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The phase diagram of mixtures of hard spheres has
ceived attention in the last years.1–4 In this work the phase
diagram of a binary mixture of points~component 1! and
hard spheres~component 2! is considered. The diameter o
the spheres is given bys. The points cannot penetrate th
spheres. This system can be regarded as the limiting ca
a mixture of hard spheres when the diameter of one of th
becomes arbitrarily large. The compressibility factorZ, for
this system is given exactly by the following expression:5–8

Z5
p

rkT
5

x1

12y
1x2ZHS, ~1!

wherer is the total number density,x1 andx2 are the molar
fractions of points and hard spheres respectively,y is the
volume fraction of the mixturey5rx2 (p/6) s3 and ZHS is
the compressibility factor ofpure hard spheresat the same
volume fraction. Equation~1! can be derived in a number o
ways. The first one, proposed by McLellan and Alder5 uses
the fact that the phase integral can be integrated with res
to the points for any hard sphere configuration. Another p
sibility ~for the fluid phase! is to use the virial expansion
Diagrams containing only hard spheres yield the second t
on the right-hand side of Eq.~1! whereas those containin
hard spheres and one point particle yield the first one.9 By
applying the virial theorem, the compressibility factor of t
mixture can be written as:

Z511
2pr

3 S 2x1x2S s

2 D 3

g12~s/2!1~x2!2s3g22~s! D ,

~2!

where g22(s) and g12(s/2) are the contact values in th
mixture for the sphere-sphere and point-sphere pair corr
tion functions respectively.10 Concerning the structure of th
point-sphere mixture the following facts are of interest:!
The sphere-sphere pair correlation function in the mixture
identical to that in the pure hard sphere~at the same value o
y!. This can be easily proved by considering the graph
pansion ofg22 in the mixture.11 A consequence of that is tha
for this model, the binary mixture, and the quench
3070021-9606/98/108(7)/3074/2/$15.00
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system12–14,8 present identical structure; ii! The point-point
correlation function in the mixture is not identically one~as
in a pure fluid made up of point particles! but it presents
some structure.8 In fact, the point-point correlation function
corresponds to the blocking part of the pair correlati
function13,8; iii ! The point-sphere correlation function als
presents structure~for instance the contact value is not one8!.
Taking into account these exact results Eq.~2! can be rewrit-
ten as:

Z5x1~11y g12~s/2!!1x2ZHS. ~3!

By equating Eq.~1! and Eq.~3! the contact value15 for the
point-sphere interactiong12(s/2)51/(12y) is obtained.
This result is exact, and in fact it shows excellent agreem
with simulation~see Fig. 9 of Ref. 8!. The free energy of the
mixture can now be obtained as:

A

NkT
5x1 ln~rx1L1

3!1x2 ln~rx2L2
3!211x2

AHS
res

N2kT

2x1 ln~12y!, ~4!

where L1 and L2 are the thermal wavelengths of comp
nents 1 and 2 respectively. Without loss of generality we w
setL1

35L2
35 (p/6) s3. In Eq. ~4! AHS

res is the residual part of
the free energy of a pure hard sphere fluid at volume frac
y. The number of hard spheres is denoted asN2 and the total
number of particles asN. By using Carnahan-Starling ex
pression for the residual free energy of pure hard spher16

we computed the stability determinant17 for this mixture. The
value of the determinat was always positive and this rule
the possibility of fluid-fluid equilibrium for this system~see
also discussion later!.

Now we shall consider the fluid-solid equilibrium. W
shall assume that the stable solid corresponds to that for
by an fcc structure of hard spheres, with points filling t
empty space left by the hard spheres. The key idea is that
~4! is not only valid for the fluid phase but it is also corre
and exact for the solid phase~although now the residual par
of the free energy corresponds to that of the pure hard sp
4 © 1998 American Institute of Physics
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solid!. The fluid-solid equilibrium is obtained by solving th
following set of equations:

r1*

12y
5

r1*
8

12y8
, ~5!

AHS
res

N2kT
1 ln~y!1ZHS1
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12y
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AHS

res8

N2kT
1 ln~y8!1ZHS8 1

r1*
8

12y8
, ~6!

r1*

12y
1yZHS5

r1*
8

12y8
1y8ZHS8 , ~7!

where in Eqs.~5!–~7! magnitudes without prime correspon
to the fluid phase and with prime to the solid phase. Eq
tions ~5!–~7! represent the equalities of chemical potential
component 1, chemical potential of component 2 and pr
sure respectively, in fluid and solid phases. We have a
definedr1* asr1* 5rx1 (ps3/6). Themeaning of Eq.~5! is
clear, the density of points in thefree volumeleft by the
spheres should be the same in the fluid and in the so
phase. Once Eq.~5! is satisfied, Eq.~6! and Eq.~7! corre-
spond just to the equality of chemical potential and press
between a pure hard sphere fluid and a pure hard sph
solid. Using Hooveret al.18 estimate of the freezing proper
ties of pure hard spheres one obtainsy50.4938 andy8
50.5451 for the freezing of the point-sphere mixture. A
coexistence the contribution to the pressure arising from
hard spheres is18 p* 5p/(kT/s3)511.7. The composition of
the solid phasex18 in equilibrium with a fluid phase of com-
positionx1 is given by:

x185
ax1

b1x1~a2b!
, ~8!

FIG. 1. Logarithm of the coexistence pressure as a function of the m
fraction of spheresx2. The coexistence pressure is given in reduced un
p* 5p/(kT/s3).
-
f
s-
o

id

re
re

t
e

where a5(12y8)/(12y) and b5y8/y. In Fig. 1 the re-
duced coexistence pressure is plotted as a function of
molar fraction of spheres. Recently Yau, Chan, a
Henderson7 have studied by computer simulation a bina
mixture of hard spheres with a size ratio of 1:20 and fou
the solid phase to be mechanically unstable fory8 less than
0.49 ~approximately! regardless of the composition. For
pure hard sphere system Alderet al.19 found that the solid
phase was not mechanically stable fory8 less than 0.49~ap-
proximately!. This coincidence suggests that for the size
tio 1:20, freezing occurs for volume fractions quite close
those of pure hard spheres, in agreement with the result
this work.

Let us return to the possibility of fluid-fluid phase sep
ration for this system. To determine fluid-fluid equilibr
Eqs.~5!–~7! should be solved~now the prime denotes a sec
ond fluid phase!. By simple inspection it can be seen th
searching for fluid-fluid separation in the point-sphere s
tem is equivalent to searching for fluid-fluid separation in t
pure hard sphere system. No fluid-fluid phase separation ex
ists for pure hard spheres. Therefore, this work shows
fluid-fluid separation is not possible in the limit of infinit
size ratio. From the results of this note it can be inferred t
the ‘‘effective pair potential’’ between spheres in the poin
sphere mixture is the hard sphere potential! Although
point-hard sphere system has been considered by o
authors5–8 leading to Eq.~1!, some of its implications as
presented in this note have not been presented before~to the
best of our knowledge!.
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