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Recent research on the effect of a quadrupole moment on the phase di- 
agram of linear molecules is reviewed. In particular the effect of the 
quadrupole on the vapour-liquid and solid-liquid equilibria will be dis- 
cussed. It is found that the quadrupole moment increases the critical 
temperature, pressure and density of the fluid over the model without a 
quadrupole and leads to deviations from the principle of corresponding 
states. The effect of the quadrupole on a molecular model with a spher- 
ical repulsive core is larger than on one with a nonspherical core. The 
presence of the quadrupole stabilizes solid structures which are not close 
packed. This leads to a shrinkage of the liquid range as measured by the 
ratio of the triple to critical point temperature and exhibited by systems 
like carbon dioxide and acetylene. © 1998 Elsevier Science B.V. 

1 I N T R O D U C T I O N  

The  distr ibut ion of electronic charge in a molecule is generally not  symmetr ic ,  leading to 
the presence of multipoles.  The  interact ion between these mult ipoles on different molecules 
can have a significant impact  on the thermodynamics  and phase equil ibrium. In this paper 
we will discuss such effects for molecules of linear geometry  with a quadrupole  moment  
but  with no dipole moment .  A good example  of the  molecules we have in mind is carbon 
dioxide. For such molecules a measure of the anisotropy of the  charge distr ibution is given 
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by the quadrupole moment.  The quadrupole moment is a second rank symmetric and 
traceless tensor [1]. However, for linear molecules this tensor has only one independent 
component which is usually denoted as the quadrupole moment.  For instance, for a discrete 
distribution of charge on a linear axis the quadrupole moment Q is given by Q = ~ qiz~ 
where qi is the value of the charge located at a distance zi from the origin. When one takes 
the limit of increasing charge magnitude and decreasing charge separation (i.e zi tends to 
zero) while keeping Q constant, the resulting quadrupole is denoted as an ideal or point 
quadrupole. In this work we shall consider linear molecules with an ideal quadrupole and 
the role of this quadrupole in determining the phase diagram. In the first instance we will 
consider the effect of the quadrupole moment on the vapour-liquid equilibrium. By using 
Gibbs ensemble simulations [2] the critical properties with and without quadrupole have 
been determined for linear molecules of various elongations [3]. The quadrupole moment 
also strongly affects the solid-liquid equilibrium. Using computer simulation it has been 
shown [4] how the quadrupole moments stabilizes the a - N2 structure for molecules like 
carbon dioxide. The stability of this expanded solid structure strongly affects the location 
of the triple point. By using a simple theoretical scheme based on the generalized van der 
Waals theory of Longuet-Higgins and Widom [5] it has been shown that the quadrupole 
increases substantially the triple point temperature [6,7]. The outline of the paper is as 
follows. In Section II, the vapour-liquid equilibria of linear quadrupolar fluids will be 
discussed. In Section I I I  we shall consider the fluid-solid equilibrium and in Section IV, 
the conclusions of this work will be presented. 

2 E F F E C T  O F  T H E  Q U A D R U P O L E  I N  T H E  F L U I D  P H A S E  

In this section we shall discuss the effect of the quadrupole on several properties of the fluid 
phases based on the recent computer simulation studies [3,8,9]. In tMs work the Kihara 
potential [10,11] was used, choosing the molecular core as a rod. The core is shown in 
fig.1 , and the pair potential between two molecules is given by : 

(1) 

where s is the shortest distance between the molecular cores, a is the diameter of the 
molecule and ~ is the well depth. The molecular shape represented by the Kihara potential 
with the core of fig.1 is that  of an spherocylinder [12]. The geometry of the molecule is 
described by the dimensionless parameter L" = L/o" where L is the length of the rod. 
For L* = 0 the molecule presents spherical shape whereas high values of L* correspond 
to very elongated molecules. According to Eq.(1) the well depth of the potential does not 
depend on the relative orientation. 

The pair potential between a pair of point quadrupoles is given by [1]: 

3Q2(1 - 5(c~ + c] + 3c~c~) + 2(a l s2c12  - 4CLC2) 2) UQQ(r,o)I,O)2) : 4 r  s (2) 
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Fig. 1. Shortest distance, s, between a pair of rods of length L. The meaning of r, and the angles 
entering into the expression of the quadrupole potential are shown. 

where Q is the quadrupole moment of the molecule, r is the distance between the center of 
mass of the molecules, wl and w2 denote the orientational coordinates of the two molecules, 
ca = cos(Oi), si = sin(Oi), and c12 = cos(¢2 - ¢1) (see fig.l). 

Usually a reduced (dimensionless) quadrupole moment, Q" , is defined. In this section the 
reduced quadrupole moment is defined as: 

Q'~ = Q2/(~,,~) (3) 

The most favorable orientation for two molecules interacting through the quadrupolar 
potential (Eq.(2)) is the so-caLled "T" orientation in which the two molecules are in a 
plane, with the molecular axes in a perpendicular configuration and the center of mass 
vector coincident with one of the molecular axes [1]. 

The full pair potential  between two molecules is given by: 

u = u~:,h~,a + UQQ (4) 

All results presented in this Section correspond to the pair potential  given by Eq.(4). 

2.1 E F F E C T  OF T H E  Q U A D R U P O L E  M O M E N T  O N  T H E  S T R U C T U R E  

When dealing with linear molecules it is customary to expand the pair correlation func- 
tion g(r, wl ,w2) using spherical harmonics as basis functions [13]. The coefficients of the 
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Fig. 2. Orientation averaged radial distribution function for a linear molecule interacting through 
the Kihara potential as a function of r* = r / a .  Results are presented for two values of the 
quadrupole moment. Reduced temperature and density are defined as T* = T/ (e /k)  and 
p* = pa a where p is the number density. 

expansion are denoted as gu,m(r). In fig.2 results are presented for orientation averaged 
distribution function (g000(r)) for a model of elongation L* = 0.8 (appropriate for car- 
bon dioxide) with a quadrupole moment (Q.2 = 3) and for the same elongation with 
zero quadrupole moment.  Clearly the quadrupole affects the structure of the fluid as was 
noted some t ime ago for a similar model [13]. Results for other coefficients also show the 
important  role played by the quadrupole in determining the structure of the fluid [8]. 

The reason why the quadrupolar  interaction changes the structure of the fluid is because 
of its strong orientation dependence. For instance, when the a pair of molecules are in the 
"T" orientation the quadrupolar interaction energy has a large negative value. However, 
for the parallel orientation with both molecules perpendicular to the intermolecular axis 
the quadrupole interaction is positive and strongly repulsive. For other studies concerning 
the structure of oblate quadrupolar molecules and mixtures the reader is referred to 
reference [9]. 

~.~ E F F E C T  OF THE QUADRUPOLE ON THE CRITICAL P R O P E R T I E S  

GarzSn et al. [3] have performed Gibbs ensemble simulations for a number of models 
interacting through the pair potential  given by Eq.(4). In the case of spherical quadrupolar 
models critical properties are also known [14,15]. For a given elongation, the critical 
properties were computed for several values of the quadrupole moment.  Comparison with 
results for the case of zero quadrupole moment which are also available [lfi] reveals the 
effect of the quadrupole moment on the critical properties. In Table I the critical properties 
as obtained from the Gibbs ensemble simulations are presented for several elongations 
and/or  values of the quadrupole moment.  
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Table 1 
Critical properties of quadrupolar linear Kihara fluids as obtained from Gibbs ensemble simu- 
lations 

L" Q.2 Tcl(,Ik) p~a3 pcl(,I,, 3) zo 

0.3 0 1.114 0.219 0.073 0.30 

o.3 1.2 1.103 0.220 0.078 0.31 

0.3 2.4 1.296 0.231 0.089 0.30 

0.6 0 1.000 0.161 0.051 0.32 

0.6 1.2 1.061 0.164 0.050 0.29 

0.6 2.4 1.192 0.179 0.058 0.27 

0.8 0 0.952 0.140 0.038 0.29 

0.8 1.2 1.014 0.147 0.044 0.30 

0.8 2.4 1.157 0.152 0.049 0.28 

For a given elongation the quadrupole moment raises the critical temperature,  pressure 
and density of the model. It also decreases slightly the value of the compressibility factor 
at the critical point (Zc), although the uncertainties do not permit  a firm conclusion on 
this point. Using the information obtained from the simulations we can estimate the effect 
of the quadrupole moment on the critical properties for a real substance. For instance, 
GarzSn et al. [3] have est imated that  for carbon dioxide the quadrupole moment raises 
the critical temperature  and pressure by about 50K and 16 bar respectively. 

Another question we might want to answer is the following: Do quadrupolar interactions 
affect more strongly the critical properties for molecules with spherical repulsive cores 
than those with nonspherical cores ? In fig.3a the increase in the critical temperature 
on adding a quadrupole to a model is plotted as a function of the reduced quadrupole 
moment.  

It is clear that  for a given quadrupole moment the critical properties of the spherical 
core model are more strongly affected than those of nonspherical core models. However, 
the comparison presented in fig.3a is slightly misleading. The way we define the reduced 
quadrupole does not take into account for the difference in molecular volume as we change 
the shape of the repulsive core so that  it is not convenient for comparing molecules with 
different elongations. For instance for Q.2 = 1 the increase in the critical temperature 
of the spherical model is 8 times larger than for the model with L* = 0.8. This large 
difference has its origin part ly in the way we reduce the quadrupole moment.  To compare 
molecules with different elongations GarzSn et al. [3] introduce the equivalent reduced 
quadrupole moment defined as: 

Q: 2 = Q2/(EV~/3 ) (5) 

where V.~ is the molecular volume. In fig.3b the increase in the critical temperature is 
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Fig. 3. Increases in the critical temperature on adding a quadrupole as a function of the 
quadrupole moment for several elongations, a) Reduced quadrupole defined by Eq.(3). b) Equiv- 
alent quadrupole moment as defined in Eq.(5). 
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Fig. 4. Logarithm of the vapour pressure plotted as a function of the inverse of the temperature. 
Vapor pressure and temperature are reduced by their critical values. Results correspond to a 
spherical non polar mohcuh, a linear non polar molecuh and two linear quadrupolar mohcuhs. 

plotted as a function of the equivalent quadrupole. It is clear that when plotted in this 
way the increase in the critical temperature does not depend much on the molecular 
elongation for a fixed value of the equivalent quadrupole. 

The quadrupole moment and nonspherica] molecular shape lead to deviations from the 
principle of corresponding states [17]. This is illustrated in fig.4 where the vapour pressure 
curve is plotted versus temperature using reduced units defined in terms of the critical 
properties. 
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It can be seen that : i) the non-sphericity of the molecule provokes deviations from the 
principle of corresponding states even when no quadrupole moment is present (compare 
the results for Q.2 = 0 when L* = 0 and when L* = 0.8) as has been seen in work 
on the diatomic 12-6 potential [18]. The non spherical shape increases the slope of the 
vapour pressure curve; ii) the presence of a quadrupole further increases the slope of 
the vapour pressure curve; iii) the slope of the curve, which is related to the so-cailed 
acentric factor [19,20] depends on the shape of the molecule and on the presence of polar 
forces. The non-spherical forces (shape and quadrupole moment) not only change the 
vapour pressure curve but also the coexistence densities leading to a broadening of the 
vapour-liquid coexistence envelope. 

3 E F F E C T  O F  T H E  Q U A D R U P O L E  O N  S O L I D  P H A S E S  

We now consider the effect of the quadrupole moment on the solid phases and on the solid- 
fluid equilibrium. One could in principle consider each value of L* and quadrupole moment, 
determine the stability of the different solid structures and to compute the solid-fluid 
equilibrium. In this way a complete view of the phase diagram of quadrupolar fluids could 
be obtained. At this point this is still a challenge that remains to be done. A somewhat 
less ambitious approach, but one which is sufficient for a qualitative understanding is to 
use the following strategy [4,7]. We consider first hard quadrupolar fluids. It is expected 
that solid structures are mainly determined by molecular shape and polar forces, so that 
dispersion forces play a minor role in determining the type of stable solid. In this way 
some features on the effect of the quadrupole moment on the solid structure can emerge. 
Since hard quadrupolar fluids do not exhibit vapour-liquid equilibrium one can follow the 
classical work of Longuet-Higgins and Widom [5] and incorporate dispersion forces in a 
mean field way for the fluid and solid phases. In this way vapour-liquid and liquid-solid 
equilibrium is obtained and some discussion on the effect of the quadrupole moment on 
the location of the triple point is possible. 

The model chosen to perform this study is a hard quadrupolar dumbbell. The quadrupolar 
interaction is that described by Eq.(2). The dumbbell is formed by two hard spheres of 
diameter ~,, being the bond length given by L. The reduced bond length is usually denoted 
as L*. Since we are using hard quadrupolar models the reduced quadrupole will be defined 
as Q.2 = Q2/(kTd~s) where dus is the diameter of a hard sphere with the same volume 
than the dumbbell. 

3.1 SOLID STRUCTURES FOR QUADRUPOLAR HARD DUMBBELLS 

Recently Vega,Paras and Monson [21,22] have performed computer simulation studies of 
hard dumbbells and quadrupolar hard dumbbells [4] in the fluid and solid phase. Equation 
of state and free energies were determined for the fluid and solid phases. In this way the 
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Fig. 5. Phase diagram of hard dumbbells as obtained from computer simulation [21,22,30]. 
The solid phases are the plastic crystal, and an orientationally ordered solid which yields close 
packing for the dumbbells. Coexistence densities are plotted as a function of the reduced bond 
length. 

phase diagram for these models was obtained. In fig.5 the phase diagram of hard dumbbells 
(without quadrupole) is presented [21,22]. 

For slightly anisotropic molecules freezing occurs into a plastic crystal solid. In the plastic 
crystal solid the centers of mass of the molecules are located on the lat t ice positions but 
there is no long range orientational order. At high pressures the plastic crystal transforms 
into a close packed solid. For anisotropies larger than L* = 0.38 freezing occurs into a close 
packed monoclinic structure. In this structure both the center of mass and orientations of 
the molecules are clearly defined. When a quadrupole moment is added to the molecule 
the situation changes dramatically [4]. In fig.6 the stable solid phases found at freezing 
for quadrupolar hard dumbbells are plotted as a function of the elongation L" and the 
reduced quadrupole moment.  

An interesting feature is now the appearance of two new types of solid structure, the 
c~ - N2 structure and an orthorhombic structure. The appearance of the a - N2 structure 
can be easily understood, since for this solid, pairs of nearest neighbours molecules are in 
a relative orientation close to the T one. This is the reason why at very high quadrupole 
moments the stable solid structure at low pressure is the a - N2 structure regardless of 
the molecular elongation. Another interesting feature of fig.6 is that  a high quadrupole 
moment prevents the appearance of a plastic crystal phase. Quadrupolar  interactions limit 
the orientational freedom of the mildly anisotropic molecules. The results of fig.6 resemble 
those of English and Venables [23], although these authors used internal energy rather 
than free energy for defining the stability of a solid phase. 

Can we understand some features of the phase diagram of linear or linear-like molecules 
by using fig.6 ? Nitrogen and oxygen are molecules with small anisotropy and quadrupole 
moment. According to fig.6 they should freeze into an plastic crystal phase. This is in- 
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deed found in experiments.  Acetylene and carbon dioxide are molecules with a very large 
value of the quadrupole moment.  According to fig.6 they should freeze into an a - N2 
structure. Experimentally it is found that  this is the case. For the halogens, Cl2, Br2,1~ 

according to fig.6 an orthorrombic structure should be stable and this also in agreement 
with experiment.  Evidently the quadrupolar hard dumbbell is a simple but useful model 
to understand the freezing behavior of linear quadrupolar molecules. 

3.2 E F F E C T  OF T H E  Q U A D R U P O L E  M O M E N T  O N  T H E  L O C A T I O N  OF THE' 

T R I P L E  P O I N T  

The ratio of the triple to critical temperature gives an idea of the liquid range of a given 
substance viewed from a corresponding states perspective. For simple fluids such as Ar or 
Kr, the ratio of the triple to critical point temperature is about 0.55. Low values of this 
ratio indicate a wide liquid range, whereas high values of this ratio indicate a narrow liquid 
range. Just to give a few examples of the big variations found in nature for this ratio, 
let us mention that  for n-propane it takes the value 0.23 whereas for carbon dioxide it 
amounts to 0.71. In 1964 Longuet-Higgins and Widom [5] found a simple way of explaining 
the value of the triple-to-critical point temperature  found for the noble gases. They used 
computer simulation values for the equation of state and free energies of hard spheres in 
the the fluid and solid branches and added the contribution of the at tract ive forces via a 
mean field approximation. We have 

A = A u  - ap (6) 

p = p .  - ap 2 (7) 
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where AH and pH are the free energy and pressure of the hard system, p is the number 
density and a is the mean field constant. Paras et al. [6] have extended the treatment of 
Longuet-Higgins and Widom to a hard dumbbell reference system by using the simulation 
values of the free energy and pressure for this system in Eqs.(6-7). In fig.7 we present 
results for the ratio of the triple to critical point temperature of linear nonpolar molecules. 
Some experimental results are also included. 

The agreement with experiment suffers partly from the effect of the mean field approxi- 
mation but some common trends between theory and experiment are clearly visible. The 
ratio Tt /Tc  decreases substantially when going from noble gases to molecules of moderate 
anisotropy such as N2 or O2. For elongations larger than L* = 0.38 this ratio increases. 
Both features are captured by this simple treatment. The presence of two fines which 
meet at L* = 0.38 follow directly from the freezing of hard dumbbells presented in fig.5. 
One fine corresponds to the freezing into the plastic crystal solid whereas the other one 
corresponds to the freezing into the close packed orientationally ordered solid. 

Nevertheless in fig.7 some discrepancies are evident. For instance the experimental values 
of Tt /Tc  found for acetylene (C2H2) and carbon dioxide ( C 0 2 )  can not be explained 
by Eqs.(6-7) using a hard dumbbell reference system. However the Longuet-ttiggins and 
Widom treatment can be extended by including the quadrupolar forces into the reference 
term so that [7]: 

A = AH,Q - ap (8) 

P = PI-I,q - ap 2 (9) 
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and solid-fluid equilibrium for this model are shown. Temperature and density are reduced by 
their critical values. 

Free energies and EOS for quadrupolar hard dumbbells have been obtained from simula- 
tion by Vega and Monson [4] so that  Eqs.(S-9) can be easily implemented. When this is 
done for a quadrupolar hard dumbbell with L* = 0.8 and a quadrupole moment adequate 
for C02 the obtained phase diagram is presented in fig.8. 

The TrITe ratio found from this t reatment  for this model is about 0.69, in good agreement 
with the experimental  value found for carbon dioxide which is of 0.71. The conclusion is 
clear: the quadrupole increases the ratio of the triple to critical point temperature and 
decreases the liquid range of a substance. The explanation is rather simple. In fig.8 the 
solid phase in equilibrium with the fluid presents the a - N2 structure. In this structure 
the molecules are not packed very efficiently so that  the solid has a rather low density. The 
whole solid-fluid coexistence curve is then shifted to lower densities so that  it intersects 
the vapour-liquid equilibrium curve at higher temperatures.  

4 C O N C L U S I O N S  

In this paper we have reviewed recent theoretical work on the effect of a quadrupole 
moment on the phase diagram of a linear molecules. From the results of this work we can 
make the following conclusions: 

i) The quadrupole significantly affects the structure of a fluid. Unlike dispersive forces the 
quadrupole changes the structure of the fluid even at high densities. 

ii) The quadrupole moment raises the critical temperature,  pressure and density of a fluid. 
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iii) The increase in the critical temperature due to the quadrupole moment depends 
very weakly on the moheular  elongation, when plotted as a function of the equivalent 
quadrupole defined by Eq.(5). 

iv) Shape and polarity effects lead to deviations from the principle of corresponding states. 
The presence of nonspherical shape and/or a quadrupole results in the broadening of the 
coexistence curve and an increase of the slope of the vapour pressure curve. 

v) The quadrupole moment introduces new solid structures in the phase diagram of linear 
molecules. In particular the a - N2 and the orthorhombic structure are stabilized by the 
quadrupolar interactions. 

vi) At very high values of the quadrupole moment freezing is expected to occur into an 
a - N~ structure. Large values of the quadrupole moment also suppress the presence of a 
plastic crystal phase. 

vii) Molecules with a very large quadrupole moment exhibit a narrow liquid range (i.e a 
high value of the Tt/Tc ratio). 

Although in this paper we have focused primarily on simulation results, similar conclusions 
can also be obtained by using theoretical treatments for the model systems studies. For 
instance using perturbation theory, it is possible to understand in a qualitative way the 
main features of the vapour-liquid equilibrium of quadrupolar fluids presented in this work 
[24,25]. Solid phases of quadrupolar linear molecules can also be handled with theory. In 
fact recent work has shown that  it is possible to implement successfully the cell theory of 
Lennard-Jones and Devonshire [26] for these kind of solids [7,27]. 

There remain several areas for further investigation. One such area is the study of quadrupo- 
lar oblate molecules as benzene. For oblate molecules not much in known either about the 
effect of the quadrupole on the vapour-hquid equilibrium or on the solid-fluid equilibrium. 
Another area concerns mixtures of quadrupolar molecules. We can also anticipate that im- 
proved knowledge of the phase diagram will impact the development of our understanding 
of transport phenomena in these systems [28,29]. 
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