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The second virial coefficient for a molecular model ofn-alkanes with up to 200 carbon atoms has
been computed for temperatures in the range of 1000 K,T,2000 K. The model used in the
calculations is based on one which reproduces the experimental values of the second virial
coefficient for shortn-alkanes. The Boyle temperature ofn-alkanes is not much affected by the
length of the chain forn-alkanes with more than 100 carbon atoms. According to the Flory theory,
for infinitely long chains the Boyle temperature and the critical temperature, denoted as theu
temperature are the same. On this basis using the present model we findu51620 K as the critical
temperature of polymethylene. Scaling laws for the square of the end-to-end distance and for the
radius of gyration at several temperatures are analyzed. For high temperatures, the scaling laws
correspond to good solvent conditions whereas at theu temperature the scaling laws are those of an
ideal chain. The shape of longn-alkanes at several temperatures is also analyzed. We find that the
polymethylene chains present an anisotropy similar to that of a parallelepiped with a ratio of sizes
of 1:1.7:3.6. ©1996 American Institute of Physics.@S0021-9606~96!51634-X#

I. INTRODUCTION

The n-alkanes are compounds of great interest for the
petrochemical industry. These compounds play an essential
role in several refinery and related processes like separation
of waxes. For lightn-alkanes the thermodynamic properties
are very well known through the whole phase diagram.1–4

However, for heavyn-alkanes experimental data are rather
scarce. Usually thermodynamic data of heavyn-alkanes are
estimated by using the principle of corresponding states. For
this reason the determination of the critical properties of
heavyn-alkanes is of considerable interest.

For low weightn-alkanes the critical properties are well
known. For longern-alkanes some problems arise since
n-alkanes are thermally unstable for temperatures larger than
650 K. However, quite recently there has been some
progress5–7 and the critical properties have been determined
for n-alkanes up to tetraeicosane~C24H50!. Basically, a fast
heating of the sample is performed in these experiments, so
that significant thermal decomposition does not take place.
However, for longer chains there is no experimental data
concerning critical properties. It is not likely that there would
be data in the near future since very longn-alkanes are quite
unstable at high temperatures.7 In this paper we shall focus
on the problem of the determination of the critical tempera-
ture of long chains.

To overcome this situation three possible routes are pos-
sible. The first is to propose a fitting function for the critical
properties ofn-alkanes and to obtain the parameters of the fit
by using the low weightn-alkane data. Examples of that can
be found in Refs. 8 and 9. The problem with this approach is
that the fitting function is completely empirical andad hoc,
so that there is no guarantee that the extrapolation is reliable

for long n-alkanes. The second is to use a semiempirical
method with some theoretical ground and to obtain the
needed parameters from the critical data of shortn-alkanes.
An example of this approach can be found in Refs. 9 and 10.
The third approach is to use a molecular description of the
problem and to use the methods of statistical thermodynam-
ics for the estimation of properties. The parameters describ-
ing the interaction between molecules can be obtained from
the shortn-alkanes data. Examples of this third approach can
be found in Refs. 11–13 where the critical properties of
n-alkanes up to C48 were estimated by using computer simu-
lation and in Refs. 14–17 where second virial coefficients of
n-alkanes up to C16 were computed numerically. In this work
this molecular route will be used.

Recently the second virial coefficient ofn-alkanes has
been computed.15,16The parameters of the intermolecular po-
tential were obtained by using experimental data on the sec-
ond virial coefficient of shortn-alkanes.15,16 By using com-
puter simulation Smitet al. have shown12 that it is possible
to obtain a satisfactory description of the vapor–liquid equi-
libria of n-alkanes with a molecular model similar to that
used in our second virial coefficient calculations. Therefore
for n-alkanes a model is now available which correctly de-
scribes second virial coefficient data and vapor–liquid equi-
libria of shortn-alkanes.

In this work the second virial coefficient~B2! will be
calculated numerically forn-alkanes with up to 200 carbon
atoms. Our goal is twofold. First, we shall provide estimates
of the second virial coefficient of long chains. Particular in-
terest will be devoted to the determination of the Boyle tem-
peratureTB ~the temperature for whichB250!. Second, we
shall make contact with some well-known theories of poly-
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mer science. A long time ago Flory and Krigbaum developed
a theory for dilute polymer solutions.18,19 This theory pre-
dicts that for very long chains the second osmotic coefficient
becomes zero at a temperature which is independent of the
length of the chain. This assumption has been recently tested
by several groups for the pearl-necklace model.20–23 In this
work this assumption will be tested for the relatively realistic
n-alkane model of our previous work. Moreover, according
to the Flory–Huggins theory24,25 of polymer solutions the
critical temperature of infinitely long chains, usually denoted
as theu temperature, is also the temperature where the sec-
ond osmotic virial coefficient vanishes. In other words ac-
cording to Flory the Boyle temperature and theu temperature
are the same for infinitely long chains. This point has been
recently confirmed by using computer simulation for a poly-
mer on a simple lattice26 and for the pearl-necklace model.22

In this work we shall assume that the identification between
TB andu is valid for very longn-alkanes. On this basis an
estimate of the critical temperature of polymethylene will be
given. The importance of this value is that it could be used as
an asymptotic limit in engineering correlations.

The organization of this paper is as follows. In Sec. II
details concerning the pair potential andB2 calculations will
be given. In Sec. III results forB2 will be presented. In Sec.
IV some considerations concerning scaling relations for
n-alkanes will be given. In Sec. V the main conclusions to
this work will be presented.

II. SECOND VIRIAL COEFFICIENT CALCULATIONS

Then-alkane will be described within the rotational iso-
meric state27 ~RIS! approximation. For each torsional angle
only three possibilities exist,trans (t), gauche1 ~g1!, and
gauche2 ~g2!. Thegaucheconfiguration makes an angle of
120° with respect to thetrans. The geometry of the chain as
described by the carbon skeleton is given by a C–C bond
length fixed to 1.53 Å and aC–C–Cangle of 112°. The
number of carbon atoms of then-alkane will be denoted as
nc . Each CH3 or CH2 group will be modeled as one interac-
tion site located at the position of the carbon atom. There-
fore, in this work no explicit description of the hydrogen
atoms is made.

The intramolecular energy of the chain can be divided
into a short-range and a long-range contribution. The short-
range contribution is given by

U intra
short5Ec1 (

k54

nc21

Eab,k1 (
i51

nc25

(
j5 i15

j5 i15

4e i j @~s/r i j !
12

2~s/r i j !
6#. ~1!

The indexesi , j in Eq. ~1! run over the interaction sites of the
molecule numbered from one tonc and r i j is the distance
between sitei and sitej . The variablesa,b,c can take the
values t, g1, or g2. The C–C bonds of the molecule are
numbered from one tonc21. Ec is the conformational en-
ergy associated to the rotational state of the third C–C bond
of the chain and it depends on the rotational state of this
bond only. The indexk in Eq. ~1! runs over the C–C bonds

of the molecule starting in the fourth. The energyEab,k is
appropriately regarded as the contribution toU intra associated
with assignment of bondk to stateb, bond k21 being in
statea. We are basically following the notation established
by Flory.27 The following set ofEab energies will be used:

Ett5Eg1t5Eg2t50; Etg15Etg25Eg1g15Eg2g2

5E1 ; Eg1g25Eg2g15E2 . ~2!

The last term in Eq.~1! is a Lennard-Jones~LJ! potential
between carbons separated by five bonds. With Eq.~1! the
interaction energy between units separated by less than six
bonds along the chain is being considered. TheU intra

short energy
described by Eqs.~1! and~2! can be easily obtained by mul-
tiplying the total number ofgauchebonds of the molecule by
E1, adding the LJ energy between carbons separated by five
bonds, and finally adding the energy due tog1g2 or g2g1

sequences. This last contribution is obtained by counting the
number of appearances ofg1g2 or g2g1 sequences in the
chain and multiplying that by (E22E1).

The long-range intramolecular energy is given by

U intra
long5 (

i51

nc26

(
j5 i16

nc

4e i j @~s/r i j !
122~s/r i j !

6#. ~3!

In this work s will be set to s53.923 Å. We shall use
different values of e for CH3–CH3(eCH3–CH3),
CH2–CH2(eCH2–CH2), and CH3–CH2(eCH3–CH2) interac-
tions. The Lorentz–Berthelot rule will be used so that

eCH3–CH25~eCH3–CH3eCH2–CH2!
1/2. ~4!

According to Eqs.~1!–~4! a full description of the model
requires the values ofE1, E2, eCH3–CH3, andeCH2–CH2. The
total intramolecular energy for a given rotational isomeri is
given by

U intra,i5U intra,i
short 1U intra,i

long . ~5!

The intermolecular energy between a pair of molecules
is given by

U inter5(
i51

nc

(
j51

nc

4e i j @~s/r i j !
122~s/r i j !

6#. ~6!

Within the RIS approximation, where then-alkane is re-
garded as a multicomponent mixture, the second virial coef-
ficient is given by

B25(
i

(
j
xixjBi j , ~7!

Bi j5E @12exp~2U inter/kT!#2pr 2drdv idv j , ~8!

wherexi ,xj are the molar fraction of rotational isomersi and
j , respectively, andBi j is the second virial coefficient be-
tween rotational isomersi and j . Hereafter, we shall use the
word conformer to denote a rotational isomer. In Eq.~8! r
stands for the distance between the center of mass of the
conformersi and j andvi andvj represent a set of orienta-
tional angles defining the orientation of conformersi and j
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and are normalized to one~i.e., *dv i51!. U inter refers to the
intermolecular energy between conformersi and j at the
distancer and for the relative orientation given byvi and
vj . The molar fraction of a given conformer is obtained as

xi5exp~2U intra,i /kT!Y (
j

exp~2U intra,j /kT!. ~9!

Therefore the key equations for theB2 calculations are
Eqs.~7!–~9!. Our numerical implementation of Eqs.~7!–~9!
is as follows

~i! A Monte Carlo run of an isolated chain is performed.
Intramolecular energies~short and long range! are consid-
ered in the Monte Carlo run of the isolated chain. The piv-
oting algorithm28 ~with three possible rotational states per
bond! was used for generating the chain configurations. Me-
tropolis criterion is adopted for accepting configurations
within the Monte Carlo~MC! run.29 Typically, the MC run
involves 106 steps. The coordinates of 100 configurations
obtained within the run are stored for later analysis.

~ii ! With the 100 configurations~conformers! generated
in the previous step, 100 pairs of conformers are chosen
randomly.

~iii ! For each pair of conformers the integral of Eq.~8! is
computed. For that purpose, 61 values ofr are chosen be-
tween 0 and 30s. For each value ofr the orientational aver-
age is performed by using Conroy’s integration method30

with 577 relative orientations. Once the orientational average
has been performed for the 61 values ofr , the integrand of
Eq. ~8! is computed using Simpson’s rule so thatBi j is de-
termined. This is repeated for the 100 pair of conformers
chosen in step~ii !.

~iv! The arithmetic average of the 100 values ofBi j de-
termined in step~iii ! is the computed value ofB2. In other
words to obtainB2 we add the 100 obtained values ofBi j

and divided by 100.
We checked our code by comparison with the results

previously obtained15,16 with a different algorithm. Good
agreement was found. For a given temperature andn-alkane,
intermolecular energies are computed approximately 43106

times ~6135773100!. The standard deviation between the
differentBi j gives us some estimate of the uncertainty of our
calculations.

Our algorithm for the second virial coefficient evaluation
also allows the evaluation of the effective interaction poten-
tial betweenn-alkanes. This effective potential will be de-
noted asue(r ) and is defined as:

exp@2ue~r !/kT#5E (
i

(
j
xixj

3exp~2U inter/kT!dv idv j . ~10!

In Eq. ~10! the integrand is evaluated for a fixed value ofr .
The Boltzmann factor of the sphericalue(r ) has the same
value as the average of the Boltzmann factor ofU inter over all
the relative orientations and over all pairs of conformers. The
effective potentialue(r ) is easily obtained from our algo-
rithm described by steps~i!–~iv!.

Since our algorithm for the determination ofB2 requires
a Monte Carlo of an isolated chain, some properties defining
the geometry of then-alkane can also be calculated. In par-
ticular the mean square radius of gyration^s2& ~defined as the
mean squared distance from the carbons of the molecule to
the center of mass! and the mean square end-to-end distance
^r 2& ~defined as the mean squared distance between the first
and last carbon of then-alkane! have also been evaluated.
Particular attention has been paid to the scaling laws of^r 2&
and ^s2& so that

^r 2&5Pr~nc21!yr, ~11!

^s2&5Ps~nc21!ys, ~12!

where for long chains it is assumed thaty r5ys . The scaling
coefficientyr depends on temperature so that it is assumed
that at high temperature~good solvent conditions! yr51.176
~see Ref. 31!, at theu temperatureyr51 and for low tem-
peratures~bad solvent! yr52/3 ~see Ref. 32!.

III. RESULTS

The second virial coefficient has been computed for tem-
peratures in the range of 1000 K,T,2000 K. We computed
B2 for nc58, 12, 16, 30, 50, 100, and 200. Fornc5200 the

FIG. 1. Second virial coefficient,B2, vs temperatureT ~in kelvin! for the
M1 model ofn-alkanes~see Table I! as obtained in this work.C16, solid
lines;C30 long dashed line;C50, dashed line;C100 short dashed line;C200,
dotted line.B2 is given in cm3/mol units.

TABLE I. Potential parameters ofn-alkanes used in this work~see the main
text for details!. The Boltzmann constant is denoted ask.

Model E1/~cal/mol! E2/~cal/mol! (eCH3–CH3 /k)/K ( eCH2–CH2 /k)/K

M1 700 2000 104 49.7
M2 700 2000 104 47.5
M3 500 2000 104 47.5
M4 700 2000 13 13
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determination ofB2 for a given temperature required 24 h of
CPU time in an Alpha 3000/700 workstation. A full descrip-
tion of the model requires values forE1, E2, eCH3–CH3 , and

eCH2–CH2 . The models used in this work are described in

Table I. The first model~M1! corresponds to the set of pa-
rameters determined in our previous work.16 This set of pa-
rameters~M1! accurately describes the second virial coeffi-
cient of n-alkanes from n-butane up to n-octane for
temperatures between 300 and 600 K. In Table II the values
of the second virial coefficient for the M1 model are pre-
sented. The estimated errors of our determination ofB2 for
the M1 model are shown in the last column of Table II.
These errors correspond to three times the standard deviation
of theaverageof theBi j values computed from Eq.~8!. In a
few cases several independent calculations ofB2 for a given
temperature were performed and the obtained values were
always within the interval given by the last column of Table
II. In Fig. 1 the results ofB2 of the M1 model are shown. As
can be seen, the Boyle temperatureTB increases with the
length of the chain for short chains~i.e., nc,100!. For long
chains~i.e., nc.100! TB is almost independent of the chain
length and this is in agreement with the predictions of the
Flory–Krigbaum theory for diluted polymer solutions. This
is more clearly seen in Table III where the Boyle tempera-
tures obtained for the M1 model are presented. For infinitely
long chainsTB is estimated to beTB51660 K. According to
the Flory theory the Boyle temperature of infinitely chains is
also the critical temperature of the infinitely long chain.
Therefore the set of parameters of our previous work leads to
an estimate of the critical temperature of polymethylene of
T51660 K.

It is interesting to mention that the variation of the Boyle
temperature with the length of the chain depends on the kind
of potential used for describing the intermolecular interac-
tion. In lattice systems it has been found thatTB decreases
with the length of the chain. For the nonlattice pearl-
necklace model, Wichert and Hall21 have found that when
the square well potential~SW! is used for describing the
intermolecular interaction thenTB decreases with the length
of the chain ifl,0.5, whereas it increases with the length of
the chain ifl.0.5. Therefore, the variation with the length
of the chain ofTB of the more realistic LJ potential is similar
to that of the SW model withl.0.5. The kind of intermo-
lecular interaction therefore affects the variations ofTB with
the length of the chain.

The parameters described by the model M1 were ob-
tained to fit experimental values ofB2 at low temperatures
~300–600 K!. For the temperatureT5600 K the second
virial coefficient of the M1 model ofn-octane is smaller than
the experimental value. In fact, forn-octane atT5580 K the
experimental value33,34 is B252638 cm3/mol whereas the
calculated value with the M1 model isB252681 cm3/mol.
In this work we are interested in the behavior ofB2 at high
temperatures. Because of that we decided to adjust the pa-
rameters of the M1 model slightly so that the experimental
value ofn-octane atT5580 K is reproduced. We decided to
keep the values of the M1 model forE1, E2, andeCH3–CH3

and to reduce slightly the value foreCH2–CH2 so that the ex-
perimental value ofn-octane atT5580 K is matched. The
new model will be denoted as M2 and is presented in Table
I. It should be pointed out that the M2 model is similar to the
model used by Smitet al.12 for describing the vapor–liquid
equilibria ofn-alkanes~although differences foreCH3–CH3 be-
tween these models are significant!.

In Table II the values ofB2 obtained for the M2 model
are presented. In Table III the Boyle temperatures of
n-alkanes as obtained from the calculations of this work for

TABLE II. Second virial coefficients~in cm3/mol! obtained in this work for
the M1, M2, and M3 models ofn-alkanes~see Table I!. The number of
carbons of then-alkane is denoted asnc . The results labeled with an aster-
isk correspond to the M4 model. In the last column the estimated error for
the second virial coefficients of the M1 model are shown. Errors for the M2
and M3 models are similar and therefore are not shown.

nc T/K B2~M1! B2~M2! B2~M3! Error

8 1000 2131 2112 2112 64
8 1200 235 221 221 63
8 1400 30 42 39 63
8 1600 75 83 82 62
8 1800 106 117 115 62
8 2000 134 140 138 64
12 1000 2330 2289 2285 611
12 1200 2127 291 292 66
12 1400 2 25 28 66
12 1600 88 113 110 67
12 1800 154 168 168 66
12 2000 205 216 217 66
16 1000 2630 2529 2523 620
16 1200 2257 2201 2208 616
16 1400 256 24 1 612
16 1600 104 125 129 612
16 1800 203 233 226 69
16 2000 279 307 299 613
30 1000 22 246 21 965 21 974 678
30 1200 21 088 2842 2896 659
30 1400 2316 2235 2238 636
30 1600 89 207 202 632
30 1800 411 497 500 632
30 2000 620 680 673 635
50 1000 26 796 25 766 25 608 6317
50 1200 22 977 22 577 22 519 6160
50 1400 21 165 2830 2879 6111
50 1600 260 235 231 698
50 1800 759 992 926 681
50 2000 1353 1519 1425 691
100 1000 233 062 224 913 223 679 63 068
100 1200 213 026 210 642 29 999 6727
100 1400 25 270 23 511 23 574 6457
100 1600 2733 518 295 6343
100 1800 2 003 3 214 3 058 6262
100 2000 3 756 4 751 4 720 6253
200 1000 2177 108 2122 603 2124 260 650 043
200 1200 257 970 245 806 244 173 68 076
200 1400 220 400 213 846 214 593 61 955
200 1600 23 179 1 266 907 61 335
200 1800 5 817 9 918 9 474 61 021
200 2000 13 647 15 829 15 931 6799
200 400 26 062*
200 410 24 172*
200 430 1 124*
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the M2 model are presented.TB increases withnc and
reaches an asymptotic value for long chains which is located
at TB51580 K. In order to analyze the effect ofE1 ~the
energy of thegaucheconfiguration relative to thetrans! a
new parameter set denoted as M3 has been proposed. The
M3 model is presented in Table I. The M3 is identical to the
M2 model except thatE1 is reduced to 500 cal/mol. Results
for B2 of the M3 model are also presented in Table II. By
comparing the results of the M2 and M3 models presented in
Table II it can be concluded that the parameterE1 has little
effect on the computed value ofB2. Boyle temperatures for
the M3 model are almost identical to those of the M2 model.
In any case the differences are very small and they fall
within the uncertainty of the calculations.

In order to analyze in further detail which model, M1 or
M2 ~the M3 model is almost identical to the M2 model!,
provides a better description of the second virial coefficient
of n-alkanes we present in Fig. 2 the second virial coefficient
of n-octane and ofn-decane in a broad range of temperatures
as obtained from experiments35 and from our calculations for
the M1 and M2 models. It can be seen from Fig. 2 that the
M1 model provides a better description ofB2 for n-octane
and n-decane at high temperatures whereas the M2 model
provides a better description at low temperatures. Both mod-
els, M1 and M2, fit the experimental data reasonably well
and it is hard to decide which model should be adopted. The
experimental Boyle temperature ofn-octane is situated at
TB51309 K, which is closer to the estimate of the M1
model. Forn-decane the experimental Boyle temperature is
of TB51381 K which again is closer to the estimate of the
M1 model. Since there is no experimental data for longer
n-alkanes at high temperatures a definitive choice among the
M1 and M2 models cannot be made. On the basis of existing
information we can regard both the M1 and M2 models as
reasonable models for the description of the second virial
coefficient ofn-alkanes at high temperatures. Differences be-
tween them represent approximately the uncertainty, due to
our approximate knowledge of the intermolecular forces in
n-alkanes, of our estimates for the second virial coefficient
and Boyle temperature of these compounds.

We have fitted the values ofB2 for the M2 model in the
range~1000–2000 K! to the following empirical function:

B2 /~cm
3/mol!5y$12q@exp~ l/T!21#%. ~13!

Equation~13! has the same form as the analytical ex-
pression ofB2 for the SW potential of a spherical molecule.

Recently it has been shown36 that Eq.~13! reproduces quite
well experimental data ofB2 for n-alkanes. The parameters
of the fit are presented in Table IV for then-alkanes consid-
ered in this work.

TABLE III. Boyle temperatures in kelvin for the M1, M2, M3, and M4
models of Table I.

nc TB ~M1! TB ~M2! TB ~M3! TB ~M4!

8 1298 1257 1263
12 1397 1349 1346
16 1463 1408 1400
30 1543 1498 1499
50 1613 1549 1552
100 1645 1569 1582
200 1660 1578 1584 415

FIG. 2. The second virial coefficient~in cm3/mol! of n-octane andn-decane
as obtained from experiment~Ref. 35! ~solid line!, from this work for the
M1 ~dashed line! and M2 models~short dashed line!. ~a! Results for
n-octane.~b! Results forn-decane.

TABLE IV. Coefficients of the fit of Eq.~13! for the second virial coeffi-
cient ofn-alkanes as estimated from the calculations of this work for the M2
model.

nc y q l

8 332.037 1 1.7928 557.5339
12 526.561 1 0.9630 958.3204
16 823.739 9 1.0401 946.7219
30 1 952.278 7 0.5868 1485.7495
50 4 469.346 5 0.4530 1800.6588
100 13 115.101 8 0.2424 2562.3475
200 35 426.860 4 0.0923 3898.8884
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One of the main results of this work is an estimate of the
critical temperature of infinitely longn-alkanes, which is de-
noted as theu temperature. The two models of this work for
B2 at high temperatures are the M1 and M2 models, which
predict that forn-alkanesu51660 K andu51580 K, respec-
tively. The difference betweenu for both models represents
approximately the uncertainty of our estimate of theu tem-
perature of polymethylene. The origin of this uncertainty is
our ignorance on the true intermolecular forces inn-alkanes.
Since there is not definitive arguments to state the superiority
of any among these two models we shall simply adopt the
arithmetic average as the estimate of theu temperature of
n-alkanes. Therefore, this work suggestsu51620680 K as
the estimate of the critical temperature of polymethylene. Is
this estimate of the critical temperature of very long
n-alkanes in agreement with the most recent experimental
and simulation data forn-alkanes? To check this point we
shall use first the critical temperature ofn-alkanes as deter-
mined from the computer simulations of Smitet al.12 Ac-
cording to the Flory–Huggins theory the critical temperature
of a long chain molecule is given by24,25

1/Tc51/u11/~uc1!@1/nc
0.511/~2nc!#, ~14!

wherec1 is an adimensional parameter19 characterizing the
entropy of dilution of polymer with solvent~vacuum for pure
n-alkanes!. According to Eq.~14! a representation of 1/Tc vs
1/(nc)

0.511/(2nc) ~which is usually denoted as a Shultz–
Flory plot37! should be linear and the value ofu can be
obtained from the ordinate in the origin. Equation~14! holds
very well for many polymer–solvent systems provided that
the chains are sufficiently long. Some recent simulation data
indicates that Eq.~14! holds relatively well for fully flexible
chains of about 100 monomer units.22,38We decided to ana-
lyze the critical data ofn-alkanes by using Eq.~14!, although
it must be recognized that then-alkanes of this work are
probably too short for Eq.~14! to be strictly valid. In Fig. 3
a Shultz–Flory plot of the computer simulation data of Smit
et al.12 is presented. By fitting the results of Smitet al. for
n-alkanes with carbon atoms in the range of 10–48 we found
uMC51507 K. In Fig. 3 a Shultz–Flory plot of the experi-
mental results of the critical temperature ofn-alkanes is pre-
sented. From this plot and using the experimental critical
temperatures ofn-alkanes with carbon atoms in the range of
8–24 we obtainuexpt51576 K. If we use the experimental
data with carbon atoms in the range of 5–16 we obtain
uexpt51687 K ~the same result was found in Ref. 9 by using
data ofn-alkanes with up to 16 carbon atoms!. As can be
seen the critical temperature of polymethylene obtained from
a Shultz–Flory plot of experimental data of shortn-alkanes
is quite sensitive to the choice of the data used. Further theo-
retical work to analyze the minimum chain length that could
be used in a Shultz–Flory plot to obtain reliable estimates of
the critical temperature of infinitely long chains is clearly
needed. Therefore, our use of the Shultz–Flory plot for short
chains should be regarded with caution. However, it is en-
couraging that our estimate of the critical temperature of
polymethylene seems to be close to that obtained from a
Shultz–Flory plot of the experimental data. At this point it is

interesting to mention that other estimates of theu tempera-
ture for polymethylene are10,8 u51072 K andu5960 K. The
results of this work along with those of Ref. 12 strongly
suggest that these previous estimates are too low.

Before continuing let us discuss briefly the meaning of
the u temperature of polymethylene. We shall recall that
u51620 K refers to the estimate of the critical temperature of
polymethylene with no solvent present and assuming that
chemical decomposition does not take place. Another differ-
ent issue is theu temperature of polymethylene when dis-
solved in a given solvent. In this case we have a binary
system~solvent/polymethylene! and theu temperature is the
upper critical solution temperature~UCST! of the system.
For instanceu temperatures of polymethylene in common
solvents ~dodecanol-, diphenylmethane,a-Cl-naphthalene!
are aroundu5413 K. According to the McMillan and Mayer
theory39 when treating the solvent/polymer systems the sol-
vent can be ignored if the potential of mean force is used
instead of the true pair potential between polymer molecules.
We shall propose now a model for the potential of mean
force of polymethylene in common solvents which approxi-
mately reproduces theu temperature found in experimental
studies. This model is shown in Table I and is denoted as
M4. For the M4 modelB2 becomes zero for long chains for
a temperature very close toT5413 K. Therefore the M4
model can be used as an approximation to the potential of
mean force of polymethylene in common solvents.

The results presented so far were mainly focused on the
Boyle temperature of polymethylene. However, the results
obtained can be useful for considering some issues currently
discussed in polymer science. We should emphasize that the
second virial coefficient of continuous chain models are
rather scarce although it seems that there is a growing inter-
est in that field.14–17,20–23Let us start by discussing the be-
havior of the osmotic second virial coefficient. When study-

FIG. 3. Shultz–Flory plot of the critical temperature ofn-alkanes. Solid line
and open circles: Gibbs ensemble data ofTc are from Ref. 12. Dashed line
and open squares: experimental data as reported in Refs. 7 and 9.
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ing polymers dissolved in solution the osmotic pressure is
usually expanded in power of the polymer concentrationc as

P/~cRT!51/M1A2c1••• , ~15!

whereP is the osmotic pressure,c is the polymer concen-
tration expressed in units of mass per volume, andM is the
molecular weight. This is to be compared with the virial
expansion of the pressure which is usually written as

p/~c8RT!511B2c81••• , ~16!

wherec8 is the concentration in mole per volume. The simi-
larity between Eq.~15! and Eq.~16! is due to the fact, as first
shown by McMillan and Mayer,39 that the osmotic pressure
can be expanded in the same way as the virial pressure if the
potential of mean force is used instead of the pair potential.
By identifying p with P then it is found that

A25B2 /~M !2}B2 /~nc!
2. ~17!

In polymer science some theories have been developed for
A2. Therefore, we shall now present ourB2 data for
n-alkanes reduced by the square ofnc . This is done in Fig. 4
for the M2 model. The choice of this model is just performed
for convenience since we have already discussed that there is
no clear evidence to prefer the M2 over the M1 model for
describingn-alkanes. All of our conclusions hold equally
well for the M1 model. At low temperatures~whereB2 is
negative! the value ofA2}B2/(nc)

2 is hardly affected by the
length of the chain. This is in agreement with recent experi-
mental data forA2 of several polymer–solvent systems be-
low the u temperature.40–42For high temperatures whereB2
is positive, the functionB2/(nc)

2 decreases whennc in-
creases at a given temperature. This is in agreement with the
Flory–Krigbaum theory of dilute polymer solutions. The re-
sults of Fig. 4 can be summarized by saying thatA2 is almost
independent of the molecular weight for temperatures where
it is negative and depends strongly onnc for temperatures

where it is positive, decreasing as the molecular weight in-
creases. By fitting our results ofA2 for the M2 model with
nc550, 100, and 200 atT52000 K we foundA2}nc

2d with
d50.3160.03. For T51800 K and using the results for
nc550, 100, and 200 we foundd50.3460.02. Experimental
values ford in good solvent conditions40 are usually in the
ranged50.2–0.3. Our somewhat higher value is probably
due to the fact that our chains are too short in order to the
scaling law to be valid.

The effective pair potentialue defined by Eq.~10! is
plotted in Fig. 5 for several temperatures and lengths of the
chain. For long chains it has a finite value whenr50 ~posi-
tive for high temperatures and negative for low tempera-
tures!. This is in agreement with the results of Harismiadis
and Szleifer23 and from Dautenhahn and Hall.20

Let us now analyze the behavior of^r 2& and ^s2&. In
Table V values of̂ r 2& and ^s2& for the M2 model are pre-
sented. For shortn-alkaneŝ r 2& decreases as the temperature
increases. For longn-alkanes the opposite is true. This is due
to the opposite effect of the temperature on the short- and
long-range intramolecular forces. The increase of the tem-
perature favors the presence ofgaucheconfigurations~short-
range interaction! which makes the molecules more spherical
and therefore reduces the value of^r 2&. On the other hand the
increase of the temperatures~long-range interaction! makes
the attractive interaction between different units of the chain
weaker so that the value of^r 2& increases. Therefore the ef-
fect of temperature on short- and long-range intramolecular
forces is different. For short chains, short-range intramolecu-
lar forces are dominant so that the chain becomes less ex-
panded asT increases. For long chains, the long-range in-
tramolecular forces are dominant so that the chain becomes
more expanded asT increases. ForC30 both effects cancel
out approximately so that̂r 2& does not change much with
temperature. The dimensions of the chain without long-range

FIG. 4. B2/nc
2 vs T plot for the M2 model. Results are forC30 ~solid line!

C50 ~dashed line!, C100 ~short dashed line!, andC200 ~open circles!. B2 is
given in cm3/mol units.

FIG. 5. The effective pair potentialue ~in kT units! for the M2 model of
C100 at several temperatures. Solid lineT52000 K, dashed lineT51600 K,
short dashed lineT51200 K.
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interactions,̂ r 2&0 and^s2&0 have also been calculated for the
M2 model. A Monte Carlo run was performed and long-
range interactions were not considered. Results are presented
in Table V. As expected̂r 2&0 and ^s2&0 decreases with the
temperature. Expansion factors defined asa r

25^r 2&/^r 2&0
and as

25^s2&/^s2&0 were also evaluated. In generalar is
larger thanas , which is in agreement with the results of Ref.
43. Although they will not be presented here values of^r 2&
and ^s2& for the M3 are somewhat smaller than those of the
M2 model. The chain becomes somewhat more expanded
when the energy of thegaucheconfiguration is large~M2
model!.

The scaling behavior@Eqs.~11! and~12!# of ^r 2& and^s2&
for the M2 model has been analyzed. In Table VI the ob-
tained values ofnr andns for the M2 model are presented. In
general values ofnr are smaller than those ofns . For
T51200 K, a temperature well below theu temperature we
obtainnr50.79; forT51600 K, a temperature close to theu
temperature we obtainnr51.06, and forT52000 K, a tem-
perature higher than theu temperature we obtainnr51.11.
The expected value ofnr for the u temperature is unity.
Clearly forT51600 K our valuenr51.06 is somewhat high.
This discrepancy is due to the fact that the scaling law@Eq.
~11!# has not been achieved for the chains considered in this
work ~i.e., nc,600!. Evidence of that is obtained in two
different ways. Firstnr decreases significantly when the
length of the chains is increased~see Table VI!. Second,

even unperturbed chains~chains with short-range interac-
tions only! do not yield a value of one fornr

0 as they should
be ~see Table VI! but a somewhat higher value. This point
was further tested by analyzing the results of Ref. 43 for
unperturbedn-alkane models. Again we found a value ofnr

0

larger than one from the results of this previous work. The
conclusion of this digression is that it is necessary to go to
longer chains for obtaining accurate estimates ofnr . In view
of this we decided to fit our results for^r 2& and^s2& to a new
expression which includes logarithmic corrections44 in the
way predicted by the renormalization group theory.45 For
instance, for̂ r 2& one obtains

^r 2&5a~nc21!yr @12c/ ln~nc21!#, ~18!

and a similar expression can be written for^s2&. When the
^r 2& data of Table V forT51600 K andnc>50 are fitted to
Eq. ~18! one obtainsa50.9760.18, yr51.0260.02 and
c51.0860.37. When the same fitting is done for the^s2&
data one obtainsa50.2160.02 ys51.0060.01, andc51.82
60.11. Logarithmic corrections in Eq.~18! are of about 20%
for chains withnc5600, confirming our previous sugges-
tions that chains withnc5600 are too short for Eqs.~11! and
~12! to be applicable. Once these corrections are taken into
account the results of̂r 2& and ^s2& for T51600 K are con-
sistent~within the numerical uncertainty! with yr51.00 and
ys51.00. Therefore our results support the idea that the
Boyle temperature of the infinitely long chain~in our case
TB51580 K for the M2 model! is also the temperature where
the scaling law given by Eqs.~11! and ~12! satisfied with
y r5ys51 ~note that we are assuming that the values ofyr
andys for T51600 K should be quite similar to their values
at T51580 K since the difference in temperature is small!.
To gain further evidence in support of the fact that for
T51600 K y r5ys51 we have plotted in Fig. 6 the ratio
^s2&/^s2&0 versus the inverse of the temperature~in Kelvin!
for several values ofnc for the M2 model. This kind of plot
was first suggested by Bruns.46 If results for all chains inter-
sect at a single point then, for the temperature of this inter-
section point̂ s2& scales with~nc21! ~note that^s2&0 scales
with nc21 for long chains!. It is seen that for the chains

TABLE V. Values of ^r 2& and ^s2& for the M2 model. Dimensions of the
chain without long-range interactions^r 2&0 and ^s2&0 for the M2 model are
also evaluated. Dimensions of the unperturbed chains were obtained by
using Eq.~1! for defining the short-range intramolecular interactions. Re-
sults of the last rows~labeled with asterisks! were obtained for the M4
model. In this case the dimension of the unperturbed chain were obtained by
using only the first two terms on the right-hand side of Eq.~1!. The results
are given ins2 units.

nc T/K ^r 2& ^s2& ^r 2&0 ^s2&0

16 1200 8.79 1.17 9.16 1.20
16 1600 8.59 1.15 8.83 1.17
16 2000 8.54 1.14 8.50 1.14
30 1200 19.42 2.78 20.96 2.92
30 1600 19.89 2.80 19.98 2.82
30 2000 19.65 2.77 19.05 2.71
50 1200 35.23 5.29 38.05 5.60
50 1600 36.66 5.40 36.16 5.36
50 2000 36.68 5.40 34.28 5.13
100 1200 72.33 11.49 80.65 12.60
100 1600 80.13 12.40 75.40 11.84
100 2000 82.67 12.69 72.13 11.35
200 1200 143.17 23.70 166.06 26.67
200 1600 170.84 27.21 156.86 25.25
200 2000 180.58 28.56 148.65 24.01
400 1200 268.34 45.35 337.42 55.15
400 1600 355.08 57.69 314.31 51.72
400 2000 395.55 63.44 301.37 49.42
600 1200 370.42 63.97 505.03 83.25
600 1600 546.33 89.16 476.62 78.45
600 2000 621.35 99.66 451.89 74.55
200 400 225.37* 35.32* 228.88* 36.29*
200 410 225.52* 35.53* 228.55* 36.19*
200 430 224.40* 35.30* 222.36* 35.18*

TABLE VI. Scaling coefficientsnr andns @see Eqs.~11! and~12!# obtained
for the M2 model with the data of Table V. The temperature is denoted asT.
In the column labeled asnc the length of then-alkanes used in the fit are
presented. For instance 100–200 means thatn-alkanes with a number of
carbon atoms between 100 and 200 were used. We also determined the
scaling coefficientsnr

0 andns
0 for an unperturbed chain~a chain with short

range interactions only! from the data of Table V for̂r 2&0 and ^s2&0.

T/K nc nr ns nr
0 ns

0

1200 100–200 0.98 1.04 1.03 1.07
1200 200–400 0.90 0.93 1.02 1.04
1200 400–600 0.79 0.85 0.99 1.01
1600 100–200 1.08 1.13 1.05 1.09
1600 200–400 1.05 1.08 1.00 1.03
1600 400–600 1.06 1.07 1.03 1.03
2000 100–200 1.12 1.16 1.04 1.07
2000 200–400 1.13 1.15 1.02 1.04
2000 400–600 1.11 1.11 1.00 1.01
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considered in this work there is not a single intersection
point. The intersection point between two consecutive chains
moves to higher temperatures~i.e., lower values of 1/T! as
the chains become longer. A tentative extrapolation of the
intersection point for infinitely long chains yields a tempera-
ture close to the temperature where the second virial coeffi-
cient vanishes. This gives further evidence that at the Boyle
temperature of long chains, the scaling law for^r 2& and ^s2&
is y r5ys51. We should mention that in a recent study
Shenget al.22 have proved for a simple model that the Boyle
temperature of long chains is coincident~within the uncer-
tainty of the calculations! with the temperature where
y r5ys51. The same result has been obtained for lattice
models.46,47 In this work we obtain further evidence of this
point for a more realisticn-alkane model.

Our choice for the definition of short-range interactions
described by Eq.~1! may appear somewhat unusual. Let us
recall that the choice of the short-range interactions is some-
what arbitrary. The only requirement is that dimensions of
the chain at theu temperature are close to that determined
from the unperturbed chain~the chain with short-range inter-
actions only!. It was found for the M1, M2, and M3 models
that only when the LJ interaction between carbons separated
by five bonds was included dimensions of the unperturbed
chain becomes close~although not identical! to that of a real
chain at theu temperature. For the M4 model it is not nec-
essary to include the LJ interaction between carbons sepa-
rated by five bonds into the short-range potential in order to
have comparable values of^r 2& and^r 2&0 at theu point. Sum-
marizing, if one imposes the condition that dimensions of the
real and unperturbed chain be similar at theu temperature
then LJ interactions should be included in the short-range
potential for the M1, M2, and M3 models ofn-alkanes
whereas it is not necessary to do so for the M4 model. The

origin of that is the wild difference in theu temperatures of
the M1, M2, and M3 models~which is of about 1600 K! and
that of the M4 model~close to 400 K!. At low temperatures
~the M4 model! the occurrence of sequences with several
consecutivegauchebonds are scarce. However at high tem-
peratures~M1, M2, and M3 models! it is more frequent and
unless steric hindrance is introduced for this sequence
~through the LJ interaction! some sequences ofgauchebonds
will present higher probability than they should. That was
somehow anticipated by Flory27 who stated that for usual
temperature interactions between carbon separated by four
bonds are sufficient to describe the dimension of the chain at
the u point but that for other conditions more interactions
should be included within the short-range interactions. This
is indeed the case for longn-alkanes at the critical point. We
stress again that even at theu temperature dimensions of real
and unperturbed chain are not identical. Although at theu
temperature, real and unperturbed chain dimensions scale
with y r5ys51, the coefficientsPr andPs in Eqs.~11! and
~12! are not the same for these two models.

In addition to the scaling laws for̂r 2& and^s2& an inter-
esting issue is that concerning the shape of then-alkane. It
has been well known for a long time that the instantaneous
shape of a random walk is rather elongated.48,49 The same
has been found for lattice models with long-range
interactions.50 To analyze the shape of longn-alkanes we
proceeded as follows. A Monte Carlo run of an isolated
chain has been performed. Every five time steps the three
principal moments of inertia of the molecule were calculated
by computing the eigenvalues of the inertia tensor. Since we
are interested in the shape of the molecule rather than in its
mass distribution the mass of each interaction site~CH3 or
CH2! was uniformly distributed within a sphere of radiuss.
Therefore, the inertia tensor for a distribution of compact
hard spheres of diameters is computed~see Ref. 51 for
further details!. The mass of the CH3 and CH2 groups was set
to the arbitrary valuem ~the small difference in mass be-
tween CH3 and CH2 groups was neglected!. The smallest
principal moment of inertia was labeled asI 1

c, the medium
one asI 2

c, and the largest one asI 3
c. The averages values of

^I 1
c/I 3

c& and^I 2
c/I 3

c& were computed and they are presented in
Table VII. It is clear that the average values of^I 1

c/I 3
c& and

^I 2
c/I 3

c& are quite different than one~the expected value for a
spherical distribution of sites! indicating that the instanta-
neous configurations of then-alkane are rather anisotropic.
In order to get more information concerning the shape of
n-alkanes, we assign to every configuration of then-alkane
an equivalent parallelepiped~of uniform mass density! with
the same principal moments of inertia than the considered
configuration. The lengths of the sides of the parallelepiped
a, b, andc ~with a,b,c! are obtained from the solution of
the following equations:51

I 1
c5M /12~a21b2!, ~19!

I 2
c5M /12~a21c2!, ~20!

I 3
c5M /12~b21c2!, ~21!

FIG. 6. Plot of^s2&/^s2&0 vs 1/~T/K! for the M2 model. We used the data of
Table V forT51200 K andT51600 K and linear behavior was assumed for
intermediate temperatures. Results are fornc550 ~circles!, nc5200
~squares!, nc5400 ~triangles!, andnc5600 ~starts!. The dashed line stands
for 1/1580, the Boyle temperature of long chains in the M2 model.
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whereM is the total mass of the parallelepiped which is
given by ncm ~i.e., the same total mass is assigned to the
parallelepiped and to then-alkane!. In Table VII values for
^a&,^b&,^c& and ^c&/^a& and ^b&/^a& are presented. As can
be seen the values of^c&/^a& and^b&/^a& differ significantly
from one showing the anisotropy of the chains. At lower
temperatures chains are slightly more spherical than at high
temperatures~for instance forC200 the value of ^c&/^a&
changes from 3.38 to 3.66 when increasing the temperature
from T51200 K toT52000 K!. In any case the effect of the
temperature on the anisotropy of the chain is small. For a
temperature close to theu point ~seeT51600 K! the princi-
pal moments of inertia of the chain are the same as those of
a parallelepiped with a ratio ofa:b:c of 1:1.7:3.6. Although
the chain withnc5200 is slightly more spherical than the
one withnc5100, the differences are small so that the ratio
1:1.7:3.6 seems to be close to the anisotropy of the infinitely
long polymethylene chain. This ratio is in agreement with
previous calculations of Solc49 for self-avoiding walks. We
conclude thatn-alkanes present a considerable anisotropy at
theu temperature and for higher and lower temperatures. To
further illustrate this point in Fig. 7 an instantaneous con-
figurations of then-alkane is plotted. A simple visual inspec-
tion reveals the anisotropy ofn-alkanes. The strong anisot-
ropy of long chains was also suggested by previous studies
concerning the second virial coefficient of hardn-alkane
models.51,52 Although we cannot speak on the shape of a

long n-alkane since each configuration presents a different
shape, it can be stated however that the instantaneous con-
figurations of an-alkane resemble more an elongated body
~parallelepiped, ellipsoid! than a sphere.

IV. CONCLUSIONS

In this work the second virial coefficient ofn-alkanes
has been calculated. The model used is quite similar to that
proposed in a previous work.15,16 It is shown that the Boyle
temperature ofn-alkanes is fairly insensitive to the length of
the chain for chains withnc.100. This is in agreement with
the prediction of the Flory–Krigbaum theory. Since accord-
ing to the Flory–Huggins theory the temperature at which
the second virial~osmotic! coefficient vanishes is also the
critical temperature of the infinitely long chain, the Boyle
temperature of infinitely long chains provides an estimate of
the critical temperature of polymethylene. The results of this
work suggestu51620 K. This result is in reasonable agree-
ment with the critical temperature of polymethylene esti-
mated from Shultz–Flory plots of the computer simulations
of Smit et al.12 and from the available critical temperatures
of short chains. Therefore we believe thatu51620680 K is
a reasonable estimate of the critical temperature of polym-
ethylene. This is much higher than previous estimates8,10

which are located aroundu51000 K.
It is shown thatA2 ~i.e., B2/nc

2! is independent of the
length of the chain for temperatures below theu temperature
and it scales asnc

2d with d close to 0.30 for temperatures
above theu temperature. This is in agreement with some
recent experimental data.40–42

The scaling laws for̂r 2& and ^s2& at T50 and for other
different temperatures were analyzed. At theu temperature
the exponentvR took the valuevR51.06. This exponent was
obtained from the rather short chains considered in this
work. For n-alkanes it seems necessary to go to longer
chains in order to obtain the correct scaling behavior. In fact
when logarithmic corrections are properly taken into account
we obtain at theu temperature thatv r5vs51, giving further
evidence that at the temperature where the second virial co-
efficient of the infinitely long chain vanishes, the square of
the radius of gyration and the square of the end-to-end dis-
tance scale with~nc21!.

The shape of polymethylene has been analyzed. It is
found that the average values of the three principal moments
of inertia of polymethylene are identical to that of a parallel-
epiped with a length of the sides in the ratio 1:1.7:3.6.

TABLE VII. Averages values ofI 1
c, I 2

c, and I 3
c for the M2 model. The dimensions of the equivalent parallel-

epiped,a, b, andc are given ins units.

nc T/K ^I 1
c/I 3

c& ^I 2
c/I 3

c& ^a& ^b& ^c& ^b&/^a& ^c&^a&

100 1200 0.29 0.87 2.83 4.80 10.02 1.69 3.54
100 1600 0.28 0.87 2.83 4.88 10.50 1.72 3.71
100 2000 0.27 0.87 2.82 4.93 10.65 1.75 3.78
200 1200 0.30 0.87 4.20 6.93 14.20 1.65 3.38
200 1600 0.29 0.87 4.29 7.28 15.37 1.70 3.58
200 2000 0.28 0.87 4.32 7.40 15.83 1.71 3.66

FIG. 7. A representative configuration of then-alkaneC200 obtained at
T51600 K for the M2 model.
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Recently it has been suggested that the vapor–liquid
equilibria of chain molecules can be approximated by that of
a representative conformer53 or even by that of a body of
simple geometry54–56 ~spherocylinder, ellipsoid!. The impor-
tance of this simplification is that it reduces the difficult
problem of calculating the vapor–liquid equilibria of a chain
molecule to the simpler one of computing the vapor–liquid
equilibria of a rigid model with a fixed shape. Perturbation
theories are now available for anisotropic pure fluids.55,57

The results of this work suggest that this representative body
should be rather anisotropic if the ‘‘average’’ shape of the
n-alkane should be described. For instance Boubliket al.54,55

have recently described successfully the vapor–liquid equi-
libria of n-alkanes up ton-hexadecane by taking the
n-alkane as a spherocylinder with a relatively large length to
breath ratio. This work provides support for this approach
and similar ones since after all, chains are rather anisotropic.
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