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The fluid-solid equilibrium of a system made of charged hard spheres with positive and negative ions of the
same size is considered. At high temperatures freezing occurs in a substitutionally disordered close packed
structure, the face centered cubic solid~fcc!. At low temperatures freezing occurs in the ordered cesium
chloride structure~CsCl!. As the latter solid coexists with the fcc structure at high densities, two triple points
exist on the phase diagram. By using computer simulation we determine the precise location of both triple
points. In the first of them, vapor, liquid, and solid~CsCl! are in equilibrium at T*
5T/@q2/(ske)#50.0225, whereq is the charge of the ions,s their diameters,k the Boltzmann constant, and
e the dielectric constant. In the other triple point, occurring atT*50.24, the three coexisting phases are the
fluid, a CsCl solid, and the fcc solid. The vapor-liquid-solid triple point temperature is found to be about
one-third of the critical temperature, in good agreement with the experimental ratio for a number of molten
salts. An implementation of the cell theory for the solid phases of charged hard spheres is presented. It is
shown that this simple theory provides a reasonable description of the properties of solid charged hard spheres.
When the theory is combined with an accurate theory for the fluid phase a very satisfactory description of the
phase diagram of charged hard spheres is obtained. The cell theory predictions are better than those recently
reported using a density functional scheme.@S1063-651X~96!05009-X#

PACS number~s!: 64.70.Dv, 64.70.Hz, 64.70.Kb, 61.20.Gy

I. INTRODUCTION

The structure of molecular fluids at high densities is
dominated by repulsive forces@1,2#. In the case of ionic sys-
tems the structure is determined simultaneously by the short
range repulsive forces and by the strength andasymmetryof
the Coulombic interactions. For this reason it is believed that
the study of hard ionic systems is of great value for improv-
ing our understanding of real ionic substances such as molten
salts. It is expected that dispersive attractive forces could be
incorporated in a perturbative way once the properties of
hard Coulombic systems are well known.

This paper is devoted to a charged hard-sphere model
usually known as the restricted primitive model~RPM!. The
model has played a fundamental role in the study of ionic
systems, in some sense similar to the role played by the
hard-sphere model~HS! in the study of neutral systems. It
consists of a mixture of hard spheres, half of them carrying
positive charge and the remainder carrying negative charge.
The particle diameter is taken to be the same for both spe-
cies. The RPM is not realistic as it does not incorporate
attractive dispersion forces and uses a too simple form for
the repulsive ones. Nevertheless, it provides a fair descrip-
tion, as compared with the experimental values, of several
salts in the molten state. The study of charged hard spheres
has been performed in a number of previous studies~see Ref.
@3# for an excellent review!. The issues addressed in these
works can be considered of three different types. The first
one was centered on the determination of the structure and
properties of the charged hard spheres in the fluid phase. The
solution of the Ornstein-Zernike equation within the mean
spherical approximation~MSA! performed by Waisman and
Lebowitz @4,5# in the 1970s, and the computer simulations
performed by several groups@6–8# played a fundamental

role. It was soon clear that there was room to improve the
thermodynamic predictions of the MSA theory and a little bit
later Larsenet al. @9# proposed an improved version, the so-
called TruncatedG2 approximation~TG2A!, which yields
reasonable predictions for the thermodynamic properties of
charged hard spheres at medium and high densities. The sec-
ond area of study was the computation of the vapor-liquid
equilibrium of the restricted primitive model. Vorontsov-
Vel’yaminov and Chasovskikh by using Monte Carlo com-
puter simulations showed the existence of a gas-liquid coex-
istence@10,11#. Stell et al. @12# also predicted the existence
of this vapor-liquid equilibrium, by using several theoretical
approaches. Recent computer simulations carried out by sev-
eral groups@13–17# have definitively established the exist-
ence of the vapor–liquid equilibrium for the restricted primi-
tive model. In spite of the great deal of work concerning this
Hamiltonian there are some problems that are not yet solved
and are the focus of current work. Two examples of that are
the theoretical treatment of the gas phase@18–21# and the
explanation of the apparent classical character of the critical
exponents in ionic fluids@22,23#.

This paper concerns a third issue in the study of the RPM,
the fluid-solid transition. Unlike the first and second areas
referred to above, comparatively this one has received much
less attention. This is in contrast with other models more or
less related with ionic systems, such as the classical one
component plasma~OCP! or the Yukawa models for which
the fluid-solid equilibrium is well known@24–29#. Neverthe-
less, as early as 1968, Stillinger and Lovett@30# sketched the
phase diagram of charged hard spheres including the fluid-
solid transition. Twenty years later, Barrat@31# used the den-
sity functional theory in the description of the freezing of
charged hard spheres. Recently Smitet al. @32# employed
Monte Carlo computer simulations in order to determine the
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fluid-solid equilibrium of this model. The works by Barrat
and Smitet al. investigated two stable solid phases. At low
temperatures, the stable structure of the solid is that com-
monly denoted as cesium chloride whereas at high tempera-
tures the stable solid is that obtained from the close packing
structure of hard spheres with a random allocation of cations
and anions arranged in a face centered cubic lattice. There-
fore these recent studies would confirm the picture by Still-
inger and Lovett almost 30 years ago@30#.

In spite of this recent and important progress concerning
the fluid-solid equilibrium of the RPM the situation is not
quite satisfactory. Firstly, the triple point of charged hard
spheres has not been precisely determined. A tentative
estimation is now available @32#, namely, T*
5T/@q2/(ske)#50.025, whereT is the temperature,q the
ionic charge,s the ionic diameter,k the Boltzmann constant,
ande the dielectric constant. This estimate was obtained by
extrapolating to low temperatures the Monte Carlo coexist-
ence points at high temperatures. On the other hand, the
theoretical treatment of the fluid-solid transition of the RPM
reduces to the work by Barrat@31#. Although the density
functional theory has played an important role in improving
our understanding of the fluid-solid equilibrium of a number
of simple systems@36–39#, this first theoretical attempt to
describe the fluid-solid equilibrium of the RPM does not
yield quantitative agreement with simulation so that there is
room for theoretical improvement.

The aim of this paper is twofold. Firstly, we intend to
extend the previous Monte Carlo computations by Smitet al.
@32# in order to obtain a precise estimation of the triple
points. In addition we introduce a slight modification of the
cell theory of Lennard-Jones and Devonshire@33,34#, and
apply it to the study of the solid phases of the RPM. The
theory for the solid is combined with the TG2A scheme for
the fluid in order to compute on a purely theoretical basis the
fluid-solid diagram. This strategy of combining an accurate
theory for the liquid with the cell theory for the solid was
pioneered by Henderson and Barker some time ago@35#.
Recent work has shown the ability of the cell theory to de-
scribe fairly complicated solids such as, for instance, hard
dumbbells,@40,41# quadrupolar hard dumbbells@42,43#, and
mixtures of hard spheres@44–46#. Therefore the possibility
of using cell theory for describing complicated solids should
not be overlooked. In this work it is shown that this exten-
sion is also possible for a rather complicated system as the
RPM. The scheme of the paper is as follows. In Sec. II we
report the implementation of the cell theory for the restricted
primitive model. Details of the simulations performed in this
work are described in Sec. III. Section IV presents the results
and Sec. V closes with the conclusions of this paper.

II. THE CELL THEORY

The restricted primitive model is defined as an equimolar
mixture of anions and cations which interact through the
following potential

u~r !5uHS1uqq , ~2.1a!

uHS5H ` if r,s

0 if r>s,
~2.1b!

uqq56
q2

er
, ~2.1c!

whereuHS is the hard-sphere potential,q is the ionic charge,
e is the dielectric constant of the medium, ands the hard-
sphere diameter taken to be the same for both species and the
plus and minus signs apply, respectively, to the interaction
between ions of the same and different charge. The reduced
number density of the system is defined asr*5rs3

5Ns3/V, N being the total number of ions filling a volume
V. In the same way, we define the reduced temperatureT*
and its inverseb* , asT*51/b*5kTes/q2. Finally, the re-
duced pressure isP*5Pes4/q2.

Let us consider the RPM as a binary system. Let
NA5N/2 the number of cations referred to here as compo-
nentA, andNB5N/2 the number of anions, referred to as
componentB. We assume that componentsA andB have the
same mass. We start by developing the cell theory for an
ordered structure such as those of CsCl or NaCl. The unit
cell of these structures is presented in Fig. 1. The CsCl lattice
has a coordination number of 8, which in NaCl is 6. In these
two structures the ionsA and B are located in the solid
within two different sublattices@cf. Figs. 1~a! and ~b!#. The
classical partition function for this system is given by

Q5
~L t!

23N

NA!NB!
Q8, ~2.2a!

Q85E exp@2bU~1,2..N!#d1, . . . ,dN, ~2.2b!

whereL t5@h2/(2pmkT)#1/2, b51/kT, andU(1,2, . . . ,N)
is the total energy of the system. Let us defineU(r1) as the
energy of a central ion—labeled as 1—located atr1 with the
remainder of the ions of the solid resting at their equilibrium
positions,

U~r1!5(
j52

N

@uHS~r1 ,r j !1uqq~r1 ,r j !#. ~2.3!

Because of its definition,U(r1) depends only on the position
of the central ion,r1. Next, we splitU(r1) into two terms
@47#,

U~r1!5U01DU~r1!, ~2.4!

whereU0 is the lattice energy of molecule 1 when fixed on
the lattice position. For charged hard spheresU0 is just the
Coulombic energy of a central ion with the rest of the ions in
the crystal, all the particles located at the lattice positions.
Given the symmetry of the RPM it is clear that the value of
U0 is the same for particlesA andB. Actually,U0 is related
to the Madelung constant, which is a function of the lattice in
consideration. In the context of the cell theory, the free en-
ergy of the solid phaseARPM is given by@34,47#

ARPM52NkTln
v f
L t
3 1N

U0

2
. ~2.5!

The disappearance of the termsNA! andNB! in Eq. ~2.5! may
appear surprising. This is due to the fact that there areNA!
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arbitrary ways of locating theA particles within the A sub-
lattice, andNB! arbitrary ways of locating the particlesB
within theB sublattice. The free volumev f is defined as

v f5E exp@2bDU~r1!#dr1 . ~2.6!

Recall that, in evaluatingv f using Eq.~2.6!, all the ions of
the solid stay at their equilibrium positions, and only the
central ion~labeled 1) is allowed to wander within its cage.
The L t term in Eq. ~2.5! acts as a constant present in the

fluid and solid phases and therefore we may set it to an
arbitrary value, namely,s. The free energy of the solid can
then be written as

ARPM

NkT
5

U0

2kT
2 ln

v f
s3 . ~2.7!

According to Eq.~2.7! the free energy of the solid may be
computed provided thatU0 andDU(r1) are known quanti-
ties. The electrostatic energyU0 of the RPM solid can be
easily evaluated from the Madelung constantM through the
relation

U05
2Mq2

eR
, ~2.8!

whereR is the nearest neighbor distance between ions. Val-
ues of the Madelung constant for the cesium chloride~CsCl!
and the sodium chloride~NaCl! structures areM51.76267
andM51.74756, respectively@48#. Values of the Madelung
constant for other different lattices may also be found in Ref.
@48#. Let us now focus on the evaluation of the free volume
v f . According to Eq.~2.4! the functionDU(r1) may be
written as

DU~r1!5(
j52

N

@uHS~r1 ,r j !1uqq~r1 ,r j !#2U0 . ~2.9!

DU(r1) represents the difference in energy between a con-
figuration where all particles stay at their lattice position ex-
cept ion 1, which is located atr1, and a configuration where
all particles of the system, included the central ion, stay at
their lattice positions. Now, assuming that

(
j52

N

uqq~r1 ,r j !'U0 , ~2.10!

Eq. ~2.9! takes the form

DU~r1!'(
j52

N

uHS~r1 ,r j !. ~2.11!

The above approximation—previously proposed by McQuar-
rie in a cell theory treatment of the fluid phases of ionic
systems@49#—is justified if the displacements of ion 1 from
the equilibrium position do not modify essentially its energy.
This condition is true in a high density ionic solid where the
nearest neighbors form a cage around it. The short displace-
ments undergone by the ion 1 produce a small change of the
Coulombic energy not only because the electrostatic energy
is very long ranged~it decays asr21) but also because the
cage implies that a separation from several neighbors leads
to a similar approximation to those in the opposite direction.
Recall the well known fact that the electric field at any inner
point of a homogeneously charged sphere is identically zero
@50# and thus the potential energy does not change when the
ion moves within the sphere. Of course, the charge distribu-
tion around a central ion in the lattice is not spherical so the
argument is only qualitative but it illustrates the insensitivity
of the Coulombic energy to the location of the central par-
ticle. An additional advantage of using the approximation

FIG. 1. Different types of possible solid structures for the RPM
model.~a! CsCl structure.~b! NaCl structure.~c! fcc structure.
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given by Eq. ~2.11! is that now v f acquires a clear and
simple physical meaning. It represents the volume where the
central ion 1 can move without overlapping its nearest neigh-
bors.

Buehleret al. @51# deduced an analytical expression for
v f for a close packed fcc structure. In this work, the calcu-
lation of the free volume for the CsCl and the NaCl struc-
tures is done numerically. The reader is referred to Ref.@40#
for a detailed discussion of a similar computation. In general,
it is helpful to express the free volume as a function of the
density of the system. We use here the expression proposed
by Alder et al. @52#:

v f
s3 5Ca3exp~a1a1a2a

21a3a
3!, ~2.12!

wherea is defined as

a5
rcp* 2r*

r*
, ~2.13!

rcp* being the close packing reduced number density of the
lattice in consideration. Close packing densities for the fcc
structure, CsCl structure, and NaCl structures areA2,
(3/4)A3, and 1, respectively. The data of free volume for
CsCl and NaCl structures are fitted according to Eqs.~2.12!

and ~2.13!. For computational convenience, we also fit to
these functions the results obtained using the analytical ex-
pression by Buehleret al. @51# for the fcc structure. The
coefficients resulting from these fittings are reported in Table
I. Equations~2.7!, ~2.8!, and~2.12! constitute the cell theory
employed in this work for the computation of the solid phase
of the RPM. Given the simplicity of the theory, free energies
for the solid phase may be computed with a pocket calcula-
tor.

The RPM fcc structure is a substitutionally disordered
structure; i.e., cations and anions are located at the crystal
lattice positions in a more or less random manner, which
depends on temperature. The coordination number for this
lattice is 12. A representation of a possible configuration is
given in Fig. 1~c!. The application of the cell theory to this
structure is clearly more difficult than in the NaCl or CsCl
ones. Rigorously, one should consider all the different ar-
rangements of ions with respect to a given one. This ap-
proach was recently used in a study of the freezing of mix-
tures of hard spheres@44#. However, it is not clear how to
implement this approach for the RPM model. The reason is
twofold. Firstly, Coulombic forces are long ranged so that
fluctuations in composition for second, third, and farther
nearest neighbors should be considered. Besides, it is not
likely that fluctuations in composition in the first coordina-
tion layer could be described by the Bragg-Williams ap-
proximation @47#. For that reason we use a different route.
We start from the free energy of the RPM solid in the fcc
structure using the thermodynamic relation

Afcc
RPM~r* ,b* !

NkT
5
Afcc
RPM~r* ,b*50!

NkT
1E

0

b* U

NkT

db8*

b8*
.

~2.14!

The free energy of the RPM atb*50 is given by

TABLE I. ConstantsC, a1 ,a2, anda3 for several solid struc-
tures. The value of the closest packing densityrcp* is also given .

Solid C a1 a2 a3 rcp*

CsCl 0.2544330 -0.6513693 0.046946764 0.085196763/4 A3
NaCl 0.29059774 -0.49111125 -0.34758300 0.77516448 1
fcc 0.20930 -0.8627 0.30679 -0.082663 A2

TABLE II. Simulation results for the fluid atr*50.55.

b* U/(NkT) g11(s) g21(s) Z

0.05 20.012 2.284 2.461 3.729
0.10 20.026 2.189 2.439 3.657
0.25 20.087 2.090 2.663 3.708
0.50 20.202 1.941 2.809 3.668
1.00 20.458 1.750 2.984 3.574
2.00 21.039 1.415 3.478 3.472
4.00 22.318 1.032 4.167 3.222
6.00 23.666 0.778 4.729 2.950
8.00 25.062 0.595 5.357 2.740
10.00 26.486 0.472 5.911 2.514
12.50 28.304 0.338 6.675 2.271
15.00 210.157 0.260 7.224 1.925
17.50 212.013 0.207 8.170 1.820
20.00 213.876 0.155 8.648 1.445
25.00 217.687 0.106 10.026 0.940
30.00 221.579 0.061 11.509 0.471
35.00 225.469 0.051 13.075 0.070
40.00 229.454 0.029 14.694 20.338
45.00 233.465 0.019 16.320 20.744
50.00 237.533 0.016 18.086 21.085

TABLE III. Simulation results for the fluid atr*50.65.

b* U/(NkT) g11(s) g21(s) Z

0.05 20.013 2.761 2.995 4.913
0.10 20.029 2.727 3.022 4.904
0.25 20.093 2.582 3.201 4.906
0.50 20.212 2.435 3.410 4.908
1.00 20.483 2.195 3.660 4.824
2.00 21.083 1.869 4.140 4.729
4.00 22.403 1.338 4.830 4.397
6.00 23.792 1.048 5.498 4.192
8.00 25.221 0.862 5.939 3.889
10.00 26.678 0.697 6.440 3.632
12.50 28.524 0.530 7.070 3.332
15.00 210.424 0.402 7.710 3.047
17.50 212.328 0.327 8.298 2.762
20.00 214.252 0.232 8.806 2.401
25.00 218.149 0.149 9.832 1.744
30.00 222.066 0.087 10.935 1.147
35.00 226.029 0.068 12.100 0.606
40.00 230.030 0.048 13.145 20.030
45.00 233.979 0.028 14.153 20.674
50.00 237.970 0.018 15.237 21.273
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Afcc
RPM~r* ,b*50!

NkT
5
Afcc
HS~r* !

NkT
2 ln2, ~2.15!

where Afcc
HS(r* ) is the free energy of the hard-sphere fcc

solid at the same density. Note that Eqs.~2.14! and~2.15! are
exact. The ln2 term in Eq.~2.15! arises from the entropy of
mixing between cations and anions in the fcc solid when
b*50 @53#. In order to obtainAfcc

RPM(r* ,b* ) we need to
know the value ofAfcc

HS(r* ) in Eq. ~2.15! andU in the inte-
grand of Eq.~2.14!. For these, we make the following two
approximations.

~i! The free energy of hard spheres in the fcc structure
may be approximated from the cell theory. Therefore we
have

Afcc
HS~r* !

NkT
.2 ln

v f
s3 , ~2.16!

where v f /s
3 is given by Eqs.~2.12! and ~2.13! with the

coefficients presented in Table I for the fcc structure. Equa-

tion ~2.16! slightly underestimates the free energy of hard
spheres in the solid phase@40#.

~ii ! In addition, we assume that the internal energy of the
fcc solid at a given density and temperature may be approxi-
mated by that of a metastable liquid at the same density and
temperature. In order to obtain the internal energy of this
metastable liquid we use the TG2A theory~see Appendix A
for further details!.

After inserting these approximations in Eq.~2.14!, the
free energy of the fcc RPM solid reads

Afcc
RPM~r* ,b* !

NkT
52 ln

v f
s3 2 ln21E

0

b*UTG2A

NkT

db8*

b8*
. ~2.17!

Once the free energy for the solid is known, the pressure
can be obtained by derivating with respect to volume. In
order to obtain fluid-solid equilibrium, a theoretical descrip-
tion of the liquid is needed. In this work we use the TG2A
theory to describe the fluid phase of the model. It is well
known that this theory provides one of the most accurate
descriptions now available for the RPM model at high den-
sities @3#. In Appendix A, expressions for the free energy,
internal energy, and compressibility factor within the TG2A
framework are given.

III. MONTE CARLO COMPUTER SIMULATIONS

In addition to the theoretical approach presented in the
preceding section we have carried out Monte Carlo~MC!
simulations of the RPM. The aim of these simulations is to
give a precise location of the triple points presented in the
fluid-solid transitions. At the same time these data are useful
as a reference in order to check the theory proposed in this
work. The Monte Carlo@54# simulations have been per-
formed in the canonical ensemble. A mixture of N ions of
the same size, half positive and half negative, is placed in a
cubic box with periodic boundary conditions. As customary
in the work with charged systems, one is forced to consider
with some care the computation of the Coulombic contribu-
tion to the potential energy. In this work, the Ewald summa-
tion method@55# —which has shown to perform well in the
simulation of ionic systems at high densities and low tem-
peratures@3#— is employed. Other methods such as the
minimum image can lead to a violation of the lower bound
for the energy, fixed by Onsager 50 years ago@56#.

As usual in the Ewald procedure, the Coulombic potential
is divided into two contributions; one of them is computed in
the real space whereas the other one is evaluated in the re-
ciprocal space. The relative importance of these contribu-
tions is controlled by a parameterg. We have chosen a value
such that only pairs whose distance is lower than half the box
length have to be considered. This value is taken to be
gL55.6, L being the length of the simulation box. In the
reciprocal space we restrict the summation to vectors
hWmax<$65,65,65%, and such that the modulus of the vector
be uhW u2<27. In addition, we assume that the system is sur-
rounded by a conductor.

The fluid state simulations have used a sample size with
250 total ions. We have considered five isochores,r* 5
0.55, 0.65, 0.75, and 0.85. At each density, the simulations
start at high temperatures from a CsCl lattice, which rapidly

TABLE IV. Simulation results for the fluid atr*50.75.

b* U/(NkT) g11(s) g21(s) Z

0.05 20.015 3.428 3.730 6.617
0.10 20.030 3.438 3.690 6.588
0.25 20.099 3.157 3.939 6.540
0.50 20.223 3.043 4.099 6.535
1.00 20.505 2.745 4.453 6.485
2.00 21.128 2.361 4.904 6.330
4.00 22.468 1.837 5.639 6.049
6.00 23.887 1.524 6.201 5.772
8.00 25.328 1.246 6.892 5.615
10.0 26.844 1.001 7.284 5.226
12.50 28.739 0.780 7.973 4.962
15.00 210.648 0.623 8.497 4.614
17.50 212.612 0.498 9.188 4.403
20.00 214.552 0.410 9.657 4.056
25.00 218.545 0.262 10.826 3.527
30.00 222.534 0.185 11.932 3.005
35.00 226.599 0.105 13.147 2.542

TABLE V. Simulation results for the fluid atr*50.85.

b* U/(NkT) g11(s) g21(s) Z

0.05 20.016 4.280 4.734 9.018
0.10 20.032 4.358 4.753 9.099
0.25 20.099 4.090 4.925 8.992
0.50 20.228 3.954 5.144 9.022
1.00 20.518 3.575 5.436 8.848
2.00 21.151 3.138 6.017 8.765
4.00 22.506 2.548 6.910 8.584
6.00 23.972 2.161 7.506 8.281
8.00 25.466 1.700 8.311 8.089
10.00 26.964 1.616 8.715 7.874
12.50 28.893 1.310 9.173 7.367
15.00 210.876 0.980 9.942 7.097
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melts. The final configuration of the run is employed as the
initial one for a state at the same density and lower tempera-
ture. Typically, 0.53106 configurations are generated in the
equilibration stage and the production runs last 1.53106 at-
tempted particle moves. The production phase is divided into
25 cycles of 60 000 configurations each to estimate the stan-
dard deviation of the internal energy. The maximum particle
displacement is set between 0.04s and 0.15s depending on
the density and temperature of the system. The acceptance
rate oscillates in these conditions between 35% and 50%.
The results for the four considered isochores in the fluid

phase are presented in Tables II-V. The data of internal en-
ergy from these simulations have been fitted to the empirical
expression proposed by Larsen@7#,

2
U

NkT
5b*

3/2Fu11u2b*
1/2

1u3b*

u41b*
3/2 G , ~3.1!

by a nonlinear least square method. The values for the coef-
ficients are compiled in Table VI. By integrating this expres-
sion along an isochore we obtain the relationship for the free
energy, which takes the form@7#

dAfluid
RPM

NkT
5
Afluid
RPM~r* ,b* !

NkT
2
Afluid
RPM~r* ,b*50!

NkT

5
2

3
u1lnS u4

u41b*
3/2D 22u2b*

1/2
2u3b*1

e

3
~u22u3e!lnF ~e1b*

1/2
!2

e22eb*
1/2

1b*
G

1
2A3
3

e~u21u3e!FarctanS 2b*
1/2

2e

A3e D 1
p

6 G , ~3.2!

where e5u4
1/3. Additionally, Afluid

RPM(r* ,b*50) is the free
energy of the RPM atb*50, which can be related to the
free energy of the hard-sphere fluid by an expression analo-
gous to Eq.~2.15!. Aside from the simulations along the
isochores mentioned above, we have performed additional
simulations along three isotherms in order to compute the
orthobaric line. Results from these simulations are compiled
in Table VII.

The compressibility factorZ5P/(rkT) has been com-
puted by using the virial theorem

Z511
U

3NkT
1

pr*

3
@g11~s!1g21~s!#, ~3.3!

whereg11(s) and g21(s) are the contact values of the
radial distribution function between ions of the same and
different sign, respectively. These values are obtained
through an extrapolation of the data obtained nears. We use
typically three of these points —using a histogram bin width
set to 0.01s— which have been fitted to a second degree
polynomial and then extrapolated to the contact value.

We have also performed several simulations in the solid
state for two different structures, a CsCl lattice and a face

centered cubic one. The total number of ions was set to
N5250 for the former andN5256 for the later. The NaCl
structure was not considered since, as will be shown later, it
is not a stable phase for the RPM. The fcc solid being a
substitutionally disordered structure, one has to cope with
this feature in the Monte Carlo simulations. In addition to the
particle displacements, the exchange of identities between
them is also attempted. These movements are important for
correctly sampling the configurational space of the fcc solid.
For the solid phase simulations, we have used 23106 con-

TABLE VI. Values of the coefficientsu12u4 of Eq. ~3.1! for
fitting the internal energies of the fluid state isochores presented in
Tables II–V.

r* u1 u2 u3 u4

0.55 2.9817 569 21.4571 663 0.90618 474 4.6243 126
0.65 0.7420 969 20.7945 698 0.85881 121 0.6524 566
0.75 0.5760 094 20.7351 154 0.86771 325 0.3972 978
0.85 0.7236 594 20.7813 350 0.88525 077 0.5926 236

TABLE VII. Simulation results for isotherms T*
50.03,0.0275 and 0.0225.

r* b* U/(NkT) g11(s) g21(s) Z

0.700 33.33 224.977 0.099 12.091 1.610
0.675 33.33 224.855 0.082 12.057 1.296
0.650 33.33 224.686 0.066 11.922 0.931
0.625 33.33 224.579 0.059 12.079 0.751
0.600 33.33 224.404 0.058 12.062 0.481
0.575 33.33 224.281 0.057 12.261 0.323
0.550 33.33 224.151 0.047 12.354 0.092
0.525 33.33 224.022 0.030 12.455 20.143
0.500 33.33 223.905 0.040 12.850 20.219
0.700 36.36 227.370 0.080 12.798 1.317
0.675 36.36 227.246 0.071 12.892 1.081
0.650 36.36 227.145 0.056 12.984 0.827
0.625 36.36 226.943 0.059 12.810 0.441
0.600 36.36 226.820 0.047 12.918 0.206
0.575 36.36 226.672 0.045 12.931 20.077
0.700 44.44 233.929 0.039 14.427 0.294
0.680 44.44 233.744 0.040 14.424 0.052
0.660 44.44 233.626 0.030 14.149 20.409
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figurations in the equilibration and 53106 for obtaining run-
ning averages. The simulation results for both the CsCl and
the fcc solids are collected in Table VIII.

IV. RESULTS AND DISCUSSION

In this section we present the results obtained with the cell
theory and the simulations of the RPM. Firstly, we make a

comparison between theory and simulation for the solid
phases of the RPM. Next, the simulation results for the fluid
phase are compared with the theoretical predictions of the
TG2A theory. This is interesting because the densities and
temperatures investigated in this work cover a range not pre-
viously studied. Finally, we analyze the question of the RPM
phase diagram obtained theoretically and compare it with the
simulation results.

TABLE VIII. Simulation results for the CsCl and fcc solid structures of the RPM model.

Solid b* r* U/(NkT) g11(s) g21(s) Z

CsCl 4.00 1.050 23.155 0.944 10.489 0.924
CsCl 4.00 1.000 23.097 0.847 9.020 0.869
CsCl 4.00 0.950 23.028 0.879 7.756 0.896
CsCl 5.00 1.050 23.959 0.800 10.668 0.791
CsCl 5.00 1.000 23.883 0.782 8.988 0.776
CsCl 5.00 0.950 23.807 0.758 7.889 0.764
CsCl 6.67 0.950 25.105 0.616 7.965 0.608
CsCl 6.67 1.000 25.211 0.594 9.125 0.585
CsCl 6.67 1.050 25.303 0.618 10.830 0.616
CsCl 7.69 0.900 25.792 0.546 7.120 0.560
CsCl 7.69 0.950 25.912 0.544 7.988 0.555
CsCl 7.69 1.000 26.028 0.494 9.160 0.527
CsCl 7.69 1.050 26.135 0.537 10.876 0.544
CsCl 10.00 1.000 27.872 0.402 9.264 0.386
CsCl 15.00 1.000 211.894 0.237 9.422 0.225
CsCl 20.00 1.000 215.939 0.125 9.493 0.118
CsCl 25.00 1.100 220.623 0.037 13.886 10.163
CsCl 25.00 1.050 220.304 0.057 11.162 6.568
CsCl 25.00 1.000 219.988 0.072 9.576 4.440
CsCl 25.00 0.950 219.679 0.089 8.462 2.948
CsCl 25.00 0.900 219.383 0.093 7.951 2.121
CsCl 25.00 0.850 219.100 0.108 7.771 1.647
CsCl 25.00 0.800 218.830 0.112 7.673 1.246
CsCl 30.00 1.000 224.042 0.051 9.697 3.194
CsCl 35.00 1.000 228.104 0.029 9.866 1.993
CsCl 40.00 1.100 233.145 0.005 13.933 6.007
CsCl 40.00 1.050 232.646 0.017 11.409 2.681
CsCl 40.00 1.000 232.172 0.020 9.973 0.741
CsCl 40.00 0.950 231.716 0.033 9.288 -0.300
CsCl 40.00 0.900 231.294 0.035 8.991 -0.925
CsCl 40.00 0.850 230.941 0.042 9.276 -1.019
CsCl 40.00 0.800 230.732 0.046 10.341 -0.542
fcc 0.05 1.10 20.015 5.234 5.534 13.399
fcc 0.10 1.10 20.035 5.037 5.538 13.170
fcc 0.25 1.10 20.107 4.953 5.831 13.387
fcc 0.50 1.10 20.246 4.729 6.003 13.280
fcc 1.00 1.10 20.553 4.404 6.260 13.100
fcc 2.00 1.05 21.205 3.558 6.109 11.227
fcc 2.00 1.10 21.221 4.053 6.726 13.010
fcc 2.00 1.15 21.237 4.824 7.760 15.742
fcc 2.00 1.20 21.253 5.864 9.150 19.450
fcc 4.00 1.05 22.622 3.125 6.625 10.847
fcc 4.00 1.10 22.660 3.611 7.186 12.550
fcc 6.00 1.10 24.409 3.322 7.298 11.764
fcc 8.00 1.10 25.972 3.258 7.384 11.269
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A. The solid state

Figure 2 shows the results for the equation of state~EOS!
of the CsCl and fcc structures as obtained in our Monte Carlo
simulations and using the theory presented in Sec. II. It is
clear that the theory provides a fair description of the EOS of
these solid phases. For the CsCl lattice@cf. Fig. 2~a!#, the
agreement between simulation and theory seems to be better
at the lower densities where a crossing between theory and
simulation is observed. This feature seems to be independent
of temperature, at least for the range studied here. In the case
of the fcc solid, the theory slightly underestimates the pres-
sure. The results for the internal energy are depicted in Fig.
3. Now the theoretical predictions are in excellent agreement
with the simulated values irrespective of the lattice consid-
ered. The good agreement obtained for the CsCl lattice is not
surprising since the fluctuations of the ions around their lat-
tice positions scarcely affect the internal energy, which is

essentially given by the Madelung constant. For the fcc
structure, the good agreement is more striking. It should be
recalled that, for the fcc solid, the theoretical internal energy
is that of a metastable liquid described by the
TG2A theory. The results presented in Fig. 3~b! indicate that
this seems to be a very good approximation suggesting that
the substitutional disorder in the fcc solid resembles that
found in the liquid.

Table IX presents the results for the free energy of the
CsCl and fcc solids. Simulation results for the free energies
of the CsCl structure are taken from the work by Smitet al.
@32# whereas those for the fcc lattice are from this work. The
theoretical predictions at low temperatures for the CsCl lat-
tice compare well with the MC data. The agreement
deteriorates as the temperature increases. For instance, at
T*50.25 the theory overestimates the free energy by about
0.4 in NkT units. For the fcc solid, the agreement between
theory and simulation is excellent. In this case, the relative
error is less than 3% at the conditions studied.

FIG. 2. Equation of state for the RPM in the solid phase as
obtained from simulation~circles! and from the cell theory~lines!.
~a! Results for the CsCl structure forb*525 ~solid line and filled
circles! and forb*540 ~dashed line and open circles!. ~b! Results
for the fcc structure forb*52 ~solid line and filled circles! and for
b*54 ~dashed line and open circles!.

FIG. 3. Internal energy of the RPM model in the solid phase as
obtained from simulation~circles! and from the cell theory~lines!.
~a! Results for the CsCl structure forb*525 ~solid line and filled
circles! and forb*540 ~dashed line and open circles!. ~b! Results
for the fcc structure forb*52 ~solid line and filled circles! and
b*54 ~dashed line and open circles!.
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B. The liquid state

Next we compare our simulation results for the fluid state
with the predictions of the truncatedG2A approximation.
We restrict ourselves here to the high density region we are
interested in, i.e., the range 0.55,r*,0.85. Comparison at
lower densities and even in the gas phase region has been
reported by other authors@3,16#. From these studies it is
clear that the TG2A theory does not perform very well at low
densities. Unlike the predictions at low densities, the TG2A
theory is quite accurate within the fluid density range con-
sidered in this work. This can be seen in Fig. 4 where we
compare the predictions of the TG2A theory with the simu-
lations of this work@see Eqs.~3.1! and ~3.2!#. Figure 4~a!
shows the free energy difference,dA, between the RPM at
b* and atb*50 at constant density. The agreement is very
satisfactory. The compressibility factors are shown in Fig.
4~b!. At the highest density studiedr*50.85, the results of
the TG2A theory are in excellent agreement with simulation
and the theory provides a quite reliable description of the
fluid. At intermediate densities,r*50.55,0.65,0.75, certain
discrepancies between theory and simulation~especially at
low temperatures! are found. We have fitted the differences
between MC and the theoretical results for the isochores
r*50.55,0.65,0.75 to the empirical expressions

DA

MkT
5
AMC

NkT
2
ATG2A

NkT
5~0.05701920.168377r*

10.108416r*
2
!b* , ~4.1!

DZ5ZMC2ZTG2A5~2.0143828.49182r*111.6053r*
2

25.19225r*
3
!b* . ~4.2!

By using Eqs.~4.1! and ~4.2!, it is possible to get results
close to MC from the theory just by adding to the latter the
aforementioned deviation. The fitting equations must not be
used outside the density range (0.55,r*,0.75). For densi-
ties r*>0.85, the TG2A theory yields a very good descrip-
tion of the fluid phase so there is no need to include a cor-
rection term.

C. The phase diagram

In order to compute the phase diagram we need the equa-
tion of state as well as the chemical potential of all possible

TABLE IX. Free energies for the CsCl and fcc structures of the solid RPM as obtained from the
simulation results of Smitet al. @32# for the CsCl structure and from our simulations for the fcc solid.
Numbers in parentheses correspond to the free energy calculated using the cell theory of this work.

Structure T* r*51.0 r*51.1 r*51.2

CsCl 0.04 215.04(215.01! 214.40(214.23!
CsCl 0.05 211.05(210.98! 210.29(210.06!
CsCl 0.10 23.09(22.90!
CsCl 0.25 1.56~1.95!
CsCl 0.50 3.11~3.56! 4.40~4.95!
fcc 0.25 2.60~2.55!
fcc 0.50 3.89~3.82! 5.28~5.12!
fcc 1.00 4.49~4.40!

FIG. 4. Comparison between MC results~symbols! and the
theoretical predictions of the TG2A ~lines! for several isochores.~a!
Free energy difference betweenb* andb*50, dA/(NkT), for the
isochoresr*50.55 ~solid line and filled circles!, and r*50.65
~dashed line and open circles!. ~b! Compressibility factor,Z, for the
isochoresr*50.55 ~bottom solid line and triangles!, 0.65 ~dashed
line and squares!, 0.75 ~short dashed line and circles!, and 0.85
~upper solid line and filled circles!.
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phases. Coexistence between two phases occurs when the
chemical potential and pressure is the same for both phases
at a given temperature. This condition can be trivially imple-
mented for the theoretical results but the discrete nature of
the simulation data forces us to make interpolations. The
interpolating procedure to calculate the coexistence lines and
the triple points are described in Appendix B. Figure 5 dis-
plays what can be considered the main result of this work,
namely, the phase diagram of the RPM as obtained from the
theory and from simulation. Let us first discuss the results for
the vapor-liquid equilibrium. It is well known that the
TG2A predicts a too high critical temperature,T*.0.08,
which should be compared to the best estimate now avail-
able,T*50.057 @21#. The large disagreement is due to the
fact that the TG2A is not a good theory for the RPM at low
densities. In Fig. 5, coexistence densities—as obtained from
the simulation results by Orkoulas and Panagiotopoulos
@14#—have been included. Unfortunately, at low tempera-
tures the vapor-liquid equilibrium of the RPM is still un-
known. Because of that, we have estimated the orthobaric
densities at low temperatures as the zero pressure densities
calculated from the simulation data presented in Table VII.
The low temperature orthobaric densities included in Fig. 5
have been calculated in this way. For the calculation of the
triple point, it is convenient to have an analytical expression
for the orthobaric densities. ForT*,0.04, the following re-
lation is fulfilled:

r*51.1380220.182T* . ~4.3!

It should be mentioned that the expression proposed by
Gillan @18# for describing orthobaric densities and used by
other authors~see, for instance, Ref.@57#! seems inadequate
in the light of the simulation data reported in this work.
Apparently, the reason for the discrepancy is that Gillan used
isochores in determining the zero pressure densities. This
procedure can lead to densities lying beyond the mechani-
cally stable fluid as two points of zero pressure may exist for
a given isotherm at low temperatures.

For the computation of the fluid-solid equilibrium, in ad-
dition to the conditions in the equality of the pressures and
chemical potentials of both phases, one has to assume a
given structure for the solid phase. Two reasonable possibili-
ties for the equilibrium solid at low temperatures are the
CsCl and the NaCl structures. By using the theory of this
work we were able to compute the fluid-solid~NaCl! transi-
tion at low temperatures. However, densities of the freezing
for this transition were found to be larger than those for the
fluid-solid ~CsCl! coexistence. In other words, at the liquid
densities at which the fluid-solid~NaCl! transition occurs the
system would have already frozen into the CsCl structure.
This result is in agreement with the conjecture of Stillinger
and Lovett,@30# with the density functional theory of Barrat
@31# as well as with the recent computer simulations of Smit
et al. @32#. The reason that the NaCl structure does not ap-
pear seems to be clear. For the RPM, neither the internal
energy~i.e., the Madelung constant! nor the free volume~the
close packed density! favors the NaCl structure over the
CsCl one.

The comparison of the simulation results with the theo-
retical calculations for the equilibrium liquid CsCl shows
satisfactory agreement. The triple point evaluated through
the cell and TG2A theories is located atTt*50.025 to be
compared with our estimate from the MC simulation,
Tt*50.0225. For this, the tentative valueT*50.025 has
been recently reported by Smitet al. @32#. It has been ob-
tained by extrapolating the high temperature fluid-
solid ~CsCl! equilibrium data calculated from their simula-
tions. Regarding the coexistence densities, the curve on the
fluid side obtained from our simulations is sharper than the
theoretical one; thus, the theoretical triple point density is
underestimated,r t*50.558, while the pseudoexperimental
value isr t*50.681. It is interesting to relate the triple point
temperature with that of the critical point. For the latter, we
adopt here as the more confident estimate the value reported
by Fisher and Levin,@21# Tc*50.057. The ratioTt* /Tc* is
0.39 using the best estimates from simulation data for the
RPM model. The ratio is close to the experimental one for
ionic substances such as NaCl or CsCl,Tt* /Tc*'1/3 @58#.
Therefore the RPM provides an adequate basis to understand
the low values of the triple point temperature to critical tem-
perature ratio. Notice that this ratio is about 0.55 for non-
ionic systems such as noble gases.

There is another feature showing a different behavior of
the RPM with respect to simple systems. It can be observed
in Fig. 5 that the curve of coexistence densities in the
solid ~CsCl! phase is not monotonous. There is a change of
slope at low temperatures resulting in a convex shape. In this

FIG. 5. Phase diagram of the RPM as computed from the theory
of this work ~solid lines! and from computer simulation~symbols!.
The vapor-liquid equilibrium data~asterisks! were taken from the
Gibbs ensemble simulations of Orkoulas and Panagiotopoulos@14#.
Orthobaric densities at low temperatures correspond to zero pres-
sure densities as obtained from the simulations of this work. The
fluid-solid ~CsCl! data forT*50.075 andT*50.10 ~filled circles!
have been taken from the simulation results of Smitet al. @32#. The
remaining symbols correspond to the fluid-solid~CsCl! equilibrium
as obtained from the computer simulations of this work except for
the highest temperature, which corresponds to the fluid-solid~fcc!
equilibrium.
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region, the solid densities increase as temperature decreases.
Systems such as argon or nitrogen show a continuous de-
crease in the coexistence densities as the temperature de-
creases. This fact is predicted by the cell theory and con-
firmed by the computer simulation results of this work. This
feature of the phase diagram of the RPM was not observed
by Smit et al. since the temperature at which it appears is
outside the range studied in their work. It is also absent in the
phase diagram computed by Barrat@31# using a density func-
tional theory. It would be interesting to know whether this
feature is also present in the freezing of real molten salts
such as NaCl and CsCl. A consequence of the negative slope
of the solid coexistence curve is the large volume change at
melting exhibited by the RPM model. At the triple point, the
fractional density change, (rsolid* 2r liquid* )/rsolid* , is about
0.32. Figure 5 also shows the theoretical sublimation line
estimated from the zero pressure densities of the CsCl solid.
The solid densities along the sublimation line tend to the
close packed density of the CsCl solid when the temperature
goes to zero. This fact has also been observed in a quadru-
polar hard-sphere fluid@43#.

We have already mentioned that, at high temperatures, the
fluid coexists with a solid arranged in the fcc structure. In-
deed, it is clear that this must be the stable solid in the limit
b*→0. The appearance of the fcc structure at high tempera-
tures can be understood on the basis that, under these condi-
tions, Coulombic forces diminish their importance whereas
the hard-sphere potential is not affected by the temperature.
Thus the entropic term compensates the internal energy gain.
This is correctly predicted by both theory and simulation~see
Fig. 5!. In Fig. 6, a more detailed view showing the fluid-
solid ~fcc! freezing line at very high temperatures is pre-
sented~it covers the range of temperatures just above those
shown in the previous figure!. There, it can be seen that the
fluid-solid ~fcc! freezing is almost a vertical line although it
exhibits a very small slope. AtT*5` our theoretical predic-
tion for the coexistence densities of hard spheres is
r f*50.933 andrs*51.049. These values are in very good
agreement with the well stated simulation values, which are
r f*50.943 andrs*51.041@59,60#. Overall, the theory yields
very good predictions for the coexistence densities along the
fluid-solid ~fcc! transition.

Let us return again to Fig. 5. The cell theory predicts the
existence of a solid~CsCl!-solid ~fcc! transition at low tem-
peratures. This can be easily explained as the CsCl solid has
a lower internal energy and a smaller close packing density
than the fcc one. Since the solid stable structure at low tem-
peratures is not the same as that at high temperatures, a sec-
ond triple point must appear on the phase diagram. The co-
existing phases are the fluid, a CsCl solid, and the fcc solid.
Table X presents the coexisting properties obtained from the
simulation data using the procedure described in Appendix
II. Orthobaric densities for the liquid at low temperatures are
also included. The precise location of this triple point in the
usualT*2r* plot is difficult as the lines of coexisting den-
sities for solid phases are very steep. Figure 7 displays a
P*2T* plot of the fluid-solid CsCl and fluid-solid fcc. It
can be seen that the intersection of the curves allows a pre-
cise estimate of the ‘‘simulated’’ triple point, which occurs
at T*50.24, r*50.93. Previous simulation results from
Smit et al. @32# yielded for this triple point temperature

T*'0.30. The cell theory locates it atT*50.15. The reason
for the discrepancy is that the cell theory does not provide
accurate values for the free energy of the CsCl solid at high
temperatures~see Table IX!. Even so, our estimate is much
closer to the simulation results than that coming from the
density functional theory by Barrat@31# who reported
T*50.045. A more general comparison between the phase
diagram as obtained from the theory of this work, from den-
sity functional theory and from the computer simulation of
this work is given in Fig. 8. It is clear that the cell theory
provides a much better description of the fluid-solid equilib-
rium than the Barrat theory@31#. A final remark about this
region of the phase diagram is that the coexistence densities
along the solid~CsCl!-solid ~fcc! theoretical line tend to the
close packed densities of each type of solid as the tempera-
ture goes to zero as can be expected.

The results presented in Fig. 5 show that the combination
of the TG2A for the fluid phase with the cell theory for the
solid phase yields a qualitatively correct phase diagram for
the RPM. This is remarkable since all used expressions are
quite simple to implement. Therefore, future applications on
the solid-fluid equilibrium of charged systems should con-
sider as a serious alternative the use of the cell theory for
describing the solid phases.

V. CONCLUSIONS

In this work, the phase diagram of a charged hard-spheres
model~RPM! was evaluated both theoretically and by using
computer simulations. The emphasis is put on the fluid-solid
equilibrium. We have shown how the cell theory of Lennard-
Jones and Devonshire can be implemented for describing
ionic solids. This theory provides a satisfactory description
of the equation of state, internal energies, and free energies

FIG. 6. Fluid-solid ~fcc! equilibrium for the RPM model. Lines
correspond to the theory of this work whereas the circles were
obtained by using the computer simulations of this work except the
value for hard spheres which is taken from Ref.@59#.
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of the RPM system in the solid phase. When combined with
an accurate treatment of the fluid phase, in particular the
TG2A theory, a satisfactory description of the phase diagram
is obtained. The predictions of the theory seem to be superior
to the results obtained from the density functional theory of
Barrat @31#.

The computer simulations performed in this work provide
the following picture for the phase diagram of charged hard
spheres~it is to be mentioned that the phase diagram conjec-
tured by Stillinger and Lovett almost 30 years ago seems to
be qualitatively correct and adequate!. At high temperatures
the fluid is in equilibrium with a disordered fcc solid whereas
at low temperatures freezing occurs into the CsCl structure,
and then, two triple points have been found. Coexistence
densities along the fluid-solid~fcc! equilibrium scarcely
change with temperature. For the fluid-solid~CsCl! equilib-

rium, we found in the neighborhood of the triple point an
increase of the solid density as the temperature decreases. In
the first triple point, the fluid, a solid~CsCl!, and a solid~fcc!
are in equilibrium. In the second, the gas, the liquid and the
solid CsCl are the coexisting phases. Our estimates of the
triple point temperatures areT*50.24 for the former and
T*50.0225 for the latter one. The ratio between the gas-
liquid-solid ~CsCl! triple point temperature and the critical
one Tt* /Tc* is estimated as 0.39. This is in fair agreement
with the value 1/3 found for a number of molten salts. The
fractional density change at melting for the RPM is quite
large. The final conclusion of this work is that by treating the
solid with the very simple cell theory, an almost quantitative
determination of the phase diagram can be obtained provided
that it is combined with a good theory~such as the TG2A!
for the liquid phase.

FIG. 7. P* -T* diagram obtained from the simulation results of
this work ~see Table X!. Open circles correspond to the fluid-
solid ~CsCl! equilibrium, filled circles to the fluid-solid~fcc! coex-
istence. Lines are only a guide to the eye.

FIG. 8. A comparison between the fluid-solid equilibrium of the
RPM model obtained from the cell theory~solid lines!, from the
density functional theory of Barrat@31# ~dashed lines! and from
computer simulation~symbols!. Meaning of the symbols as in Fig.
5.

TABLE X. Coexisting properties of the RPM as obtained from the simulation results of this work. The
chemical potential is denoted asm.

T* Phase 1 Phase 2 r1* r2* P* m/(kT)

0.5 fluid fcc 0.939 1.036 5.64 14.07
0.25 fluid fcc 0.936 1.026 2.72 12.42
0.25 fluid CsCl 0.941 1.016 2.79 12.72
0.20 fluid CsCl 0.911 0.991 1.91 10.34
0.15 fluid CsCl 0.866 0.956 1.14 7.07
0.13 fluid CsCl 0.844 0.936 0.87 5.31
0.04 fluid CsCl 0.724 0.916 0.09 212.95
0.025 fluid CsCl 0.696 0.991 0.01 226.57
0.03 gas liquid 0.540 0
0.0275 gas liquid 0.582 0
0.0225 gas liquid 0.681 0
0.0225 liquid CsCl 0.681 1.000 0
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The phase diagram of the RPM model differs consider-
ably from that of other models proposed for ionic systems
such as the classical one component plasma~a system made
of mobile ions immersed in a neutralizing background!. The
OCP fluid freezes into a body centered cubic lattice~bcc!
without changing its density@24–26#. Somewhat related with
the OCP is the Yukawa model. For this system freezing oc-
curs into either a fcc or a bcc lattice depending on thermo-
dynamic conditions, which seems similar to the behavior
found in this work for the RPM. Nevertheless, there are at
least two important differences. First, the fractional density
changes at melting for the Yukawa models so far reported
@27–29# are quite small in contrast with those of the RPM.
Secondly, the bcc is quite different from the cesium chloride
structure ~the Bravais lattice of the latter is simple cubic
@61#!.

ACKNOWLEDGMENTS

This work has been partially supported by Projects No.
PB94-0285 and PB93-0085 furnished by the Direccio´n Gen-
eral de Investigacio´n Cientı́fica y Tecnı´ca ~DGICYT! of
Spain.

APPENDIX A: TRUNCATED G2 APPROXIMATION

In this Appendix we give the expressions for the free
energy, internal energy, and compressibility factor of the
RPM model. They are given for completeness and we refer
the interested reader to Ref.@3# for further details. Let us
start defining two new magnitudesx and p ~not to be con-
fused with the pressure, which is denoted byP) as

x5~4pr*b* !1/2, ~A1!

p5~112x!1/221. ~A2!

The internal energy and the compressibility factor obtained
from the MSA solution of the Ornstein-Zernike equation are
given by

UMSA

NkT
52

x21x2x~112x!1/2

4pr*
~A3!

and

ZMSA5ZHS1
3x1213x~112x!1/222~112x!3/2

12pr*
,

~A4!

whereZHS is the compressibility factor of hard spheres. For
this, we use the Carnahan-Starling equation@62#

ZHS5
11y1y22y3

~12y!3
, ~A5!

being

y5
p

6
r* . ~A6!

The expressions for the internal energy and compressibility
factor of the TG2A are then given by

UTG2A

NkT
5
UMSA

NkT
2s8, ~A7!

and

ZTG2A5ZMSA2s8, ~A8!

where the functions8 has been defined as

s85
p~p12!

512~p11!
$5p226p131@4~2p21!2sinp

2~4p21!cosp#e2p%. ~A9!

Finally, the TG2A free energy is given by

ATG2A

NkT
5 ln

r*

2
211

AHS

NkT
2
3x216x1222~112x!3/2

12pr*

2
1

128H 5p33 23p213p142e2p@4~2p11!

1~2p11!sinp22pcosp#J , ~A10!

whereAHS/(NkT) is the residual Helmholtz free energy of
hard spheres, which can be obtained by integrating the
Carnahan-Starling equation so that

AHS

NkT
5y

423y

~12y!2
. ~A11!

Equations~A1!–~A11! provide all that is needed for a full
description of the fluid phase of the RPM.

APPENDIX B: DETERMINATION OF
THE PHASE DIAGRAM FROM SIMULATION DATA

In this appendix we sketch the procedures necessary for
obtaining the phase diagram and~especially! the interpola-
tions used for the calculation of the triple points from the
discrete simulation data.

~i! The fluid is parametrized through the TG2A theory
along with the empirical corrections given by Eqs~4.1! and
~4.2!, which brings the theory in close agreement with the
simulation results of this work. This empirical correction is
used for densities in the range 0.55,r*,0.75. For larger
densities, no correction term was used since the TG2A yields
very good agreement with simulation.

~ii ! Orthobaric densities of the liquid at low temperatures
were approximated as the zero pressure densities using the
MC data of Table VII. ForT*,0.040, the orthobaric densi-
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ties may be described by Eq.~4.3!.
~iii ! The equation of state for the CsCl and fcc solids at

several isotherms were obtained from the computer simula-
tions of this work. At each temperature, the compressibility
factor was fitted to a polynomial function on density.

~iv! The free energy of the CsCl solid atT*50.05 and
r*51 was taken from the work of Smitet al. @32#. Free
energies of the CsCl solid at other temperatures and densities
were obtained by using thermodynamic integration and the
simulation results of this work.

~v! The free energies of the fcc solid were obtained by
using thermodynamic integration from the relation

Afcc
RPM~r* ,b* !

NkT
55.6322 ln21E

0

b*U~r*51.10,b8*!
NkT

db8*

b8*

1E
1.10

r* Z~r8*,b* !

r8*
dr8*. ~B1!

The first two terms in Eq.~B.1! are the free energy of the
RPM fcc solid forr*51.10 andb*50. This is obtained by
using the well-known value of the hard-sphere free energy
@59,60# for the fcc solid atr*51.10 (5.632 inNkT units!
and the extra contribution due to the random mixing of cat-
ions and anions atb*50 ~the2 ln2 term!.
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