
the WCA version of then-alkane model of Ryckaert and Bellemans.

v1 0.252204 a5 0.155984
v2 25.4384631023 a6 22.6153331022

v3 3.3365231024 a7 3.9696131023

v4 21.0293231025 a8 21.7238831024

v5 0.277304 a9 21.5898731023

v6 5.9051731023 a10 7.8212331024

v7 23.6548431024 a11 21.2781831024

v8 9.9778831026 a12 5.7172331026

a1 0.4436 a13 1.2581731025

a2 0.152527 a14 26.9305931026

a3 22.2193831022 a15 1.0911231026

a4 9.5792731024 a16 24.7883731028
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By substitutingā andy in Eq. ~20!, the estimate of the
compressibility factor for these conditions is obtained. As an
example of the application of Eqs.~A1!–~A6!, in Fig. 8 the
compressibility factor for the WCA of C30 at three different
temperatures as obtained from Eqs.~A1!–~A6! is presented.
Equations~A1!–~A6! should not be used forn-alkanes or
temperatures out of the range of the fit.
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FIG. 8. Compressibility factor at different temperatures for the WCA poten-
tial of the Ryckaert–Bellemans model of C30 . From top to bottom results
correspond to the temperaturesT5180, 366.88, 700, and 1000 K. The com-
pressibility factors were obtained from Eqs.~A1!–~A6!. Reduced density
r* as in Table II.
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