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The first five virial coefficients of hard ellipsoids have been evaluated numerically. Hard
ellipsoids with length to breadth ratio in the range 3 to 10 were considered. Differences in
the virial coefficients between prolate, oblate and biaxial ellipsoids with the same length to
breadth ratio have been analysed. We were able to fit the virial coefficient data of hard
ellipsoids to an empirical expression which contains only two non-sphericity parameters.
This expression describes also correctly the virial coefficient of other convex bodies such as
hard spherocylinders. Furthermore, computer simulations were performed for hard ellipsoids.
It is found that for a given volume fraction and length to breadth ratio, the compressibility
factor of the biaxial ellipsoid is smaller than that of the prolate spheroid, while the compress-
ibility factor of the prolate spheroid is smaller than that of the oblate spheroid. However,
differences in the compressibility factor for these three hard models were found to be small.
This is surprising since their virial coefficients are quite different. An explanation for this is
proposed. The accuracy of several analytical equations of state for hard convex bodies was
analysed. Although these equations provide reasonable results they predict the same equation
of state for prolate and oblate spheroids. Moreover these equations do not provide good
predictions of virial coefficients for very elongated molecules. A new equation of state
which uses the computed values of the first five virial coefficients of hard ellipsoids is proposed.
This new equation of state is basically a truncated virial expansion, which uses Parsons-like
scaling to estimate virial coefficients higher than the fifth. It is shown that this new equation of
state performs better than those previously proposed for hard ellipsoids. Moreover it distin-
guishes between prolate, oblate and biaxial ellipsoids. The new equation of state describes

satisfactorily the computer simulation data of hard spherocylinders.

1. Introduction

The study of hard bodies plays an important role
within liquid state theory [1, 2] This is because at high
densities, the structure of a fluid is dominated by the
repulsive forces. Moreover, phase transitions such as
freezing or liquid crystal formation are present in hard
bodies [3-5] so that their study may help to understand
the origin of these transitions in nature.

In this work we shall focus on hard bodies whose
anisotropy is big enough to form a liquid crystal
phase. Among the hard models able to form liquid
crystal phases, hard ellipsoids of revolution are one of
the most popular. Computer simulations of hard ellip-
soids were pioneered by Vieillard-Baron [4] in two
dimensions, and by Frenkel and Mulder [5] in three
dimensions. Frenkel and Mulder found a nematic phase
when the ellipsoids of revolution were sufficiently
anisotropic [5] More recently, Rigby has determined the
first five virial coefficients of hard ellipsoids of revolution
[6] From the theoretical point of view, a number of
theoretical studies on the fluid-nematic transition have
been presented [7-11] However, up to now most of the
simulations and theoretical work have focused on hard

ellipsoids of revolution. For these models two of the
main semiaxes of the ellipsoid have the same length so
that the molecule has uniaxial symmetry. Uniaxial hard
ellipsoids of revolution are commonly denoted as prolate
spheroids, when the third semiaxis is larger than the other
two, and oblate spheroids when it is smaller.

In recent years the interest in biaxial hard bodies has
increased considerably. Motivation for this is twofold.
First, the symmetry of real nematogens is biaxial rather
than uniaxial [12] It is thought that this affects strongly
the density jump of the isotropic—nematic transition [12,
13] Second, biaxial molecules may present biaxial
phases in which the molecules are oriented along their
principal and secondary axes [14-17] For these two
reasons biaxial hard ellipsoids have received attention
lately. The three perpendicular axes of the hard ellipsoids
are denoted as @, b and ¢ and they are in general of
different length. When two of them are identical, the
hard ellipsoid becomes a hard spheroid. Some years ago
Allen performed computer simulations of biaxial hard
ellipsoids [16] while their phase diagram has been consid-
ered in some theoretical studies [13-15]

In this work we focus on hard biaxial ellipsoids.
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However, our interest here is on the isotropic phase. Little
is known on the effect of biaxiality on the equation of
state and virial coefficients of hard particles. This is a
matter of interest since in many situations real molecules
are modelled as uniaxial, whereas it would probably be a
better choice to take a biaxial core. The choice of uniaxial
models to describe the shape of real molecules is justified
only due to our ignorance of the behaviour of biaxial
particles. Another reason to study the isotropic phase of
hard ellipsoids is that theories of liquid crystal formation
of biaxial models often need a good equation of state for
the isotropic phase of the biaxial molecule. In this work
the first five virial coefficients of hard ellipsoids will be
determined numerically. The second virial coefficient can
be obtained exactly by using convex body [18, 19]
geometry, but the third, fourth and fifth will be evaluated
numerically. The study of virial coefficients is of interest
per se when dealing with very anisotropic molecules, since
the range of the isotropic phase shrinks considerably with
increasing molecular anisotropy [3] so that the virial
expansion provides a better description of the isotropic
phase as the molecular elongation increases. In addition
to this we have performed a computer simulation of hard
ellipsoids. Our motivation is to analyse the effect of biaxi-
ality on the equation of state. Finally several equations of
state proposed for hard convex bodies will be tested. In
particular we shall consider the equations of state (EOSs)
proposed by Nezbeda [20] Boublik [217] Parsons [22] and
Song and Mason [23] All these equations use only one
parameter related to the second virial coefficient, so that
they predict the same EOS for prolate and oblate hard
spheroids and for hard ellipsoids with the same second
virial coefficient. We propose a new EOS for hard ellip-
soids which uses the information given by the first five
virial coefficients. This new EOS provides better results
than those previously proposed and distinguishes prolate,
oblate and biaxial hard particles.

2. Calculation details

The hard ellipsoid model presents three principal axes,
and the diameter of the molecule along these principal
directions is given by a:b:c. We shall assume
a <b <c. We take a as the unit of length and therefore
the three diameters of the ellipsoid are 1: b: ¢. Prolate
spheroids can be written as 1: 1: ¢ (the parameter ¢ in
this case is commonly denoted in the literature as k), and
oblate spheroids as 1: ¢: ¢. The general case is that of an
ellipsoid with 1:5: ¢ with b different from 1 and c

The second virial coefficient of any hard convex body
(hard ellipsoids are a particular case of convex bodies) is
given by [18, 19}

%:1+3a, (1)

(RS)
=2, (2)
where B, is the second virial coefficient, o the non-
sphericity of the molecule and R S, and V' the mean
radius of curvature, surface and volume of the hard
ellipsoid respectively. The exact expressions for R, S
and V of a hard ellipsoid are given in [19]

Although the second virial coefficient can be com-
puted easily from equations (1)~(2), the evaluation of
higher virial coefficients must be performed numerically.
We have evaluated the third, fourth and fifth virial coe-
fficient of ellipsoids of different geometries by using the
method of Ree and Hoover [24] as extended to molecular
fluids by Rigby [25] Typically, we used five million
configurations for the less anisotropic molecules and ten
million for the most anisotropic ones. Each configura-
tion is totally independent from the previous one, so
that we are using a static scheme for generating the
open chain configurations (see [26] for details). The esti-
mated error was given as twice the standard deviation of
10 subaverages. We used the procedure proposed by
Perram and Wertheim [27] for detecting overlapping
between the ellipsoidal molecules.

For computing the EOS of hard ellipsoids we used
NPT Monte Carlo simulations [28, 29] with 108 and
in a few cases with 256 particles. The shape of the box
was cubic and we used isotropic scaling so that it
remained cubic during the simulation. We expect this
to be adequate for studying the isotropic phase. We
typically used 2 x 10° configurations for equilibration
and 2 x 10° configurations to obtain averages. We started
at a very low pressure from a solid which melts
very quickly, and then compressed the sample by
increasing the pressure. Orientational order parameters
were also determined to be sure that all our simulations
were in the isotropic phase. Displacements in the position
of particles and volume of the system were chosen so that
40% of the trial moves were accepted. Theoretical esti-
mates of the location of the isotropic—nematic transition
of hard spheroids were very helpful as an approximate
guide of the range of densities were the isotropic phase
is thermodynamically stable.

3. Results for the virial coefficients

In table 1, virial coefficients for ellipsoids with ¢ = 3
are presented. Results range from b= 1 (prolate
spheroid) to b= 3 (oblate spheroid). For the prolate
and oblate spheroids the virial coefficients of this work
were compared with those previously reported by Rigby
[6] Good agreement was found which constituted a
cross check of the calculations. The numerical procedure
used to determine the virial coefficients yields a numer-
ical estimate of the second virial coefficient of the model.
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Table 1. Virial coefficients for ¢ = 3 and several values of b.
These virial coefficients were calculated using 5 million
independent configurations. Reduced virial coefficients
B; are defined as B; = B;/ V" 1, where V is the molecular
volugkne. The values in parentheses in the column labelled
as Bj are the exact values of the second virial coefficients
as calculated from the exact expression given by equations
(1), (2). For the prolate and oblate spheroids the estimated
error of the calculations has been included.

£ £ £ sk

b B B; B, B:
1 54516 (54537) 1582+0-01 27:0+0-1 36+2
1:0909  5-3361 (5:3364) 1534 265 36
1-20 52324 (5-2329) 14-94 261 35
1-25 51951 (51963) 14:80 26:0 36
13333 51478 (5:1476) 1463 259 36
1-5 5-0866 (5-0868) 14-45 25-82 35
17143 50596 (5-0608) 14-44 262 35
(3)'2 50605 (50607) 1448 26:3 35
1-75 5-0606 (5:0608) 14-46 263 35
2 5-0864 (5:0868) 14-70 27-0 36
2:25 5-1480 (5-1476) 15-08 280 37
2:5 52330 (52329) 15-55 29-0 38
275 53358 (53364) 16:11 302 38
3 54546 (54537) 1674+0-01 31:5+0-1 39+1

In table 1 we show both, the numerical estimate and the
exact value obtained from equations (1)~(2). Again, good
agreement is found thus giving further confidence in our
calculations.

We see that the second virial coefficients of biaxial
ellipsoids are lower than these of the prolate or oblate
spheroids. According to equations (1)~(2) this means
that biaxial ellipsoids are more spherical than uniaxial
ones (for a given fixed value of ¢). It can be seen in
table 1 that the second virial coefficient of a model with
1: b: cisidentical to that of the model with 1: ¢/b: c. A
consequence of that is the prolate—oblate symmetry pre-
sented by the second virial coefficient of hard ellipsoids.
The model with 1: ¢'*: ¢ is invariant under this trans-
formation and for this value of b the second virial coeffi-
cient of the ellipsoid is a minimum. Therefore, one
concludes (see equations (1)<2)) that the non-sphericity
parameter of hard ellipsoids 1: b: ¢ with ¢ fixed and b
ranging from 1 to ¢ reaches a minimum when b = ¢'/%.
This has been known for some time [14, 16] For a given
value of ¢, we can say that hard ellipsoids 1: b: ¢ with
b < ' are prolate-like, whereas ellipsoids with b > ¢!/
are oblate-like. In what follows we shall denote a hard
ellipsoid as prolate when b <c¢'/? and as oblate when
b > ' The ellipsoid with 1: 1: ¢ will be denoted as
the prolate spheroid whereas this with 1: ¢: ¢ it will be
denoted as the oblate spheroid.

The third virial coefficient follows to some extent the
trends of the second virial coefficient. In fact, biaxial

Table 2. Virial coefficients for ¢ = 4 and several values of b.
The virial coefficients were calculated by using 5 million
configurations. Rest of the notation as in table 1.

£ £ £

b B; B} B; B:
1 64763 (6:4779) 2028 30:5 37
1-1429 6:2269 (6-2280) 19:20 30-1 37
1:3333 6:0139 (6:0133) 18:37 299 36
2 57846 (5:7842) 17:92 317 36
3 6:0121 (6:0132) 19-72 369 38
35 6:2283 (6:2280) 2108 399 35
4 64780 (6:4779) 2264 432 35

molecules present in general lower values of the third
virial coefficient than either the prolate or the oblate
spheroids. However, there are two important differences
between the behaviour of the second and the third virial
coefficient. It is seen that the prolate—oblate symmetry is
now broken and oblate ellipsoids present higher values
of the third virial coefficient than prolate ones. More-
over, the minimum in the third virial coefficient is no
longer located at 1: ¢'*: ¢ but is shifted towards pro-
late molecules. For the fourth and fifth virial coefficient
it is seen that biaxiality has only a small effect on the
value of the virial coefficient. There is a weak minimum
in the value of the fourth and fifth virial coefficient
located in the prolate region and the value of these
two coefficients for oblate molecules is higher than for
prolate ones.

In table 2 results for the virial coefficients of hard
ellipsoids with ¢=4 are presented. Trends in the
second and third virial coefficient are similar to those
previously discussed for ¢ = 3. The fourth virial coeffi-
cient of the prolate spheroid is smaller than this of the
oblate one. As can be seen in table 2 a weak minimum is
found for the fourth virial coefficient when ¢ = 4. The
fifth virial coefficient seems to depend very little on b
for ¢ = 4. Although the uncertainty of the results does
not allow a definitive conclusion, it seems that the fifth
virial coefficient decreases when going from the prolate
spheroid to the oblate one.

In tables 3 and 4 the virial coefficients for ¢ = 5 and 7
are presented. For the second and third, trends are
similar to these previously discussed for ¢ = 3. The
third virial coefficient of the oblate spheroid is higher
than that of the prolate one. It is clear that the differ-
ences between prolate and oblate molecules in the third
virial coefficient increase as the value of ¢ increases. The
fourth virial coefficient increases monotonously when
going from prolate molecules to oblate ones. The varia-
tion now seems to be quite pronounced. The fifth virial
coefficient decreases monotonously when going from
prolate molecules to oblate ones.
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Table 3. Virial coefficients for ¢ = 5 and several values of b
calculated with 10 million configurations. For the prolate
and oblate spheroids the estimated error of the calcula-
tions has been included. Rest of the notation as in table 1.

£ £ £ 3k

b B; B; B; B:
1 7-5540 (7-5520) 2528 +0-02 312402 41+3
1-25 7-0438 (7-0453)  23-02 31-8 38
16666 66588 (6:6580) 21-70 337 32
2 6-5491 (6:5485) 21-59 355 33
(5)'2 65286 (6:5303) 21-78 36-90 30
25 6-5495 (6:5485) 2218 387 30
3 6:6586 (6:6580) 23-25 42:2 32
4 7-0463 (7-0453)  26:22 49-8 25
5 7-5529 (7-5520) 29-88 £0-02 57-8+02 95

Table 4. Virial coefficients for ¢ = 7 and several values of b
calculated with 10 million configurations. Rest of the
notation as in table 1.

£ £

b B; B; B; B:
1 9-7748 (9:7737) 3621 191 107
1.1666 9-2338 (9-2307) 33-59 243 70
15 85936 (8-5921) 3098 312 41
(7)!11? 8-0480 (8-0471) 30-65 46:3 8
4-6666 85935 (8-5921) 3717 694 -4l
6 9-2306 (9-2307) 43-06 846 - 87
7 9-7734 (9:7737) 48-02 958 - 150

In table 5 the virial coefficients for ¢= 10 are pre-
sented. The studied values of b are those considered by
Allen in his Monte Carlo (MC) study. Trends in the
second and third virial coefficient are similar to those
previously discussed. When going from prolate mol-
ecules to oblate ones the fourth virial coefficient increases

monotonously while the fifth virial coefficient decreases.
As can be seen in table 5, the fourth virial coefficient of
the prolate spheroid with ¢ = 10 is negative, whereas for
this elongation the fifth virial coefficient of the oblate
spheroid is negative. It is well known that prolate mole-
cules with high anisotropy present negative values of the
fourth virial coefficient [6, 30] whereas oblate molecules
of high anisotropy present negative values of the fifth
virial coefficient [31] For ¢ = 7 (see table 4), the fifth
virial coefficient is negative for the oblate spheroid
whereas the fourth wvirial coefficient of the prolate
spheroid is still positive. It is thus seen that prolate
molecules only reach negative values of the fourth virial
coefficient for large anisotropies, whereas oblate
molecules already present negative values of the fifth
virial coefficient for moderate anisotropies. For the
invariant point 1:10'/%: 10 the fifth virial coefficient
is negative, whereas the fourth one is positive (see
table 5).

In figures 1-4 a plot of B>, Bs, By and Bs for ¢ = 3 and

= 10 are presented. The value of b is plotted on a
logarithmic scale so that for each ellipsoid the middle
point of the curve corresponds to the invariant ellipsoid.
The general image emerging from figures 1-4 is that
prolate and oblate ellipsoids do not differ much in
their virial coefficients for moderate anisotropies
(c = 3) but they are quite different when the anisotropy
of the molecule is large (c 10) The shape of the plots
for B, and B; versus In(b) is roughly parabolic, pre-
senting a minimum for a medium value of 5. For By
and Bs the variation of the virial coefficient with In ()
is approximately linear.

The results presented so far may be useful for
checking the quality of different methods developed to
estimate the virial coefficients of hard convex bodies

Table 5. Virial coefﬁaents for c=10 and several values of b calculated with ten million configurations. The values in parentheses
in the columns of B3, B3 and B are virial coefficients of hard spheroids as reported by ngby [6] For the prolate and oblate
spheroids the estimated error of the calculations has been included. Rest of the notation as in table 1.

£ £

£ £

b B; B; B, B
1 13-193 (13:1913) 54-59 + 0-04 (54-66) - 434 06 (- 43-3) 652 +35 (614)
1-259 12:062 (12:0606) 48-76 - 143 347

1-585 11-264 (11-2628) 45-54 59 174

2 10-731 (10-7316) 44-24 217 59

2:5 10-442 (10-4403) 44-60 365 -23

2-818 10-362 (10-3634) 4529 44-4 -62

(10)172 10-340 (10-3392) 46:35 52:0 - 108

3-548 10-364 (10-3633) 47-75 60-7 - 135

4 10-439 (10-4403) 49-57 702 - 179

5 10-733 (10-7316) 5429 89-7 - 255

6.31 11-263 (11-2632) 61-17 114:5 - 399

7-943 12:059 (12:0607) 70-90 143-8 - 587

10 13-189 (13-1913) 84-53 + 0-05 (84-51) 179-1 £0:9 (177-2) - 950 +31 (- 1004)
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Figure 1. Reduced second virial coefficient of hard ellipsoids
plotted as a function of In(b). Squares: ellipsoids with
¢ = 3, circles: ellipsoids with ¢ = 10.
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Figure 2. Reduced third virial coefficient of hard ellipsoids as
a function of In (). Symbols correspond to the virial coef-
ficients computed in this work. Squares: ellipsoids with
¢ = 3, circles: ellipsoids with ¢ = 10. Lines correspond to
virial coefficients of hard ellipsoids with ¢ = 10 as esti-
mated from the EOS of Nezbeda (solid line) and Song
and Mason (dashed line).

[32] However, an important limitation is that in this
work we have considered only a small set of all the
possible geometries of hard ellipsoids. It would be
useful to have an empirical expression which fits the
virial coefficients of the hard ellipsoids provided in this
work so that a guess of the virial coefficients of hard
ellipsoids not considered in this work can be obtained.
Such an empirical expression is given in the next section.
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Figure 3. Reduced fourth virial coefficient of hard ellipsoids
as a function of In(b). Symbols correspond to the virial
coefficients computed in this work. Squares: ellipsoids
with ¢ = 3, circles: ellipsoids with ¢ = 10. Lines corre-
spond to virial coefficients of hard ellipsoids with ¢ = 10
as estimated from the EOS of Nezbeda (solid line) and
Song and Mason (dashed line).
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Figure 4. Reduced fifth virial coefficient of hard ellipsoids as
a function of In (5). Symbols correspond to the virial coef-
ficients computed in this work. Squares: ellipsoids with
¢ = 3, circles: ellipsoids with ¢ = 10. Lines correspond to
virial coefficients of hard ellipsoids with ¢ = 10 as esti-
mated from the EOS of Nezbeda (solid line) and Song
and Mason (dashed line).

4. Empirical expression for the virial coefficients of
hard ellipsoids: application to other convex bodies
The goal of this section is rather simple. We seek an
empirical expression which fits the virial coefficients of
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Figure 5. Values of a and 7 for hard ellipsoids. From left to
right, the lines correspond to hard ellipsoids with ¢ = 3
(solid line), ¢= 5 (dashed line), ¢ = 7 (solid line) and
¢ = 10 (dashed line). Prolate spheroids are located in the
top, whereas oblate spheroids are in the bottom.

hard ellipsoids presented in the previous section. For
that purpose we shall use some concepts of convex
body geometry (see [26, 33] for further details on
convex body geometry). A convex body is defined as
that in which any line connecting two points within the
body is also fully contained within the body. For hard
convex bodies we have the following Minkowski’s
inequalities [34] which can be written as

4nR - S=0, (3)
(4nR)” - 3(410°V = 0, (4)
S%- 12rRV > 0. (5

From these inequalities one can define the following
parameters:
4n R
= —=

T S = 1, (6)
3
A= 4;‘5 > 1. (7)

Using these definitions and that of ofrom equation (2) it
is easy to show that [35}

(8)
9)

Vv
A

a

~ >

a

From equation (9) it is clear that once o and T are
known then A can be easily obtained. For a sphere, o
and T are unity. For any other convex body ot and v are

larger than unity. The parameter T was also used pre-
viously by Naumann and Leland [36] in their search for
a general equation of state for hard convex bodies. The
value of o for a prolate spheroid with 1: 1: ¢ is identical
to that of an oblate spheroid with 1: ¢: ¢. However, the
prolate spheroid presents a larger value of T than the
oblate one. Thus, the parameter v distinguishes between
prolate and oblate molecules. In figure 5 the values of o
and T for the hard ellipsoids considered in this work are
plotted. For a given value of ¢, the value of T increases
continuously from the oblate spheroid to the prolate
one. It has been recognized for some time, that the para-
meter ¢ is not sufficient to describe the virial coefficients
of hard convex bodies. The need for a second (or maybe
third ...) parameter to describe the virial coefficient data
of hard convex bodies has been advocated. In any case it
should be recognized that molecular shape (which is
given by a function defining the surface of the body)
cannot be summarized in a few non-sphericity para-
meters without losing information. It is not likely that
any virial coefficient of hard convex bodies can be given
exactly by a few non-sphericity parameters. However,
we want to explore here the possibility of correlating
the wvirial coefficient of hard ellipsoids by using only
two non-sphericity parameters, namely o and 7. We
have fitted successfully all the virial coefficient data
presented in the previous section to the following
expressions:

% =10+ 13-:094 7560v - 2:073 9097~

+ 4-096 6890 - 5791 2660t
+2:325 34277, (10)

% = 18-:3648 + 27-714 434ar - 10-204 6007~

+ 11-142 9630 + 8-634 49177 - 28-279 451 c¢7”
- 17-190 94607 + 24-188 9790r T~

+ 0-746 74600 - 9-455 15077, (11)

% = 282245 + 21-288 1050¢ + 4-525 7887
+ 36:032 79307 + 59-009 80077 - 118-407 497 cvt”
+ 24-164 622071 + 139-766 17400 7"
- 50-490 2440 - 120-995 13977
+ 12:624 655071, (12)

where we have defined o and 1 as:

o=ao-1 (13)
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Table 6. Virial coefficients for hard ellipsoids 1: b : ¢ as obtained from equations (10)-(12) (Fit) and from the calculations of this
work (Exact).
b ¢ B (Exact) B; (Fit) B (Exact) B, (Fit) B (Exact) B; (Fit)
1 3 15-82 1593 270 27-1 36 36
(3)!172 3 14-48 14-53 263 263 35 35
3 3 16:74 16:79 31-5 31-6 39 38
1 5 2528 2523 312 31.0 41 40
(5)'72 5 21-78 21-77 36:9 36:8 30 33
5 5 29-88 29-82 57-8 577 9 12
1 10 54-59 54-74 - 434 - 435 652 651
(10)!72 10 4635 4638 52:0 52:3 - 108 - 104
10 10 84-53 84-54 179-1 179-0 - 950 - 952
Table 7. Virial coefficients for hard spherocylinders as obtained from equations (10)-(12) (Fit) compared with the exact values as
reported in [30, 37-39] The length to breadth ratio of the hard spherocylinder is given by L + 1.
L B (Exact) B; (Fit) B (Exact) B, (Fit) B (Exact) B; (Fit)
Prolate
1 12-34 1241 22-5 225 32 32
3 20-43 2036 319 310 40 36
5 29-68 2961 31-4 30-2 55 47
10 56-05 57-09 - 376 - 449 733 627
100 745 1562 -32112 - 97088 37% 10° 11x 10°
Oblate
1 11-65 11-65 21-8 21-6 33 31
3 18-67 1860 36'5 356 44 39
5 2824 28:09 57-5 551 38 21
10 61-65 61-77 1282 129-1 - 343 - 383
=T1- 1 (14) cylinders obtained numerically [30, 37-39] and from

In table 6 the virial coefficients of hard ellipsoids as
obtained from equations (10)~(12) are compared with
the numerical results of this work, presented in the pre-
vious section. As can be seen, the fitting provided by
equations (10)~(12) is extremely good. The usefulness of
equations (10)<(12) is that they allow for an estimate of
the wvirial coefficients of hard ellipsoids, even for
values of a:b: ¢ for which no numerical estimate is
available.

One question which may arise after looking at equa-
tions (10)~(12) is whether they could be used to estimate
virial coefficients of any kind of convex body. Equations
(10)~(12) were obtained by fitting the virial coefficients of
hard ellipsoids only, but it would be interesting to see
whether they can predict correctly the virial coefficients
of other kinds of convex bodies. After all, the second
virial coefficient depends on ¢ only, so that the idea that
two parameters, say o and T, may provide estimates of
higher virial coefficients, seems appealing. In table 7 we
present results from the virial coefficients of hard sphero-

equations (10)<(12). Equations (10)-(12) were obtained
by fitting virial coefficient data of hard ellipsoids with a
maximum length to breadth ratio of 10. It is seen in
table 7 that for hard spherocylinders (prolate and
oblate) with a similar anisotropy (i.e. length to breadth
ratio) equations (10)-(12) provide excellent results. To
check the possibilities of extrapolating equations (10)—
(12) to much higher anisotropies we have included in
table 7 results for a prolate spherocylinder with a
length to breadth ratio of about 100. As can be seen
the results now deteriorate, indicating that equations
(10)~(12) should be used with caution for very large ani-
sotropies (i.e. length to breadth ratios). In any case the
results of table 7 show that equations (10)<(12) can be
used with confidence to get reliable estimates of the
virial coefficients of hard ellipsoids and hard spherocylin-
ders with a length to breadth ratio equal to or smaller
than 10.

Taking equations (10)—(12) one step further, we can use
them to predict the virial coefficients for hard convex
bodies for which no previous estimate is so far available,
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Table 8. Virial coefficients for hard spheroplatelets 1: b: ¢ as
obtained from equations (10)+(12) (fit). The definition of
a:b:c as in figure 1 of [I15] The parameters b and ¢
define the size of the rectangle. The spheroplatelet is
obtained by sliding a sphere of diameter a over the rec-
tangle. We take a as the unit length so that « = 1. For the
cylinder we take the diameter of the circle as the unit of
length, i.e. b = 1, and the height of the cylinder is c.

£ £

b C B3 B4 BS
Spheroplatelets
1 1 11-08 20-4 30
2 2 12:92 23-7 33
1 3 13-49 24-4 34
4 4 17-46 31-8 37
1 25 59-38 -42-1 538
10 10 36-28 629 -35
Cylinders
1 1 13-72 25-3 34
1 3 19-98 316 36
1 10 55-99 -377 547
1 0-1 60-64 127-8 - 359

for instance, hard cylinders and spheroplatelets. Predic-
tions for these two kinds of convex bodies are presented
in table 8. As can be seen, equation (11) predicts the
existence of negative fourth virial coefficients for pro-
late-like cylinders and for prolate-like spheroplatelets.
Equation (12) predicts the existence of negative fifth
virial coefficients for oblate-like spheroplatelets and
oblate-like cylinders. It seems that negative values of
the fourth virial coefficient are the signature of pro-
late-like molecules, whereas negative fifth virial coeffi-
cients are the signature of oblate-like molecules. The
second virial coefficient of hard cylinders and hard
spheroplatelets are well known [15, 37] However, to
our knowledge, no data has been so far presented for
higher virial coefficients of hard spheroplatelets or hard
cylinders so that the results presented in table 8 consti-
tute a first estimate. It is difficult to assess the accuracy
of equations (10)12) for hard cylinders and hard
spheroplatelets, but taking into account the accuracy of
equations (10)<(12) for ellipsoids and spherocylinders,
in principle, one should expect that the predictions
are not too bad.

Can it be claimed that a general (although empirical)
expressions has veen found for the virial coefficients up
to the fifth of hard convex bodies? Our feeling is that the
answer to this question is no. In table 9 the virial coeffi-
cients for a hard cube as obtained from equations (10)-
(12) are compared with the value obtained numerically
by Nezbeda and Boublik [40] As can be seen, the agree-
ment now is rather poor. Therefore equations (10)+12)
do not provide a successful expression for the virial

Table 9. Virial coefficients for a hard cube as obtained from
equations (10)~(12) (Fit) and from the numerical calcula-
tions of [40]

B} B; B} B} B B
Exact Fit Exact Fit Exact Fit
18-33 1676 42 31 * 37

coefficients of any type of convex body. We already
anticipated that it is hard to believe that shape, which
is described by a function defining the surface of the
convex body, can be condensed into a few parameters
without losing some essential information. It seems that
within a certain family of convex bodies (i.e. ellipsoids
and spherocylinders) it is possible to obtain reliable esti-
mates of the virial coefficients up to the fifth using a
unique expression depending on o and t. However,
this expression can fail completely when applied to
other families of convex bodies as is the case with a
hard cube. After these words of caution one should
admit that the existence of a general (although
empirical) expression for the virial coefficients of hard
ellipsoids (including prolate spheroids, oblate spheroids,
and biaxial ellipsoids) and hard spherocylinders
(including prolate and oblate ones) is good news. The
shape of many molecules can be approximately
described by these geometries, so that equations (10)-
(12) may be useful in the search for an equation of state
of hard convex bodies. We explored also the possibility
of using equations (10)«(12) for hard non-convex
bodies, such as linear chains of tangent hard spheres
(by taking the mean radius of curvature, which is ill-
defined for non-convex bodies, from that of a sphero-
cylinder of the same length to breadth ratio) but the
results were poor. Therefore equations (10)«(12)
should only be used for convex bodies, and within the
family of convex bodies for ellipsoids and spherocylin-
ders. It is likely that equations (10)~(12) should provide
good estimates for cylinders and spheroplatelets, but we
do not have results for these models to check this point.

5. Equation of state for hard ellipsoids

The results presented so far illustrate that in general,
for a given value of ¢, the virial coefficients of prolate
ellipsoids differ substantially from those of oblate ellip-
soids. One should expect that this difference will be
reflected in the equation of state. To analyse this in
further detail we have performed MC simulations for
several values of ¢ and b. The EOS for prolate and
oblate hard spheroids with ¢< 3 has been obtained by
computer simulations by Frenkel and Mulder [5] For
¢=10 Allen [16] has obtained the EOS for several
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Table 10. MC results for the EOS of hard ellipsoids with
¢ = 3 and several values of b. The reduced number density
p isdefinedasp = (N/ V’)d%s where N is the number of
particles, V'~ is the volume of the system and dys is the
diameter of a hard sphere with the same volume as the
hard ellipsoid. The volume of the ellipsoid is given by
V= (n/6)abc.. The reduced pressure p is defined as
p =plkT /d%—{s). The compressibility factor is given by
Z = p[(pkT), where p is the number density of the hard
spheroid.

b=1 b= 17320 b=3

£

P p” VA p VA p Z

0-352 2-84  0-365 274 0-350 2-86
0-481 416 0499 4-01 0-485 412
0-568 528  0-583 515 0-575 522
0-635 6:30  0-652 613 0-626 639
7-40  0-697 7-17 0-674 7-42
0-721 832 0730 822 0-712 843
0-785 10-19  0-790  10-13 0-784 10-20
0-830 12.05  0-845 11-83 0-825 1212
0-869 13-81 0-891  13-47 0-864 13-89
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Table 11. MC results for the EOS of hard ellipsoids with
¢ = 4 and several values of b. Rest of the notation as in
table 10.

b=1 b=2 b=4

£

Z

AS]
*
)
*
N
)
N
)

0-331 3:02 0354 2:82 0-331 3-02
0-465 430 0464 4-31 0-459 4-36
0-540 556  0-553 5-42 0-528 5-68
0-599 668  0-614 6-51 0-584 6-85
0-650 7-69  0-669 7-47 0-640 7-81
0-685 876  0-698 8:60 0-682 8-80
0-716 978 0754 9-28 0-729 9-60
0-754 10-61 0-767  10-43 0-753  10-62
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values of b. Therefore, in this work we focus on hard
ellipsoids with ¢ in the range 3, 10. In particular, we
shall consider the values ¢ = 3, 4 and 5. In tables 10, 11
and 12 the MC results for ¢ = 3, 4 and 5 are presented.
For each value of ¢, we shall consider three values of b
corresponding to the prolate spheroid, the oblate spheroid
and the invariant ellipsoid. For the prolate spheroid with
¢=3 we compared our simulation results with those
previously obtained by Frenkel and Mulder [5] and the
agreement was found to be excellent.

From the results of tables 10-12 it can be seen that for
a given pressure, the densities of the prolate spheroid,
oblate spheroid and invariant ellipsoids are quite
similar. This is quite surprising, especially when one
considers the important differences in the virial coeffi-

"
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Figure 6. Simulation results for the equation of state of hard
ellipsoids with ¢ = 4 as a function of the volume fraction,
y. For the definition of y, see equation (18) of the main
text. Solid line: prolate spheroid, dashed line: oblate
spheroid, short-dashed line: invariant ellipsoid.

Table 12. MC results for the EOS of hard ellipsoids with
¢= 5 and several values of b. Results for b= 1 and
b = 5 were obtained from simulations with 256 particles.
Rest of the notation as in table 10.

b=1 b= 22361 b=5

£

P Z P Z

AS]
)
N

0-320 312 0-337 2:96 0-307 3:26
0-437 458 0450 4-45 0-426 4-69
583  0-533 563 0-501 599
0-573 698  0-588 6-80 0-559 7-16

N
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W
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cients shown in tables 1-5. However, some differences in
density between the ellipsoids with the same value of ¢
are clearly visible. For instance, let us consider the
results for ¢ = 4. It is found that for a given pressure,
the density increases when going from the prolate
spheroid to the invariant ellipsoid, reaching a maximum
and then decreasing again for the oblate spheroid. It is
also found that for a given pressure, the density of the
oblate spheroid is lower than that of the prolate one.
This is further illustrated in figure 6 where the reduced
pressure p* is plotted as a function of the volume frac-
tion, y, for different hard ellipsoids with ¢= 4. The
volume fraction y is defined as the number density
times the molecular volume (see equation (18) later). It
is probably more useful to discuss trends in the compres-
sibility factor for a given volume fraction, however. For
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a given volume fraction, the lowest value in the com-
pressiblity factor corresponds to the invariant ellipsoid,
and the largest to the oblate spheroid, while the value of
the prolate spheroid is intermediate between the other
two. Results for other elongation are quite similar to
those presented for ¢ = 4. It is difficult to relate the
behaviour found for the compressibility factor with
that of the virial coefficients. However, a qualitative
discussion is possible. The trend found in the compres-
sibility factor can be obtained correctly by considering
only the second and third virial coefficients. In fact, the
invariant ellipsoid always has a smaller value of the
second and third virial coefficients than the prolate
and oblate spheroids. Therefore, it is not surprising
that it has the lowest value in the compressibility
factor for a given density. Prolate and oblate spheroids
have the same value of the second virial coefficient [14,
37] However, oblate spheroids have higher values of the
third virial coefficient than prolate ones. Therefore, it is
not surprising that the compressibility factor of oblate
spheroids is always larger than that of prolate spheroids.
To summarize, the trends in the compressibility factor
for a given volume factor can be qualitatively understood
by considering only the second and third virial
coefficients. What it is not so simple to understand is
why the differences in the compressibility factor between
prolate spheroids, oblate spheroids and invariant spher-
oids are relatively small. Frenkel and Mulder [5] already
found that the EOSs for prolate and oblate spheroids
are quite similar when ¢ <3. Even admitting that this
is a surprising result, an explanation of this can be
obtained when one compares the virial coefficients of
prolate and oblate spheroids for ¢ = 3 presented in
table 1. Prolate and oblate spheroids of moderate aniso-
tropy do not differ much in their virial coefficients. It is
not therefore surprising that they present a similar EOS.
However, Allen [16] has recently shown that even for
highly anisotropic molecules (¢ = 10) the EOS for pro-
late and oblate spheroids are quite similar. The results
presented in this work for ¢ = 4, 5 and 7 provide further
evidence of this. It is hard to understand the origin of this
point. Differences in the third, fourth and fifth virial
coefficients for these anisotropies are quite pronounced.
Why are they not reflected in the EOSs? We have found
that the explanation of this relies on the values of the
fourth and fifth virial coefficients. Let us consider the
virial coefficients for ¢= 10 presented in table 5.
Whereas the contribution to the pressure of the fourth
virial coefficient is negative for prolate spheroids (see
table 5) and positive for oblate spheroids, the contribu-
tion of the fifth virial coefficient is positive for prolate
spheroids and negative for oblate spheroids. For ¢ = 10
the contribution to the pressure arising from the fourth
and fifth virial coefficients becomes identical for prolate

and oblate spheroids when the volume fraction is
approximately y = 0-14. This is not too far from the
isotropic-nematic transition, which is expected to occur
when y = 0-20 approximately [41] For densities higher
than y = 0-14, the contribution of the fourth and fifth
coefficients is higher for the prolate spheroid than for
the oblate one and this compensates partially for the dif-
ference in the third virial coefficient. For the invariant
ellipsoid the contribution of the fourth and fifth virial
coefficient together at densities higher than y = 0-14 is
intermediate between that of prolate and oblate spher-
oids. Therefore, the large differences between the oblate
spheroid and the invariant ellipsoid generated by the
second and third virial coefficients are reduced at high
densities, when the contribution of the fourth and fifth
virial coefficient is included.

It should be remembered that the density at which the
nematic phase occurs decreases as the anisotropy of the
molecule increases [3] If the isotropic-nematic transi-
tion did not occur, differences in the EOS of prolate
and oblate spheroids with large values of ¢ would be
quite important at high densities. Therefore, to explain
the similarity in the EOS for prolate and oblate spher-
oids for large values of ¢ the following facts are relevant.
(i) The density at which the isotropic-nematic transition
occurs decreases as the anisotropy of the molecule
increases. (ii) The second virial coefficient is identical
for both models. (iii) The third virial coefficient of the
oblate spheroid is higher than that of the prolate one.
(iv) The contribution of the fourth and fifth virial coeffi-
cients are of different sign for prolate and oblate spher-
oids but the sum of both turns out to be the same for a
density smaller but not too far from the density at which
the isotropic—nematic transition occurs. (v) For higher
densities, the contribution of the fourth and fifth virial
coefficients together is higher for prolate than for oblate
spheroids and this compensates partially the differences
in the third virial coefficient.

Therefore, the prolate—oblate symmetry found in the
EOS for hard spheroids with moderate anisotropy (i.c.
¢ <3) is due to the similarity in the virial coefficients of
both types of molecules. When the ellipsoids are very
anisotropic, the prolate—oblate symmetry is due to the
fact that the joint contribution of the fourth and fifth
virial coefficients is quite similar for prolate and oblate
spheroids for those densities close to the isotropic—
nematic transition. The invariant ellipsoid would pre-
sent in general smaller values of the compressibility
factor for a given density than prolate or oblate spher-
oids, due to the smaller value of the second and third
virial coefficients. However, since the contribution of the
fourth and fifth virial coefficients for the invariant ellip-
soid is intermediate between those of the prolate and
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oblate spheroids, the differences in the EOS with these
other two models will never be too large.

In our discussion we have not taken into account the
contribution of virial coefficients larger than the fifth.
However, for large values of ¢ the contribution of
higher virial coefficients to the EOS at the densities at
which the isotropic phase is stable is not very large.

Once the virial coefficient and the EOS for ellipsoids
have been presented, let us discuss which among several
EOSs proposed for hard convex bodies provides a better
description of the simulation data. We shall consider the
EOS proposed by Nezbeda [20] hereinafter denoted as
Nezbeda EOS which is given by

p_1+Ba- Jy+ (ol +a- Dy’ - ofSa- 4y’
okT (1-y) 3 ’
(15
where ovis the non-sphericity parameter defined in equa-
tion (2). An EOS recently proposed for hard convex
bodies is that of Song and Mason [23}
-1+ Go- Ay+ (3a - 3o+ 1)y’ + of6:3648 - 7o)y’
- (1-y7° '

7 =

(16)

Another EOS very commonly used in theoretical studies
of the isotropic—nematic transition of convex bodies is
that proposed by Parsons [22] which is given by

_ LB _ LB Lryryt- )
Z—1+4(ZH5-1)—1+4 (1- )’ -1y,
(17)

where Zys is the compressibility factor of hard spheres
which in this work will be described by the Carnahan—
Starling [42] EOS. In equations (15)<(17) y stands for
the volume fraction defined as

N
y=pV 7 (18)
where p is the number density, N the number of par-
ticles, V'~ the volume of the system and V' the molecular
volume.

In tables 13-16 the simulation results are compared
with those of these three analytical EOSs for ¢ = 3, 4, 5,
10 and several values of 5. In the last row the average
deviation between simulation and theoretical predictions,
A, defined as

i=nyc i i
A= IOOL ZM (19)

are presented. In equation (19) nyc stands for the
number of simulation points, and Zyc and Zineo
stand for the simulation and theoretical value of the

Table 13. EOS for hard ellipsoids with ¢ = 3 and different
values of b as obtained from MC and from several theo-
retical treatments. Results from simulation are labelled as
Zwmc, results from equation (20) are Zpey, from the EOS
of Nezbeda (equation (15)) are Znezbeda, from the EOS of
Song and Mason (equation (16)) are Zsy and from the
EOS of Parsons (equation (17)) as Zparsons- The value of A
as defined in equation (19) of the text is presented in the

last row.
b P* Zmc Znew ZpParsons  ZSM ZNezbeda
1 0-352 2-84 277 2:68 2-80 279
1 0-568 5-28 521 4-98 534 529
1 0-721 8:32 829 7-92 8:51 8-44
1 0-869  13-81 13-37 12-84 1363 1355
1-7320  0-365 274 274 2-65 2-75 274
1-7320  0-583 5-15 516 4-90 5-18 515
1-7320  0-730 8:22 8:08 7-64 8-:09 8:05
1-7320  0-891 1347 1360 1292 13:59 1355
3 0-382 3-10 3-09 2:92 3-06 3-04
3 0-573 5-55 551 5-06 5-42 5-37
3 0-764 10-03  10-00 9-08 9-74 9-66
3 0-859  13-57 1367 1243 1322 1314
A 1-02 6:24 1-55 1-66

Table 14. EOS for hard ellipsoids with ¢ = 4 and different
values of b as obtained from MC and from several theo-
retical treatments. Rest of the notation as in table 13.

£

b p Zmc Znew Zparsons  ZSM ZNezbeda
1 0-331 3-02 2:94 2:82 3-02 2:97
1 0-540 556 555 526 585 570
1 0-685 876 865 823 9-16 891
1 0754 10-61 1073 1026 11-33  11-03
2 0-354 2:82 2:94 2-80 2:96 2:93
2 0-553 542 537 4-99 542 534
2 0-698 860 839 776 8-44 833
2 0767 1043 1043 966 1047 1033
4 0-331 3-02 307 2:81 3-02 2:97
4 0-528 568 579 507 5-64 550
4 0-682 880 941 815 9-08 853
4 0753 10-62 1179 1022 11-30  11-00
A 29 63 2:8 2:6

compressibility factor for state point i respectively.
The average deviation obtained for all the values of ¢
and b presented in tables 13-16 is 2:6% for the Nezbeda
EOS, 4-40% for the EOS of Song and Mason and 7-3%
for the Parsons equation. Although not presented in
tables 13-16 we also considered the EOS of Boublik
[21] and the average deviation was found to be slightly
higher than that of Nezbeda. It is thus clear that from all
the analytical EOSs considered in this work the EOS of
Nezbeda gives the best results for hard ellipsoids. It
should be noted that the EOS of Nezbeda [20] was
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Table 15. EOS for hard ellipsoids with ¢ = 5 and different
values of b as obtained from MC and from several theo-
retical treatments. Rest of the notation as in table 13.

£

P Zmc Znew

0-320 312 316 3-01 3:32 3:22
0-437 4-58 4-60 4-34 494 474
0-515 5-83 5-86 5:52 6-37 6:07
1 0-573 6-98 7-00 6-62 7-66 7-27
22361  0-337 2:96 3-07 2-88 3-10 3:05
2:2361  0-450 4-45 4-38 4-04 4-45 4-35
22361  0-533 563 566 518 577 5:62
2:2361  0-588 6-80 670 6-13 6-85 6:66
0-307 3:26 321 2-89 318 3-:08
0-426 4-69 4-84 4-19 477 4-57
0-501 599 618 5-29 6-09 5-81
0-559 7-16 7-44 6-33 7-33 6-96

1-8 79 4-1 3:0

S

Zparsons  ZsM ZNezbeda

— e —

> b

Table 16. EOS for hard ellipsoids with ¢ = 10 and different
values of b as obtained from MC results of [16]and from
several theoretical treatments. Rest of the notation as in
table 13.

£
b P ZMC Znew ZParsons ZSM ZNeZbeda

0-106 1-90 1-90 1-85 1-98 1-92
0-212 3-20 318 2:97 3:53 3:25
0-283 4-44 4.33 393 4-95 4-40
31623  0-283 3-69 3-67 3-29 3-86 3-60
31623 0-354 470 473 4-21 511 4-68
31623 0-424 578 596 5-34 6-64 5-99
31623 0-495 6-97 7-38 6-74 851 7-55

— e —

10 0-106 2-:00 2-01 1-84 1-98 1-92
10 0-212 3-46 3-61 2:97 3:53 3:25
10 0-283 4-50 4-94 3-:925 495 4-40
A 2-8 88 89 31

obtained by analysing the first virial coefficients of pro-
late spherocylinders only. It can be used with quite good
results for prolate spheroids. This can be understood on
the basis that virial coefficients of prolate convex bodies
(spheroids or spherocylinders) fall almost on the same
curve when plotted as a function of o, as noted by
several authors [6, 43, 44] The success of the EOS of
Nezbeda is due to the fact that it is a good EOS for
prolate convex bodies (it was designed for that purpose).
Moreover, since this EOS depends on o only, it predicts
prolate—oblate symmetry. We have already discussed
that the EOS of prolate and oblate spheroids, although
not identical are quite similar. Because of that, Nezbe-
da’s EOS does a good job. The Song and Mason EOS
works reasonably well, although it is inferior to the EOS
of Nezbeda. Finally, Parsons EOS, although quite pop-
ular in theoretical studies is clearly inferior to the other

two. However, the three EOS considered in this work,
although relatively accurate, are not quite satisfactory in
two fundamental points. (i) They predict prolate—oblate
symmetry. Although prolate and oblate spheroids pre-
sent a similar EOS it should not be forgotten that the
EOS is not identical for these two types of molecules. (ii)
Although the second virial coefficient is correctly pre-
dicted by these three EOS, predictions for the third,
fourth and fifth virial coefficients are not so good. In
fact, in figures 2, 3 and 4 the third, fourth and fifth
virial coefficients of hard ellipsoids with ¢ = 10 predicted
by the EOS of Nezbeda and that of Song and Mason are
compared to the numerical results of this work. As can
be seen, for these rather anisotropic models, the predic-
tions from these EOS are rather poor. These EOSs pre-
dict prolate-oblate symmetry in the third, fourth and
fifth virial coefficients and this symmetry is not present
in the computed virial coefficients. As was mentioned in
section 3, it is not possible to describe the virial coeffi-
cients of hard ellipsoids with only a non-sphericity para-
meter. This is the reason of the failure of the Nezbeda
and Song and Mason equations of state concerning pre-
dictions of virial coefficient for very anisotropic mol-
ecules of general shape (prolate uniaxial, biaxial,
oblate uniaxial). In the light of the poor predictions of
virial coefficients of the EOS of Nezbeda and Song and
Mason it is rather surprising that these EOSs work so
well (see table 16). Certainly, there is some cancellation
of errors, so that some virial coefficients are under-
estimated and others are overestimated. The prediction
of wvirial coefficients is especially important for very
anisotropic molecules. In fact, for quite anisotropic
molecules the range of densities where the isotropic
phase is stable shrinks considerably, and therefore a
good prediction of the virial coefficients is crucial.
Therefore there is room for improvement and the
search of an EOS for hard ellipsoids should not be for-
gotten. In this work we have evaluated the first five virial
coefficients of a number of hard ellipsoids. One question
which naturally arises is the following: can the informa-
tion provided by the virial coefficients be used to provide
a reasonably good EOS? The first obvious approach is
to use the virial expansion using the virial coefficients
up to the fifth. While this is satisfactory for very elongated
ellipsoids it is not a good approach when the ellipsoids are
of moderate anisotropy, since the contribution of
higher virial coefficients is important in this case. There-
fore, the contribution of virial coefficients higher than
the sixth should be included especially at moderate ani-
sotropies. In Parsons’ [22] EOS, all virial coefficients of
the hard non-spherical particle are approximated by
those of hard spheres multiplied by the ratio between
the second virial coefficient of the hard non-spherical
particle and that of a hard sphere. Since Parsons’
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approach gives reasonable results for the EOS of hard
ellipsoids, we decided to use this approach for including
the contribution of virial coefficients higher than the
fifth. Therefore the EOS proposed in this work for
hard ellipsoids is given by:

Z=1+ Byy+ B3>+ Biy’ + By'

B 1+y+y' - 5
" —LLL(I_ NI 1- 4y- 10y
- 18-3648)° - 28'2245y4). (20)

The origin of this equation is simple. We use the virial
coefficients up to the fifth as determined numerically in
this work. Higher virial coefficients are included fol-
lowing Parsons’ prescription by a simple scaling of
those of hard spheres. Contribution of virial coefficients
higher than the fifth to the compressibility of hard
spheres are obtained by subtracting from the Car-
nahan-Starling equation the contribution of the first
five virial coefficients. The predictions obtained by this
new EOS are presented in tables 13-16. As can be seen
the agreement is good. In fact, the overall error obtained
by this new EOS is 2:1%. The overall error obtained
with Nezbeda EOS is 2-6%. Therefore the new proposed
EOS may be considered as an improvement at least for
hard ellipsoids over previously proposed EOSs. We
should note that the improvement is rather modest. In
that respect the equations of state of Nezbeda and of
Song and Mason perform surprisingly well, especially
taking into account that their predictions of virial coeffi-
cients are rather poor. Certainly, some cancellation of
errors occur in these equations, so that although they
fail in the prediction of certain virial coefficients, this
failure is compensated by other virial coefficients. The
equation of state proposed here indicates the advantage
of giving results comparable to those of the other equa-
tions, but giving correct values for the first five virial
coefficients.

Another advantage of equation (20) is that it distin-
guishes between prolate and oblate spheroids. In fact, as
can be seen from the results of tables 13-16, the new EOS
correctly predicts higher values of the compressibility
factor for oblate spheroids than for prolate ones. In
fact, equation (20) correctly predicts that for a given
volume fraction the compressibility factor increases
from the invariant ellipsoid to the prolate spheroid, and
from the prolate to the oblate one. Therefore, not only the
average error is quite small, but also differences in the
compressibility factor are predicted correctly.

We have applied equation (20) to other convex bodies
such as prolate and oblate hard spherocylinders. In table
17, the results are presented. It can be seen that equation

Table 17. EOS for hard spherocylinders as obtained from
equation (20) and from the computer simulation results
reported in [37]*Simulation results for the prolate sphero-
cylinder with L = 5 were taken from [47] Virial coeffi-
cients of hard spherocylinders were estimated by using
equations (10)-(12).

£

L y VAY(S Znew
Prolate

06 0-2948 410 413
0-6 0-3873 6-84 6-89
1 0-30 448 4-54
1 0-5096 16:80 16:22
2 0-30 540 534
2 0-50 18:00 1819
5 0-09 2-01 2:02
5 0-31 816 816
5 0-352 10-31 10-47
Oblate

1 0-25 3-35 334
1 0-45 10-56 10-48
2 0-25 3-83 3-82
2 0-45 12:30 12-44

(20) works remarkably well also for hard spherocylin-
ders. Therefore, equation (20) can be used with confi-
dence for convex bodies, such as prolate spheroids or
spherocylinders, oblate spheroids or spherocylinders
and biaxial particles such as ellipsoids or spheroplate-
lets. We tested also equation (20) for non-convex bodies
as rigid linear chains of tangent hard spheres for which
the first virial coefficients are known [44] However, the
results were not so good as for convex bodies. It begins
to be clear from the work of several authors that Par-
sons’ approach works well for convex bodies and poorly
for non-convex bodies [45] For non-convex bodies new
methods to estimate virial coefficients and equation of
state should be developed as for instance that presented
in [46] In passing let us mention that the procedure
proposed in [44] to build an EOS from the virial coeffi-
cients was also tested. It yields good results for prolate
and oblate spheroids. However, since a different pre-
scription is used for prolate and oblate molecules we did
not found a trivial way of implementing the procedure for
biaxial particles.

An important objection to equation (20) is that it
requires a knowledge of the first five virial coefficients
which in general are not available. Therefore, it seems
of limited applicability. However we have shown in sec-
tion 3 that virial coefficients of hard ellipsoids can be
obtained quite accurately from the empirical expressions
given by equations (10)—(12) so that this objection can be
countered. Moreover, equations (10)-(12) are useful
for estimating the virial coefficients of a number of
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convex bodies and they guarantee the applicability of
equation (20).

6. Conclusions

In this work, the first five virial coefficients of hard
ellipsoids with ¢ in the range 3 to 10 have been computed
numerically. Differences between prolate, invariant and
oblate molecules were found in the third, fourth and
fifth virial coefficients. It has been shown that the
virial coefficients of hard ellipsoids can be correlated by
an empirical expression which uses two non-spheri-
city parameters, namely, oo and 7. Moreover, this expres-
sion describes successfully the virial coefficients of other
convex bodies as, for instance, hard spherocylinders. The
virial coefficients data provided in this work may be
useful for checking new equations of state.

Computer simulations in the NPT ensemble were also
performed. For a given length to breadth ratio and
volume fraction the compressibility factor increases
from the invariant ellipsoid to the prolate spheroid, and
from the prolate spheroid to the oblate one. How-
ever, differences were found to be small, especially
taking into account the large difference in virial coeffi-
cients between these models. The explanation is found
in the fact that the joint contribution of the fourth and
fifth virial coefficients is approximately equal for prolate
and oblate molecules for a density not too far from the
density at which the nematic phase appears.

Several analytical equations of state for hard convex
bodies have been tested. It is found that for the ellip-
soids considered in this work, the equation of state pro-
posed by Nezbeda [20] yields the best agreement with
simulation, followed by that proposed by Song and
Mason. Parsons’ scaling yields worse results than the
other two equations of state. However, there is room
for improvement. These three equations of state pro-
posed predict prolate—oblate symmetry. This is a good
approximation, but it is not exact. Moreover, the virial
coefficients predicted by these EOSs are rather poor for
the elongated ellipsoids considered in this work. We
propose a new equation of state for hard ellipsoids
which uses the computed virial coefficients. Basically,
this equation is a truncated virial expansion, which
uses Parsons’ scaling to estimate the higher virial coeffi-
cients. Good agreement with simulation is found with
this new equation of state. Although the improvement
of the new EOS over that of Nezbeda is rather modest,
the new EOS presents two important advantages. The
first is that the new EOS breaks the prolate—oblate sym-
metry. Prolate and oblate spheroids according to this
equation have a similar but not identical equation of
state. The second is that this new EOS uses exact
values for the first five virial coefficients. This is impor-
tant for very anisotropic models, since for this type of

molecule, the range of densities where the isotropic
phase is stable becomes vanishingly small. The new
EOS has been also applied to hard spherocylinders and
again good agreement with simulation was found.
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