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Fluid-solid equilibrium of a charged hard-sphere model
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The fluid-solid equilibrium of a system made of charged hard spheres with positive and negative ions of the
same size is considered. At high temperatures freezing occurs in a substitutionally disordered close packed
structure, the face centered cubic solfdc). At low temperatures freezing occurs in the ordered cesium
chloride structuréCsC)). As the latter solid coexists with the fcc structure at high densities, two triple points
exist on the phase diagram. By using computer simulation we determine the precise location of both triple
points. In the first of them, vapor, liquid, and soli€sC) are in equilibrium at T*
=T/[q%/(cke)]=0.0225, wherey is the charge of the ions; their diametersk the Boltzmann constant, and
€ the dielectric constant. In the other triple point, occurringrat=0.24, the three coexisting phases are the
fluid, a CsCl solid, and the fcc solid. The vapor-liquid-solid triple point temperature is found to be about
one-third of the critical temperature, in good agreement with the experimental ratio for a number of molten
salts. An implementation of the cell theory for the solid phases of charged hard spheres is presented. It is
shown that this simple theory provides a reasonable description of the properties of solid charged hard spheres.
When the theory is combined with an accurate theory for the fluid phase a very satisfactory description of the
phase diagram of charged hard spheres is obtained. The cell theory predictions are better than those recently
reported using a density functional schelf®1063-651X96)05009-X|

PACS numbes): 64.70.Dv, 64.70.Hz, 64.70.Kb, 61.20.Gy

I. INTRODUCTION role. It was soon clear that there was room to improve the
thermodynamic predictions of the MSA theory and a little bit
The structure of molecular fluids at high densities islater Larseret al.[9] proposed an improved version, the so-
dominated by repulsive forcg4,2]. In the case of ionic sys- called Truncated"2 approximation(TI'2A), which yields
tems the structure is determined simultaneously by the shoreasonable predictions for the thermodynamic properties of
range repulsive forces and by the strength asgmmetrnyof ~ charged hard spheres at medium and high densities. The sec-
the Coulombic interactions. For this reason it is believed thabnd area of study was the computation of the vapor-liquid
the study of hard ionic systems is of great value for improv-equilibrium of the restricted primitive model. Vorontsov-
ing our understanding of real ionic substances such as molteviel'yaminov and Chasovskikh by using Monte Carlo com-
salts. It is expected that dispersive attractive forces could bputer simulations showed the existence of a gas-liquid coex-
incorporated in a perturbative way once the properties ofstence[10,11. Stell et al. [12] also predicted the existence
hard Coulombic systems are well known. of this vapor-liquid equilibrium, by using several theoretical
This paper is devoted to a charged hard-sphere modelpproaches. Recent computer simulations carried out by sev-
usually known as the restricted primitive modBPM). The  eral groupg13—17 have definitively established the exist-
model has played a fundamental role in the study of ionicence of the vapor-liquid equilibrium for the restricted primi-
systems, in some sense similar to the role played by théve model. In spite of the great deal of work concerning this
hard-sphere modgHS) in the study of neutral systems. It Hamiltonian there are some problems that are not yet solved
consists of a mixture of hard spheres, half of them carryingand are the focus of current work. Two examples of that are
positive charge and the remainder carrying negative chargéhe theoretical treatment of the gas ph§$8-21 and the
The particle diameter is taken to be the same for both speexplanation of the apparent classical character of the critical
cies. The RPM is not realistic as it does not incorporateexponents in ionic fluid§22,23.
attractive dispersion forces and uses a too simple form for This paper concerns a third issue in the study of the RPM,
the repulsive ones. Nevertheless, it provides a fair descriphe fluid-solid transition. Unlike the first and second areas
tion, as compared with the experimental values, of severdaieferred to above, comparatively this one has received much
salts in the molten state. The study of charged hard spherdass attention. This is in contrast with other models more or
has been performed in a number of previous studies Ref. less related with ionic systems, such as the classical one
[3] for an excellent revieyv The issues addressed in thesecomponent plasm&OCP or the Yukawa models for which
works can be considered of three different types. The firsthe fluid-solid equilibrium is well knowii24—29. Neverthe-
one was centered on the determination of the structure andss, as early as 1968, Stillinger and LoJ&(] sketched the
properties of the charged hard spheres in the fluid phase. Thghase diagram of charged hard spheres including the fluid-
solution of the Ornstein-Zernike equation within the meansolid transition. Twenty years later, Barf&tl] used the den-
spherical approximatiofMSA) performed by Waisman and sity functional theory in the description of the freezing of
Lebowitz [4,5] in the 1970s, and the computer simulationscharged hard spheres. Recently Seiital. [32] employed
performed by several groud$-8| played a fundamental Monte Carlo computer simulations in order to determine the
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fluid-solid equilibrium of this model. The works by Barrat q°
and Smitet al. investigated two stable solid phases. At low Ugg=* s (219
temperatures, the stable structure of the solid is that com-
monly denoted as cesium chloride whereas at high tempergghereu, s is the hard-sphere potential,is the ionic charge,
tures the stable solid is that obtained from the close packing is the dielectric constant of the medium, andhe hard-
structure of hard spheres with a random allocation of cationgphere diameter taken to be the same for both species and the
inger and Lovett almost 30 years aff0]. __number density of the system is defined a$=po°

In spite of this recent and important progress concerning- N3\, N being the total number of ions filling a volume
the fluid-solid equilibrium of the RPM the situation is not \; |5 the same way, we define the reduced temperaktire

quite satisfactory. Firstly, the triple point of charged hardgnq its inverse8*, asT* = 1/8* =kTea/qg?. Finally, the re-
spheres has not been precisely determined. A tentativgceq pressure i’@*zpwzt/qz_ ’

estimation is now available [32], namely, T* Let us consider the RPM as a binary system. Let

— 2 — i
=T/[q7/(oke)]=0.025, whereT is the temperature the N, —N/2 the number of cations referred to here as compo-
ionic charge the ionic diameterk the Boltzmann constant, nantA and Ng=N/2 the number of anions, referred to as

and e the dielectric constant. This estimate was obtained bY:omponenB. We assume that componedt@andB have the
extrapolating to low temperatures the Monte Carlo coexistsgme mass. We start by developing the cell theory for an

ence points at high temperatures. On the other hand, thgyered structure such as those of CsCl or NaCl. The unit
theoretical treatment of the fluid-solid transition of the RPM cell of these structures is presented in Fig. 1. The CsCl lattice

reduces to the work by BarrgB1]. Although the density a5 5 coordination number of 8, which in NaCl is 6. In these
functional theory has played an important role in improvingnyvo structures the ioné\ and B are located in the solid
our understanding of the fluid-solid equilibrium of a number,yithin two different sublattice$cf. Figs. Xa) and (b)]. The

of simple system$36—39, this first theoretical attempt t0 |assical partition function for this system is given by
describe the fluid-solid equilibrium of the RPM does not

yield quantitative agreement with simulation so that there is (Ap 3N

room for theoretical improvement. Q=Ninag Q" (2.2a
The aim of this paper is twofold. Firstly, we intend to AR

extend the previous Monte Carlo computations by S¥ndl.

[32] in order to obtain a precise estimation of the triple Q’=f exd —BuU(1,2.N)]d1, ... dN, (2.2b

points. In addition we introduce a slight modification of the

cell theory of Lennard-Jones and DevonsHig8,34], and where A, =[h?(2mkT)]¥2 B=1KkT, andi4(1,2,. .. N)

apply it to the study of the solid phases of the RPM. Theig the total energy of the system. Let us defing;) as the

theory for the solid is combined with thel RA scheme for energy of a central ion—labeled as 1—located,aith the

the fluid in order to compute on a purely theoretical basis theemainder of the ions of the solid resting at their equilibrium
fluid-solid diagram. This strategy of combining an accurateposiﬁcms

theory for the liquid with the cell theory for the solid was

pioneered by Henderson and Barker some time [&5). N

Recent work has shown the ability of the cell theory to de- U(ry)= E [Ups(ry,rj)+Ugg(ra,rj]. (2.3
scribe fairly complicated solids such as, for instance, hard =2

dumbbells[40,41] quadrupolar hard dumbbelld42,43, and

mixtures of hard spherd€94—44. Therefore the possibility . . .
of using cell theory for describing complicated solids shouldoj;;he central iony;. Next, we splitU(r,) into two terms
not be overlooked. In this work it is shown that this exten-[ ]

sion is also possible for a rather complicated system as the U(ry)=Uo+AU(ry), (2.4)

RPM. The scheme of the paper is as follows. In Sec. Il we

report the implementation of the cell theory for the restrictedyhereU,, is the lattice energy of molecule 1 when fixed on
primitive model. Details of the simulations performEd in this the lattice position_ For Charged hard Sphdra}gs just the
work are described in Sec. Ill. Section IV presents the result&oulombic energy of a central ion with the rest of the ions in

Because of its definitiorl)(r,) depends only on the position

and Sec. V closes with the conclusions of this paper. the crystal, all the particles located at the lattice positions.
Given the symmetry of the RPM it is clear that the value of
Il. THE CELL THEORY U, is the same for particle& andB. Actually, U, is related

to the Madelung constant, which is a function of the lattice in

The restricted primitive model is defined as an equimolarqnsideration. In the context of the cell theory, the free en-
mixture of anions and cations which interact through theergy of the solid phas&R™M is given by[34,47]

following potential

Ut Uog
u(r)=upstUqq. (2.19 ARPM— —NkTInA—t3+N7. (2.5
U= © ifr<e .10 The disappearance of the teridg! andNg! in Eq. (2.5 may
Sl o ifr=o, ' appear surprising. This is due to the fact that thereNyke
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fluid and solid phases and therefore we may set it to an
arbitrary value, namelyy. The free energy of the solid can
then be written as

ARPM_ UO vy 2
NKT  2kT 53 2.7

According to Eq.(2.7) the free energy of the solid may be
computed provided thdt/, andAU(r,) are known quanti-
ties. The electrostatic enerdy, of the RPM solid can be
easily evaluated from the Madelung constihthrough the
relation

-M 2
UO: q y
eR

(2.9

(a)

whereR is the nearest neighbor distance between ions. Val-
ues of the Madelung constant for the cesium chloti@dsC)

and the sodium chloridéNaCl) structures arédl =1.76267
andM = 1.74756, respectivelj48]. Values of the Madelung
constant for other different lattices may also be found in Ref.
[48]. Let us now focus on the evaluation of the free volume
v¢. According to Eqg.(2.4) the functionAU(r;) may be
written as

N
Aum):;z[uHs<r1,r,->+uqq(r1,rj)]—uo. (2.9

AU(r,) represents the difference in energy between a con-
(b) figuration where all particles stay at their lattice position ex-
ception 1, which is located at, and a configuration where
all particles of the system, included the central ion, stay at
their lattice positions. Now, assuming that

N

;2 Ugq(T1,T)=Uo, (2.10

Eq. (2.9 takes the form

N
AU(rl)~j22 Ups(F1.1j). (2.1

©) The above approximation—previously proposed by McQuar-
rie in a cell theory treatment of the fluid phases of ionic
) ) ) systemg 49]—is justified if the displacements of ion 1 from
FIG. 1. Different types of possible solid structures for the RPM ;4 equilibrium position do not modify essentially its energy.
model. (8) CsCl structure(b) NaCl structure{c) fcc structure. This condition is true in a high density ionic solid where the
nearest neighbors form a cage around it. The short displace-
arbitrary ways of locating thé particles within the A sub- ments undergone by the ion 1 produce a small change of the
lattice, andNg! arbitrary ways of locating the particleB Coulombic energy not only because the electrostatic energy
within the B sublattice. The free volume; is defined as is very long rangedit decays ag ~!) but also because the
cage implies that a separation from several neighbors leads
to a similar approximation to those in the opposite direction.
Recall the well known fact that the electric field at any inner
vf:f exf —AAU(ry]dr;. (2.6 point of a homogeneously charged sphere is identicglly zero
[50] and thus the potential energy does not change when the
ion moves within the sphere. Of course, the charge distribu-
Recall that, in evaluating using Eq.(2.6), all the ions of tion around a central ion in the lattice is not spherical so the
the solid stay at their equilibrium positions, and only theargument is only qualitative but it illustrates the insensitivity
central ion(labeled 1) is allowed to wander within its cage. of the Coulombic energy to the location of the central par-
The A, term in Eq.(2.5 acts as a constant present in theticle. An additional advantage of using the approximation
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TABLE I. ConstantsC, a;,a,, andaz for several solid struc- TABLE Ill. Simulation results for the fluid ap* =0.65.
tures. The value of the closest packing denpityis also given .
B* U/(NKT)  gii(0)  g-.(0) z
Solid C =N a, as Pep
0.05 —0.013 2.761 2.995 4.913
CsCl 0.2544330 -0.6513693 0.046946764 0.08519676\3 0.10 —0.029 2.727 3.022 4.904
NaCl 0.29059774 -0.49111125 -0.34758300 0.77516448 10.25 —0.093 2.582 3.201 4.906
fcc 0.20930 -0.8627 0.30679 -0.082663 2 0.50 —-0.212 2.435 3.410 4.908
1.00 —0.483 2.195 3.660 4.824
, , _ 2.00 —1.083 1.869 4.140 4.729
given by Eq.(2.1]) is that nowv; acquires a clear and 4 g —2.403 1.338 4.830 4.397
simple physical meaning. It represents the volume where thg00 3792 1.048 5.498 4.192
Eirrl;ral ion 1 can move without overlapping its nearest ne|gh800 5921 0.862 5939 3.889
’ . . 10.00 —6.678 0.697 6.440 3.632
Buehleret al. [51] deduced an analytical expression for
. 12.50 —8.524 0.530 7.070 3.332
v; for a close packed fcc structure. In this work, the (:alcu-15 00 _10.424 0.402 7710 3.047
lation of the free volume for the CsCI and the NacCl struc-17'50 712.328 0'327 8.298 2'762
tures is done numerically. The reader is referred to Rk ) : ) ) :
for a detailed discussion of a similar computation. In generalzo'00 —14.252 0.232 8.806 2.401
it is helpful to express the free volume as a function of theés'00 —18.149 0.149 9.832 1.744
density of the system. We use here the expression propose%?-o0 —22.066 0.087 10.935 1.147
by Alder et al. [52]: 35.00 —26.029 0.068 12.100 0.606
40.00 —30.030 0.048 13.145 —0.030
Ut Cal + 2, 3) (212 45.00 —33.979 0.028 14.153 —0.674
= expa a a , .
3= Ca'explajataza’+aza 50.00 —37.970 0.018 15.237  —1.273
where« is defined as
and (2.13. For computational convenience, we also fit to
B pé‘p— p* these functions the results obtained using the analytical ex-
o= p* (2.13 pression by Buehleet al. [51] for the fcc structure. The

coefficients resulting from these fittings are reported in Table

pep being the close packing reduced number density of thé. Equations(2.7), (2.8), and(2.12 constitute the cell theory

lattice in consideration. Close packing densities for the fceemployed in this work for the computation of the solid phase
structure, CsCl structure, and NaCl structures af2,
(3/4)\/3, and 1, respectively. The data of free volume forfor the solid phase may be computed with a pocket calcula-
CsCl and NaCl structures are fitted according to ERsl2)

TABLE Il. Simulation results for the fluid gp* =0.55.

of the RPM. Given the simplicity of the theory, free energies

tor.

The RPM fcc structure is a substitutionally disordered
structure; i.e., cations and anions are located at the crystal
lattice positions in a more or less random manner, which

B* U/(NKT) g+ +(0) g-.(0) z depends on temperature. The coordination number for this
lattice is 12. A representation of a possible configuration is

0.05 -0012 2284 2.461 3.729 given in Fig. 1c). The application of the cell theory to this
0.10 —0.026 2.189 2439 3.657 structure is clearly more difficult than in the NaCl or CsCl
0.25 —0.087 2.090 2.663 3.708  gnes. Rigorously, one should consider all the different ar-
0.50 —0.202 1.941 2.809 3.668  rangements of ions with respect to a given one. This ap-
1.00 —0.458 1.750 2.984 3574 proach was recently used in a study of the freezing of mix-
2.00 —1.039 1.415 3.478 3472 tures of hard spherd€l4]. However, it is not clear how to
4.00 —2.318 1.032 4.167 3.222  implement this approach for the RPM model. The reason is
6.00 —3.666 0.778 4.729 2950  twofold. Firstly, Coulombic forces are long ranged so that
8.00 —5.062 0.595 5.357 2.740  fluctuations in composition for second, third, and farther
10.00 —6.486 0.472 5.911 2.514 nearest neighbors should be considered. Besides, it is not
12.50 —8.304 0.338 6.675 2.271 likely that fluctuations in composition in the first coordina-
15.00 —10.157 0.260 7.224 1.925 tion layer could be described by the Bragg-Williams ap-
17.50 —12.013 0.207 8.170 1.820 proximation[47]. For that reason we use a different route.
20.00 —13.876 0.155 8.648 1.445  We start from the free energy of the RPM solid in the fcc
25.00 ~17.687 0.106 10.026 0.940 Structure using the thermodynamic relation
30.00 —21.579 0.061 11.509 0.471 RPM, % ok RPM, % o -
35.00 —25.469 0.051 13.075 0.070 Aec (P*.B*) _Agee (p*,B"=0) fﬁ* U dg
40.00 —29.454 0.029 14.694 —0.338 NKkT NKT o NKT B'*°
45.00 —33.465 0.019 16.320 —0.744 (2.149
50.00 —37.533 0.016 18.086 —1.085

The free energy of the RPM #&* =0 is given by
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TABLE IV. Simulation results for the fluid gv* =0.75.

B* U/(NKT) 9++(0) 9-+(0) z
0.05 —0.015 3.428 3.730 6.617
0.10 —0.030 3.438 3.690 6.588
0.25 —0.099 3.157 3.939 6.540
0.50 —0.223 3.043 4.099 6.535
1.00 —0.505 2.745 4.453 6.485
2.00 —1.128 2.361 4.904 6.330
4.00 —2.468 1.837 5.639 6.049
6.00 —3.887 1.524 6.201 5.772
8.00 —5.328 1.246 6.892 5.615
10.0 —6.844 1.001 7.284 5.226
12.50 —8.739 0.780 7.973 4.962
15.00 —10.648 0.623 8.497 4.614
17.50 —12.612 0.498 9.188 4.403
20.00 —14.552 0.410 9.657 4.056
25.00 —18.545 0.262 10.826 3.527
30.00 —22.534 0.185 11.932 3.005
35.00 —26.599 0.105 13.147 2.542

RPM/ % % _ *
A" BT =0) AP | g

NkT

HS,

where Ai(p*) is the free energy of the hard-sphere fcc

solid at the same density. Note that E(514) and(2.15 are

exact. The In2 term in Eq2.15 arises from the entropy o
mixing between cations and anions in the fcc solid when
B*=0 [53]. In order to obtainA

HS,

(p*,B*) we need to

know the value ofA;2(p*) in Eq. (2.19 andU in the inte-

grand of Eq.(2.14). For these, we make the following two

approximations.

tion (2.16 slightly underestimates the free energy of hard
spheres in the solid pha$40].

(i) In addition, we assume that the internal energy of the
fce solid at a given density and temperature may be approxi-
mated by that of a metastable liquid at the same density and
temperature. In order to obtain the internal energy of this
metastable liquid we use thdPA theory(see Appendix A
for further detail$.

After inserting these approximations in E(R.14), the
free energy of the fcc RPM solid reads

ARPM(p* 'B*) v * UTF2A dg’*
MT=—|HEE—|HZ+JOB m% (2.17)

Once the free energy for the solid is known, the pressure
can be obtained by derivating with respect to volume. In
order to obtain fluid-solid equilibrium, a theoretical descrip-
tion of the liquid is needed. In this work we use thE2A
theory to describe the fluid phase of the model. It is well
known that this theory provides one of the most accurate
descriptions now available for the RPM model at high den-
sities[3]. In Appendix A, expressions for the free energy,
internal energy, and compressibility factor within thE2ZA
framework are given.

Ill. MONTE CARLO COMPUTER SIMULATIONS

In addition to the theoretical approach presented in the

f preceding section we have carried out Monte C4MC)

simulations of the RPM. The aim of these simulations is to
give a precise location of the triple points presented in the
fluid-solid transitions. At the same time these data are useful
as a reference in order to check the theory proposed in this
work. The Monte Carlo[54] simulations have been per-
formed in the canonical ensemble. A mixture of N ions of

(i) The free energy of hard spheres in the fcc structurge same size, half positive and half negative, is placed in a

may be approximated from the cell theory. Therefore wi

have

AR(p*)

NkT T3

(2.19

wherev/c® is given by Egs.(2.12 and (2.13 with the
coefficients presented in Table | for the fcc structure. Equaiyinimum image can lead to a violation of the lower bound

TABLE V. Simulation results for the fluid gt* =0.85.

B* U/(NKT) 9++(0) 9-+(0) Z
0.05 —0.016 4.280 4.734 9.018
0.10 —0.032 4.358 4.753 9.099
0.25 —0.099 4.090 4.925 8.992
0.50 —0.228 3.954 5.144 9.022
1.00 —0.518 3.575 5.436 8.848
2.00 —1.151 3.138 6.017 8.765
4.00 —2.506 2.548 6.910 8.584
6.00 —3.972 2.161 7.506 8.281
8.00 —5.466 1.700 8.311 8.089
10.00 —6.964 1.616 8.715 7.874
12.50 —8.893 1.310 9.173 7.367
15.00 —10.876 0.980 9.942 7.097

€cubic box with periodic boundary conditions. As customary
in the work with charged systems, one is forced to consider
with some care the computation of the Coulombic contribu-
tion to the potential energy. In this work, the Ewald summa-
tion method[55] —which has shown to perform well in the

simulation of ionic systems at high densities and low tem-
peratures[3]— is employed. Other methods such as the

for the energy, fixed by Onsager 50 years §56].

As usual in the Ewald procedure, the Coulombic potential
is divided into two contributions; one of them is computed in
the real space whereas the other one is evaluated in the re-
ciprocal space. The relative importance of these contribu-
tions is controlled by a parametgr We have chosen a value
such that only pairs whose distance is lower than half the box
length have to be considered. This value is taken to be
vL=5.6, L being the length of the simulation box. In the
reciprocal space we restrict the summation to vectors

>

hmax<{*5,+5,= 5}, and such that the modulus of the vector

be |ﬁ|2s27. In addition, we assume that the system is sur-
rounded by a conductor.

The fluid state simulations have used a sample size with
250 total ions. We have considered five isochoie’s, =
0.55, 0.65, 0.75, and 0.85. At each density, the simulations
start at high temperatures from a CsCl lattice, which rapidly



54 FLUID-SOLID EQUILIBRIUM OF A CHARGED HARD-. .. 2751

melts. The final configuration of the run is employed as thephase are presented in Tables 1I-V. The data of internal en-
initial one for a state at the same density and lower temperaergy from these simulations have been fitted to the empirical
ture. Typically, 0.5 10° configurations are generated in the expression proposed by Larsgf,

equilibration stage and the production runs last<118° at-

tempted particle moves. The production phase is divided into U
25 cycles of 60 000 configurations each to estimate the stan- " NKT

dard deviation of the internal energy. The maximum particle

displacement is set between 004nd 0.1% depending on by a nonlinear least square method. The values for the coef-
the density and temperature of the system. The acceptanfieients are compiled in Table VI. By integrating this expres-
rate oscillates in these conditions between 35% and 50%sion along an isochore we obtain the relationship for the free
The results for the four considered isochores in the fluidenergy, which takes the forf7]

1/2
Ui+ Uu,B*  +uyB*
3/2
u,+ B*

: 3.0

SAfd  Afud (P*.B*)  Afid(p*,B*=0)
NKT NKkT NKkT

2

12 o
_ Uy _ w12 ., S (e+,8*2)
= 3u1|n<u4+18*3,2) 2u,B usB* + 3(u2 uze)ln

A
e?—ep* +p*

23
+ ——e(u,+uze)

3 , (3.2

23* 1/2 e
- v
arctar( —) + =
V3e 6

where e=ul?®. Additionally, AR"M(p*,8* =0) is the free centered cubic one. The total number of ions was set to
energy of the RPM a* =0, which can be related to the N=250 for the former andN=256 for the later. The NaCl
free energy of the hard-sphere fluid by an expression anal@tructure was not considered since, as will be shown later, it
gous to Eq.(2.15. Aside from the simulations along the is not a stable phase for the RPM. The fcc solid being a
isochores mentioned above, we have performed addition&ubstitutionally disordered structure, one has to cope with
simulations along three isotherms in order to compute théhis feature in the Monte Carlo simulations. In addition to the
orthobaric line. Results from these simulations are compilegharticle displacements, the exchange of identities between

in Table VII. them is also attempted. These movements are important for
The compressibility factoZ=P/(pkT) has been com- correctly sampling the configurational space of the fcc solid.
puted by using the virial theorem For the solid phase simulations, we have used1®® con-
U mp* TABLE VII. Simulation results for isotherms T*
Z=1+ 3NT|-+ T[g++(0)+g_+(0')], (3.3 =0.03,0.0275 and 0.0225.

* *

whereg, . (o) andg_ (o) are the contact values of the P P UANKD 9:+(0) 0-+(0) z
radial distribution function between ions of the same and.700  33.33 —24.977 0.099 12.091 1.610
different sign, respectively. These values are obtaine®.675 33.33 —24.855 0.082 12.057 1.296
through an extrapolation of the data obtained neaWe use 0.650 33.33 —24.686 0.066 11.922 0.931
typically three of these points —using a histogram bin width0.625  33.33 —24.579 0.059 12.079 0.751
set to 0.0— which have been fitted to a second degree0.600 33.33 —24.404 0.058 12.062 0.481
polynomial and then extrapolated to the contact value. 0.575 33.33 —24.281 0.057 12.261 0.323
We have also performed several simulations in the solidh.550 33.33 —24.151 0.047 12.354 0.092
state for two different structures, a CsCl lattice and a faceys525 3333 —24.022 0.030 12.455 —0.143
0.500 33.33 —23.905 0.040  12.850 —0.219
TABLE VI. Values of the coefficientsi; —u, of Eq. (3.1 for 0.700 36.36 —27.370 0.080 12.798 1.317
fitting the internal energies of the fluid state isochores presented if g75 3536 —27.246 0.071 12.892 1.081

Tables [1-V. 0650 36.36 —27.145 0056  12.984  0.827
0625 3636 —26.943 0059 12810  0.441
0600 3636 —26.820 0047 12918  0.206
055 29817569 —1.4571663 000618474 4.6243126 0575 3636 —26.672 0045  12.931 —0.077

065 07420969 —0.7945698 0.85881121 0.6524566 0700 44.44 —33.929 0039 14427  0.294
075 05760094 —0.7351154 0.86771325 03972978 0.680 44.44 —33.744 0040  14.424  0.052
085 07236594 —0.7813350 0.88525077 0.5926236 0.660 44.44 —33.626 0030  14.149 —0.409

*
P ug Uz uz Uy
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TABLE VIII. Simulation results for the CsCl and fcc solid structures of the RPM model.

Solid B* p* U/(NKT) 9++(0) 9-+(9) A
CsCl 4.00 1.050 —3.155 0.944 10.489 0.924
CsCl 4.00 1.000 —3.097 0.847 9.020 0.869
CsCl 4.00 0.950 —3.028 0.879 7.756 0.896
CsCl 5.00 1.050 —3.959 0.800 10.668 0.791
CsCl 5.00 1.000 —3.883 0.782 8.988 0.776
CsCl 5.00 0.950 —3.807 0.758 7.889 0.764
CsCl 6.67 0.950 —5.105 0.616 7.965 0.608
CsCl 6.67 1.000 —5.211 0.594 9.125 0.585
CsCl 6.67 1.050 —5.303 0.618 10.830 0.616
CsCl 7.69 0.900 —5.792 0.546 7.120 0.560
CsCl 7.69 0.950 —5.912 0.544 7.988 0.555
CsCl 7.69 1.000 —6.028 0.494 9.160 0.527
CsCl 7.69 1.050 —6.135 0.537 10.876 0.544
CsCl 10.00 1.000 —7.872 0.402 9.264 0.386
CsCl 15.00 1.000 —11.894 0.237 9.422 0.225
CsCl 20.00 1.000 —15.939 0.125 9.493 0.118
CsCl 25.00 1.100 —20.623 0.037 13.886 10.163
CsCl 25.00 1.050 —20.304 0.057 11.162 6.568
CsCl 25.00 1.000 —19.988 0.072 9.576 4.440
CsCl 25.00 0.950 —19.679 0.089 8.462 2.948
CsCl 25.00 0.900 —19.383 0.093 7.951 2.121
CsCl 25.00 0.850 —19.100 0.108 7.771 1.647
CsCl 25.00 0.800 —18.830 0.112 7.673 1.246
CsCl 30.00 1.000 —24.042 0.051 9.697 3.194
CsCl 35.00 1.000 —28.104 0.029 9.866 1.993
CsCl 40.00 1.100 —33.145 0.005 13.933 6.007
CsCl 40.00 1.050 —32.646 0.017 11.409 2.681
CsCl 40.00 1.000 —32.172 0.020 9.973 0.741
CsCl 40.00 0.950 —31.716 0.033 9.288 -0.300
CsCl 40.00 0.900 —31.294 0.035 8.991 -0.925
CsCl 40.00 0.850 —30.941 0.042 9.276 -1.019
CsCl 40.00 0.800 —30.732 0.046 10.341 -0.542
fcc 0.05 1.10 —0.015 5.234 5.534 13.399
fcc 0.10 1.10 —0.035 5.037 5.538 13.170
fcc 0.25 1.10 —0.107 4.953 5.831 13.387
fcc 0.50 1.10 —0.246 4.729 6.003 13.280
fcc 1.00 1.10 —0.553 4.404 6.260 13.100
fcc 2.00 1.05 —1.205 3.558 6.109 11.227
fcc 2.00 1.10 —-1.221 4.053 6.726 13.010
fcc 2.00 1.15 —1.237 4.824 7.760 15.742
fcc 2.00 1.20 —1.253 5.864 9.150 19.450
fcc 4.00 1.05 —2.622 3.125 6.625 10.847
fcc 4.00 1.10 —2.660 3.611 7.186 12.550
fcc 6.00 1.10 —4.409 3.322 7.298 11.764
fcc 8.00 1.10 —5.972 3.258 7.384 11.269

figurations in the equilibration and*610° for obtaining run-  comparison between theory and simulation for the solid
ning averages. The simulation results for both the CsCl anghases of the RPM. Next, the simulation results for the fluid

the fcc solids are collected in Table VIII. phase are compared with the theoretical predictions of the
TI'2A theory. This is interesting because the densities and
IV. RESULTS AND DISCUSSION temperatures investigated in this work cover a range not pre-

viously studied. Finally, we analyze the question of the RPM
In this section we present the results obtained with the celphase diagram obtained theoretically and compare it with the
theory and the simulations of the RPM. Firstly, we make asimulation results.
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P FIG. 3. Internal energy of the RPM model in the solid phase as

obtained from simulatiortcircles and from the cell theorylines).

FIG. 2. Equation of state for the RPM in the solid phase as(@ Results for the CsCl structure f@* =25 (solid line and filled
obtained from simulatioricircles and from the cell theorylines).  circles and for 5* =40 (dashed line and open circlesh) Results
(@) Results for the CsCl structure fg@* =25 (solid line and filled ~ for the fcc structure foig* =2 (solid line and filled circlesand
circles and for 8* =40 (dashed line and open circlegb) Results 8" =4 (dashed line and open circles
for the fcc structure fog* =2 (solid line and filled circlesand for
B* =4 (dashed line and open circles essentially given by the Madelung constant. For the fcc
structure, the good agreement is more striking. It should be
recalled that, for the fcc solid, the theoretical internal energy

Figure 2 shows the results for the equation of stB®@S is that of a metastable liquid described by the
of the CsCl and fcc structures as obtained in our Monte Carld ' 2A theory. The results presented in FigbBindicate that
simulations and using the theory presented in Sec. Il. It i¢his seems to be a very good approximation suggesting that
clear that the theory provides a fair description of the EOS ofhe substitutional disorder in the fcc solid resembles that
these solid phases. For the CsCl lattjed Fig. 2a)], the  found in the liquid.
agreement between simulation and theory seems to be better Table IX presents the results for the free energy of the
at the lower densities where a crossing between theory an@sCl and fcc solids. Simulation results for the free energies
simulation is observed. This feature seems to be independeat the CsCl structure are taken from the work by Setial.
of temperature, at least for the range studied here. In the ca$82] whereas those for the fcc lattice are from this work. The
of the fcc solid, the theory slightly underestimates the prestheoretical predictions at low temperatures for the CsCl lat-
sure. The results for the internal energy are depicted in Figice compare well with the MC data. The agreement
3. Now the theoretical predictions are in excellent agreemertieteriorates as the temperature increases. For instance, at
with the simulated values irrespective of the lattice consid-T* =0.25 the theory overestimates the free energy by about
ered. The good agreement obtained for the CsCl lattice is ndt.4 in NkT units. For the fcc solid, the agreement between
surprising since the fluctuations of the ions around their lattheory and simulation is excellent. In this case, the relative
tice positions scarcely affect the internal energy, which iserror is less than 3% at the conditions studied.

A. The solid state
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TABLE IX. Free energies for the CsCl and fcc structures of the solid RPM as obtained from the
simulation results of Smiet al. [32] for the CsCI structure and from our simulations for the fcc solid.
Numbers in parentheses correspond to the free energy calculated using the cell theory of this work.

Structure T p*=1.0 p*=1.1 p*=1.2
CsCl 0.04 —15.04(- 15.0) —14.40(-14.23

CsClI 0.05 —11.05(-10.98 —10.29(-10.06

CsClI 0.10 —3.09(-2.90

CsClI 0.25 1.561.95

CsCl 0.50 3.1(3.56 4.404.95

fcc 0.25 2.602.55

fcc 0.50 3.893.82 5.285.12
fcc 1.00 4.494.40

B. The liquid state

Next we compare our simulation results for the fluid state
with the predictions of the truncated2 A approximation.
We restrict ourselves here to the high density region we are .
interested in, i.e., the range 055* <0.85. Comparison at
lower densities and even in the gas phase region has been
reported by other author,16]. From these studies it is
clear that the T 2A theory does not perform very well at low
densities. Unlike the predictions at low densities, tHE&2A
theory is quite accurate within the fluid density range con- 1
sidered in this work. This can be seen in Fig. 4 where we _20d Su
compare the predictions of thdPA theory with the simu- | Su
lations of this work[see Eqgs(3.1) and (3.2)]. Figure 4a) o
shows the free energy differencéf, between the RPM at 1 S
B* and atB* =0 at constant density. The agreement is very 1
satisfactory. The compressibility factors are shown in Fig. ~30 , : , , , , ,
4(b). At the highest density studigel =0.85, the results of 0 0 20 50 40
the TI"2A theory are in excellent agreement with simulation ﬁ*
and the theory provides a quite reliable description of the
fluid. At intermediate densitiess* =0.55,0.65,0.75, certain 10
discrepancies between theory and simulatiegpecially at
low temperaturgsare found. We have fitted the differences
between MC and the theoretical results for the isochores
p*=0.55,0.65,0.75 to the empirical expressions

6Avie/ (NKT)
a

AA AMC ATFZA 64 oL
— _ — * Rl N
MkT_ NkT NkT _(0057019_ 016837b Z o“\\\\\ <b>

+0.108416*°) 8*, (4.2)

AZ=7MC_7TT2A= (2 01438-8.49182* + 11.605%* "

—5.19225* %) g*. (4.2) ~
By using Eqgs.(4.1) and (4.2), it is possible to get results A
close to MC from the theory just by adding to the latter the *
aforementioned deviation. The fitting equations must not be ﬁ

used outside the density range (055° <0.75). For densi-
ties p* =0.85, the T 2A theory yields a very good descrip- FIG. 4. Comparison between MC resulisymbol$ and the
tion of the fluid phase so there is no need to include a cortheoretical predictions of thelT2A (lines) for several isochoresa)
rection term. Free energy difference betwe@i and 8* =0, SA/(NKT), for the
isochoresp* =0.55 (solid line and filled circles and p* =0.65
(dashed line and open circ)egb) Compressibility factorZ, for the
isochoresp* =0.55 (bottom solid line and trianglgs0.65 (dashed
In order to compute the phase diagram we need the equéine and squards 0.75 (short dashed line and circlesand 0.85
tion of state as well as the chemical potential of all possiblgupper solid line and filled circlés

C. The phase diagram
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p*=1.1380-20.182*. 4.3

It should be mentioned that the expression proposed by
0.20 1 o © Gillan [18] for describing orthobaric densities and used by
fee other authorgsee, for instance, Reff57]) seems inadequate
0.16 4 in the light of the simulation data reported in this work.

N | o jo Apparently, the reason for the discrepancy is that Gillan used
T o Jo isochores in determining the zero pressure densities. This
procedure can lead to densities lying beyond the mechani-
7 Critical cally stable fluid as two points of zero pressure may exist for
point a given isotherm at low temperatures.

For the computation of the fluid-solid equilibrium, in ad-
dition to the conditions in the equality of the pressures and
chemical potentials of both phases, one has to assume a
given structure for the solid phase. Two reasonable possibili-
0.00 L st s L N ties for the equilibrium solid at low temperatures are the

: : ‘ ‘ CsCl and the NaCl structures. By using the theory of this
e work we were able to compute the fluid-solidaCl) transi-

tion at low temperatures. However, densities of the freezing

for this transition were found to be larger than those for the

FIG. 5. Phase diagram of the RPM as computed from the theorfluid-solid (CsC) coexistence. In other words, at the liquid
of this work (solid lineg and from computer simulatiofsymbols. densities at which the fluid-solidNaCl) transition occurs the
The vapor-liquid equilibrium datéasterisky were taken from the system would have already frozen into the CsCI structure.
Gibbs ensemble simulations of Orkoulas and Panagiotop¢i#ls  This result is in agreement with the conjecture of Stillinger
Orthobaric densities at low temperatures correspond to zero pregnd Lovett,[30] with the density functional theory of Barrat
sure densities as obtained from the simulations of this work. Thefgl] as well as with the recent computer simulations of Smit
fluid-solid (CsC) data forT* =0.075 andT* =0.10 (filled circles et al. [32]. The reason that the NaCl structure does not ap-
have been taken from the simulation results of Sehial.[32]. The pear seems to be clear. For the RPM, neither the internal

remaining symbols correspond to the fluid-so(idsC)) equilibrium energy(i.e., the Madelung constamor the free voluméthe
as obtained from the computer simulations of this work except for ’
the highest temperature, which corresponds to the fluid-gédic) close packed densityfavors the NaCl structure over the

equilibrium CsCl one. . . . .

' The comparison of the simulation results with the theo-
retical calculations for the equilibrium liquid CsCl shows
phases. Coexistence between two phases occurs when tha&tisfactory agreement. The triple point evaluated through
chemical potential and pressure is the same for both phasése cell and T 2A theories is located at; =0.025 to be
at a given temperature. This condition can be trivially imple-compared with our estimate from the MC simulation,
mented for the theoretical results but the discrete nature off =0.0225. For this, the tentative valuE*=0.025 has
the simulation data forces us to make interpolations. Théeen recently reported by Snet al. [32]. It has been ob-
interpolating procedure to calculate the coexistence lines anghined by extrapolating the high temperature fluid-
the triple points are described in Appendix B. Figure 5 dis-solid (CsC) equilibrium data calculated from their simula-
plays what can be considered the main result of this worktions. Regarding the coexistence densities, the curve on the
namely, the phase diagram of the RPM as obtained from th#uid side obtained from our simulations is sharper than the
theory and from simulation. Let us first discuss the results fotheoretical one; thus, the theoretical triple point density is
the vapor-liquid equilibrium. It is well known that the underestimatedpy =0.558, while the pseudoexperimental
TI'2A predicts a too high critical temperaturé*=0.08, value isp; =0.681. It is interesting to relate the triple point
which should be compared to the best estimate now avaitemperature with that of the critical point. For the latter, we
able, T* =0.057[21]. The large disagreement is due to the adopt here as the more confident estimate the value reported
fact that the T'2A is not a good theory for the RPM at low by Fisher and Levin[21] T =0.057. The ratioTy /Ty is
densities. In Fig. 5, coexistence densities—as obtained frofd.39 using the best estimates from simulation data for the
the simulation results by Orkoulas and PanagiotopoulofRPM model. The ratio is close to the experimental one for
[14]—have been included. Unfortunately, at low tempera-ionic substances such as NaCl or CsT},/Tg ~1/3 [58].
tures the vapor-liquid equilibrium of the RPM is still un- Therefore the RPM provides an adequate basis to understand
known. Because of that, we have estimated the orthobarithe low values of the triple point temperature to critical tem-
densities at low temperatures as the zero pressure densitipsrature ratio. Notice that this ratio is about 0.55 for non-
calculated from the simulation data presented in Table Vllionic systems such as noble gases.

The low temperature orthobaric densities included in Fig. 5 There is another feature showing a different behavior of
have been calculated in this way. For the calculation of thehe RPM with respect to simple systems. It can be observed
triple point, it is convenient to have an analytical expressiorin Fig. 5 that the curve of coexistence densities in the
for the orthobaric densities. F@r* <0.04, the following re-  solid (CsC) phase is not monotonous. There is a change of
lation is fulfilled: slope at low temperatures resulting in a convex shape. In this
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region, the solid densities increase as temperature decreases.
Systems such as argon or nitrogen show a continuous de-
crease in the coexistence densities as the temperature de- 4.5 -
creases. This fact is predicted by the cell theory and con-

firmed by the computer simulation results of this work. This 407 fo°
feature of the phase diagram of the RPM was not observed 3.5 -

by Smit et al. since the temperature at which it appears is

outside the range studied in their work. It is also absent in the 3.0

phase diagram computed by Barfal] using a density func- /T*
tional theory. It would be interesting to know whether this

feature is also present in the freezing of real molten salts 2.0 P9
such as NaCl and CsCl. A consequence of the negative slope

of the solid coexistence curve is the large volume change at fluid fce

melting exhibited by the RPM model. At the triple point, the 1.0

fractional density change, ploiq— Piiquia)/ Psoiia» 1S about os

0.32. Figure 5 also shows the theoretical sublimation line ‘

estimated from the zero pressure densities of the CsCl solid. 0.0 : : , : , : :

The solid densities along the sublimation line tend to the 0.50 0.75 1.00 125 1.50
close packed density of the CsCl solid when the temperature /0*

goes to zero. This fact has also been observed in a quadru-
polar hard-sphere fluif43].

We have already mentioned that, at high temperatures, the FIG. 6. Fluid-solid (fcc) equilibrium for the RPM model. Lines
fluid coexists with a solid arranged in the fcc structure. In-correspond to the theory of this work whereas the circles were
deed, it is clear that this must be the stable solid in the limitobtained by using the computer simulations of this work except the
B* —0. The appearance of the fcc structure at high temperaalue for hard spheres which is taken from Ré&B].
tures can be understood on the basis that, under these condi-
tions, Coulombic forces diminish their importance whereas
the hard-sphere potential is not affected by the temperaturd.* ~0.30. The cell theory locates it @&t =0.15. The reason
Thus the entropic term compensates the internal energy gaifor the discrepancy is that the cell theory does not provide
This is correctly predicted by both theory and simulatisee  accurate values for the free energy of the CsCl solid at high
Fig. 5. In Fig. 6, a more detailed view showing the fluid- temperaturegsee Table IX. Even so, our estimate is much
solid (fcc) freezing line at very high temperatures is pre-closer to the simulation results than that coming from the
sented(it covers the range of temperatures just above thosdensity functional theory by Barraf31] who reported
shown in the previous figuyeThere, it can be seen that the T* =0.045. A more general comparison between the phase
fluid-solid (fcc) freezing is almost a vertical line although it diagram as obtained from the theory of this work, from den-
exhibits a very small slope. At* =« our theoretical predic- sity functional theory and from the computer simulation of
tion for the coexistence densities of hard spheres ishis work is given in Fig. 8. It is clear that the cell theory
pf =0.933 andp? =1.049. These values are in very good provides a much better description of the fluid-solid equilib-
agreement with the well stated simulation values, which argium than the Barrat theor}81]. A final remark about this
pf =0.943 andp* =1.041[59,60. Overall, the theory yields region of the phase diagram is that the coexistence densities
very good predictions for the coexistence densities along thalong the solid(CsC)-solid (fcc) theoretical line tend to the

fluid-solid (fcc) transition. close packed densities of each type of solid as the tempera-
Let us return again to Fig. 5. The cell theory predicts theture goes to zero as can be expected. o
existence of a solid CsC))-solid (fcc) transition at low tem- The results presented in Fig. 5 show that the combination

peratures. This can be easily explained as the CsCl solid h&$ the TI'2A for the fluid phase with the cell theory for the

a lower internal energy and a smaller close packing densitgolid phase yields a qualitatively correct phase diagram for
than the fcc one. Since the solid stable structure at low temthe RPM. This is remarkable since all used expressions are
peratures is not the same as that at high temperatures, a sétlite simple to implement. Therefore, future applications on
ond trip|e point must appear on the phase diagram_ The the solid-fluid equilibrium of Charged systems should con-
existing phases are the fluid, a CsCl solid, and the fcc solidSider as a serious alternative the use of the cell theory for
Table X presents the coexisting properties obtained from théescribing the solid phases.

simulation data using the procedure described in Appendix
II. Orthobaric densities for the liquid at low temperatures are
also included. The precise location of this triple point in the
usualT* — p* plot is difficult as the lines of coexisting den- In this work, the phase diagram of a charged hard-spheres
sities for solid phases are very steep. Figure 7 displays model(RPM) was evaluated both theoretically and by using
P* —T* plot of the fluid-solid CsCI and fluid-solid fcc. It computer simulations. The emphasis is put on the fluid-solid
can be seen that the intersection of the curves allows a prequilibrium. We have shown how the cell theory of Lennard-
cise estimate of the “simulated” triple point, which occurs Jones and Devonshire can be implemented for describing
at T*=0.24, p*=0.93. Previous simulation results from ionic solids. This theory provides a satisfactory description
Smit et al. [32] yielded for this triple point temperature of the equation of state, internal energies, and free energies

V. CONCLUSIONS
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TABLE X. Coexisting properties of the RPM as obtained from the simulation results of this work. The
chemical potential is denoted as

T* Phase 1 Phase 2 o p5 p* ul (KT)
0.5 fluid fcc 0.939 1.036 5.64 14.07
0.25 fluid fcc 0.936 1.026 2.72 12.42
0.25 fluid CsClI 0.941 1.016 2.79 12.72
0.20 fluid CsCl 0.911 0.991 1.91 10.34
0.15 fluid CsClI 0.866 0.956 1.14 7.07
0.13 fluid CsClI 0.844 0.936 0.87 531
0.04 fluid CsClI 0.724 0.916 0.09 —12.95
0.025 fluid CsCl 0.696 0.991 0.01 —26.57
0.03 gas liquid 0.540 0

0.0275 gas liquid 0.582 0

0.0225 gas liquid 0.681 0

0.0225 liquid CsCl 0.681 1.000 0

of the RPM system in the solid phase. When combined withrium, we found in the neighborhood of the triple point an
an accurate treatment of the fluid phase, in particular théncrease of the solid density as the temperature decreases. In
TI'2A theory, a satisfactory description of the phase diagranthe first triple point, the fluid, a solidCsCl), and a soli¢fcc)
is obtained. The predictions of the theory seem to be superigi'e in equilibrium. In the second, the gas, the liquid and the
to the results obtained from the density functional theory ofsolid CsCl are the coexisting phases. Our estimates of the
Barrat[31]. triple point temperatures ar€* =0.24 fqr the former and
The computer simulations performed in this work provide T* =0.0225 for the latter one. The ratio between the gas-
the following picture for the phase diagram of charged hard'qU'd'f»OH’(cj _(CSCD_ triple point temperature and the critical
spheredit is to be mentioned that the phase diagram conjecne Tt /T¢ is estimated as 0.39. This is in fair agreement
tured by Stillinger and Lovett almost 30 years ago seems t¥ith the value 1/3 found for a number of molten salts. The
be qualitatively correct and adequiatat high temperatures ractional density change at melting for the RPM is quite
the fluid is in equilibrium with a disordered fcc solid whereas [2r9€- The final conclusion of this work is that by treating the
at low temperatures freezing occurs into the CsCl structuresClid with the very simple cell theory, an almost quantitative
and then, two triple points have been found. Coexistencd€términation of the phase diagram can be obtained provided
densities along the fluid-solidfcc) equilibrium scarcely that it is combined with a good theofguch as the I'2A)
change with temperature. For the fluid-soli@sC) equilib-  for the liquid phase.
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FIG. 8. A comparison between the fluid-solid equilibrium of the
FIG. 7. P*-T* diagram obtained from the simulation results of RPM model obtained from the cell theofgolid lineg, from the
this work (see Table X Open circles correspond to the fluid- density functional theory of Barrd31] (dashed linesand from

solid (CsC) equilibrium, filled circles to the fluid-solidfcc) coex- ~ computer simulatiorisymbolg. Meaning of the symbols as in Fig.
istence. Lines are only a guide to the eye. 5.
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The phase diagram of the RPM model differs consider- T
ably from that of other models proposed for ionic systems y= gp*- (AB)
such as the classical one component plagmsystem made
of mobile ions immersed in a neutralizing backgrounthe
OCP fluid freezes into a body centered cubic lattibec)
without changing its densify24—26. Somewhat related with
the OCP is the Yukawa model. For this system freezing oc- UTT2A  (jMsA
curs into either a fcc or a bec lattice depending on thermo- I
dynamic conditions, which seems similar to the behavior NkT  NkT
found in this work for the RPM. Nevertheless, there are at
least two important differences. First, the fractional densityand
changes at melting for the Yukawa models so far reported
[27-29 are quite small in contrast with those of the RPM.
Secondly, the bcc is quite different from the cesium chloride
structure (the Bravais lattice of the latter is simple cubic Where the functiors/ has been defined as

[61]).

The expressions for the internal energy and compressibility
factor of the T 2A are then given by

s/, (A7)
ZTFZA:ZMSA_S/ , (A8)

. p(p+2) .
=m{5p2—6p+3+[4(2p—1)—S|np

_ _ -p
ACKNOWLEDGMENTS (4p—1)cople P} (A9)

This work has been partially supported by Projects No.Finally, the T"2A free energy is given by
PB94-0285 and PB93-0085 furnished by the Diread&en-

eral de Investigacio Cienffica y Tecnca (DGICYT) of ATFZA_I p* 1. APS  3x2+6x+2—2(1+2x)%?
Spain. NKkT 2 NKT 12mp*

15|03:«3234—942 1

28| 3 3P +3p+a—e P4(2p+l)

APPENDIX A: TRUNCATED I'2 APPROXIMATION

In this Appendix we give the expressions for the free +(2p+1)sinp—2pcosp]J, (A10)
energy, internal energy, and compressibility factor of the

start defining two new magnitudesandp (not to be con-  carnahan-Starling equation so that

fused with the pressure, which is denotedR)yas
A"S 43y

— * % \1/2 —
X_(47TP IB )l ’ (Al) m_y(l_y)Z

(A11)

_ 1/2__
p=(1+2x)7"1. (A2)  Equations(A1)—(A11) provide all that is needed for a full

The internal energy and the compressibility factor obtaineadescrlptlon of the fluid phase of the RPM.
from the MSA solution of the Ornstein-Zernike equation are

given by

UMSA X2+ x—x(1+2x)Y? APPENDIX B: DETERMINATION OF

NKkT Amp* (A3) THE PHASE DIAGRAM FROM SIMULATION DATA

In this appendix we sketch the procedures necessary for
and obtaining the phase diagram afekspecially the interpola-
" 3 tions used for the calculation of the triple points from the
ZMSA_ ZHS | 3X+2+3x(1+2x) 7"~ 2(1+2x) discrete simulation data.
127p* ' (i) The fluid is parametrized through thd ZA theory

(A4) along with the empirical corrections given by E@sl) and
(4.2), which brings the theory in close agreement with the
whereZ"® is the compressibility factor of hard spheres. Forsimulation results of this work. This empirical correction is
this, we use the Carnahan-Starling equafié2] used for densities in the range 08p* <0.75. For larger
» 3 densities, no correction term was used since th2A yields
ps. 1tyty —y very good agreement with simulation.
o (A-y)?® (i) Orthobaric densities of the liquid at low temperatures
were approximated as the zero pressure densities using the
being MC data of Table VII. ForT* <0.040, the orthobaric densi-

(A5)
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ties may be described by E@.3). ARPM( % g . * _ ! "%
p*.B*) U 1.108% d
(iii) The equation of state for the CsCl and fcc solids at fee =5.632-1n2+ fﬁ (p A A
) . . NkT 0 NkT ,
several isotherms were obtained from the computer simula- B*
tions of this work. At each temperature, the compressibility . Z(p'*B*)
factor was fitted to a polynomial function on density. + fp = dp” (B1)

(iv) The free energy of the CsCl solid @& =0.05 and

. )
p 1. was taken from _the work of Smit al. [32]. Free .. The first two terms in Eq(B.1) are the free energy of the
energies of the CsCl solid at other temperatures and den5|t|$§PM fec solid forp* =1.10 andg* = 0. This is obtained by

were obtained by using thermodynamic integration and th%sing the well-known value of the hard-sphere free energy

1.10 "%
p

simulation results of this work. _ _ [59,60 for the fcc solid atp* =1.10 (5.632 inNKT units)
(v) The free energies of the fcc solid were obtained byand the extra contribution due to the random mixing of cat-
using thermodynamic integration from the relation ions and anions §8* =0 (the —In2 term.
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