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The pair distribution functions and the adsorption isotherms for a hard-core dimerizing fluid in disordered
hard-sphere matrices have been determined using the associative extension of replica Ornstein-Zernike
equations. Some grand canonical Monte Carlo simulation results for tangent hard-sphere dumbbells adsorbed
in hard-sphere matrices are presented. Theoretical predictions for the structure from the solutions of integral
equations with the associative hypernetted chain (HNC) and Percus-Yevick (PY) approximation agree with
those from the simulations. However, the HNC closure has been found to work better than the PY one.

1. Introduction

Recently much attention has been focused on the extension
of liquid-state statistical mechanics for quenched-annealed
(partly quenched) systems. They consist of a fluid thermally
equilibrated in a matrix of particles quenched in a disordered
configuration.
Experimental studies of partly quenched systems have

discovered their unusual structural and thermodynamic proper-
ties. In particular, phase transitions, such as liquid-vapor
transition and liquid-liquid separation, are different in annealed
and partly quenched systems.1-3 Theoretical studies of quenched-
annealed systems have been initiated by Madden and Glandt;4,5

more recently Given and Stell have performed a detailed analysis
of the cluster expansion for the partition function and have
derived the exact replica Ornstein-Zernike (ROZ) equations.6-8

Also a set of approximations has been proposed for the ROZ
integral equations.8,9

The ROZ theory has been applied extensively in many recent
studies, see, for example, refs 10-14. However, most attention
has been paid to simple fluids in the framework of hard-sphere
and Lennard-Jones models. Complex fluids have been inves-
tigated less frequently.15 Obtained theoretical results for simple
fluids have been tested versus computer simulations in many
aspects. Moreover, some simulation data, for liquid-vapor and
liquid-liquid equilibria in partly quenched systems,16,17 have
become a challenge for the development of perturbational
approaches based on the ROZ equations.14,18 First results of
the theoretical studies of inhomogeneous fluids adsorbed in an
inhomogeneous matrix have appeared recently.19,20

Some experimental studies have being dealing with chemical
association phenomena in fluids adsorbed in disordered porous
media.21 This is an important area for several practical
applications, such as, for example, gel-exclusion chromatogra-
phy, separation science, and heterogeneous catalysis.

On the other hand, a systematic theoretical investigation of
chemical association in fluids adsorbed in disordered porous
media has been initiated recently.22-25 In particular, the
associative ROZ (AROZ) equations and closures for them have
been proposed. This approach has been used first for the model
of methane adsorbed in xerosilica gel developed by Kaminsky
and Monson.26 The model is characterized by the strong fluid-
matrix attraction, which can be formally treated using the
association concept. The results for the structural properties
following from integral equations have been shown24 to agree
very well with simulation data of Vega et al.27 The AROZ
theory also has been implemented for a dimerizing fluid model
of Wertheim.28 The results for the correlation functions seem
to be qualitatively correct. However, they have not been tested
versus computer simulation data.
In this work we apply the associative ROZ equations for a

simple, hard-sphere model that permits dimerization of particles
due to the associative site-site interaction. For the moment,
the model does not include nonassociative attractive interactions
such that liquid-vapor transition is out of question. Our main
concern is, however, to evaluate the accuracy of theoretical
results obtained with the associative hypernetted chain (HNC)
approximation and Percus-Yevick (PY) approximation versus
computer simulations. Therefore, we have performed computer
simulations for diatomic fluids as well as for diatomic-hard-
sphere mixture adsorbed in a disordered hard-sphere matrix.
We expect that our results for a hard-core dimerizing model

will provide reference fluid data for investigating thermody-
namic properties for an associating model with attractive
interactions. This problem will be studied in our future work.

2. Model for Partly Quenched Chemically Associating
Fluid

In this work, we consider a simple model for chemically
associating fluid in a disordered quenched environment. It
consists of a dimerizing fluid and a hard-sphere matrix.
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Similarly to previous studies of partly quenched systems,6-9

we introduce, for the sake of convenience, species index “0”
for the matrix component and species index “1” for the fluid
component. We use superscripts to denote species and reserve
subscripts to classify the bonding states in the theory of
Wertheim for chemical association.23-31 We consider the matrix
and fluid particles at densityF0 and F1, respectively. The
diameter of matrix and fluid particles is denoted byσ0 andσ1,
respectively.
The model for a dimerizing fluid is defined by the following

potentials

where the first and the second term denote the nonassociative
and associative contribution to the fluid-fluid interaction,
respectively. The nonassociative term is taken in the form

The associative term in the fluid-fluid interaction has the form28

whereεas is the associative energy anda denotes the range of
associative interaction;x12 )|r12 + d(ϑ1) - d(ϑ2)|, whered(ϑ1)
denotes the position and orientation of the attractive site on the
surface of the repulsive core of molecule 1.
The geometric parameters of associative interaction,d, a, for

a dimerizing model, must satisfy steric saturation conditions,
namely,σ1 < 2d + a < σ1 + (2 - x3)d.28 In our theoretical
treatment we have chosen a slightly smaller bonding length than
the diameter of hard spheres such that the outer shell of the
association site coincides with the surface of a hard sphere; then
two spheres can form dimers while touching and also with
negligible degree of overlap.
The matrix-matrix and fluid matrix interactions are chosen

using the model of additive hard spheres, i.e.

and

respectively. Let us define now the Mayer functions

and the associative “Mayer” function28

In the theory of Wertheim only its orientation-averaged form
is needed

These ingredients are necessary for the application of the
associative ROZ equations.

3. Associative Replica Ornstein-Zernike Equations and
Closure Relations

Let us assume that the matrix distribution corresponds to an
equilibrium distribution of nonassociating hard spheres. Ex-
tending then the ROZ equations for nonassociating system to
the case of associating fluid, we obtain the associative ROZ
equations. They read23-25

for the matrix subsystem

for the fluid-matrix correlations, and

for fluid-fluid correlations. HereX denotes convolution and
r-dependencies are omitted for brevity. In eqs 10 and 11 we
have used standard decomposition of the pair and direct fluid-
fluid correlation functions into connected,φRâ

11(1), and blocking,
φRâ
11(2), parts (φ stands forh and c, as appropriate) such that
each function consists of two terms:φRâ

11 ) φRâ
11(1) + φRâ

11(2). The
correlation functions that are solved in eqs 10 and 11 are the
partial correlation functions, similar to those in the theory of
Wertheim for chemical association.28-31

In the case of dimerization, which we consider in the present
work, lower indices in the correlation functions take the values
0 and 1, dependent on the bonding state of a fluid particle (it
can be either free or participate in a dimer). The symmetry
relations for the correlation functions implyφ10

11 ) φ01
11; φR

10 )
φR
01. The matrix of fluid density in the case of dimerization
has the following form

whereF0
1 is the density of unbounded fluid particles.

The partial pair correlation functions,hRâ
11, yield the usual

total pair correlation function (pcf) for fluid species via the
following relation28

whereø1 ) F0
1/F1 is the fraction of unbonded fluid particles. In

U11(12)) Unon
11 (r) + Uas

11(x12) (1)

Unon
11 (r) ) {∞, r < σ1

0, r > σ1
(2)

Uas
11(x) ) {-εas, x< a

0, x> a
(3)

U00(r) ) {∞, r < σ0

0, r > σ0
(4)

U10(r) ) {∞, r < (σ0 + σ1)/2
0, r > (σ0 + σ1)/2

(5)

f00(r) ) exp[-âU00(r)] - 1

f10(r) ) exp[-âU10(r)] - 1 (6)

fnon
11 (r) ) exp[-âUnon

11 (r)] - 1

Fas(12)) exp[-âUnon
11 (r12)]{exp[-Uas

11(x12)] - 1} (7)

Fas(r12) )∫ dϑ1dϑ2 Fas11(12))

{0, r12 < σ1

0, r12 > 2d+ a
1/24 exp(âεas)(a+ 2d- r12)

2× σ1 < r12 < 2d+ a

(a- d+ 0.5r12)/d
2r12, (8)

h00 - c00 ) c00 X F0h00 (9)

hR
10 - cR

10 ) cR
10 X F0h00 + ∑

µν

cRµ
11(1)X Fµν

1 hν
10 (10)

hRâ
11 - cRâ

11 ) cR
10 X F0h00 + ∑

µν

cRµ
11(1)X Fµν

1 hνâ
11 +

∑
µν

cRµ
11(2)X Fµν

1 hνâ
11

hRâ
11(1)- cRâ

11(1)) ∑
µν

cRµ
11(1)X Fµν

1 hν
11(1) (11)

F1 ) (F1 F0
1

F0
1 0 ) (12)

h11(r) ) h00
11(r) + 2ø1h10

11(r) + (ø1)2h11
11(r) (13)
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the similar manner, the total fluid-matrix correlation function
is defined as

The AROZ equation must be supplemented by the self-
consistency relation for the density of adsorbed fluid. It reads28

where y00
11(R) is the partial cavity distribution function for

unbounded fluid species.
Let us now consider the closure relations for AROZ equations.

For the sake of convenience, introduce the notationγ ) h - c.
In this work the associative hypernetted chain approximation
(HNC) is used. In the absence of associative interactions it
reduces to the HNC closure, and this is used to evaluate the
matrix structure

The HNC closures for fluid-matrix and fluid-fluid correlation
functions are

whereδµ,ν is the Kronecker symbol, and

However, in the case of ROZ equations, in addition to these
closures, we also must use the closure for the blocking parts of
the partial dcfs. The associative HNC closure for these functions
reads

Finally the cavity distribution function in eq 15 following from
the associative HNC closure is

Equations 9-11 together with 15-20 represent a complete
associative ROZ-HNC problem for numerical solution. In
previous studies of nonassociating and associating fluids in
disordered porous media the Percus-Yevick closure also has
been applied, and it has been successful in many cases.
Therefore, we also apply the associative Percus-Yevick closure
for the system in question, however, only for the fluid-fluid
and fluid-matrix correlations, because matrix structure is
irrelevant. The associative Percus-Yevick closure reads

where yR
10(r) ) δR0 + hR

10(r) - cR
10(r); yRâ

11(r) ) δR0δâ0 +
hRâ
11(r) - cRâ

11(r).
The problem, either with the HNC or with the PY closure,

has been solved numerically by direct iterations, only for high
fluid densities one needs to take care about the convergence of
the numerical scheme.

4. Computer Simulation Procedure

Let us proceed with the description of the simulation
procedure that is applied for a dimer, i.e., a diatomic made of
rigidly bonded atoms, adsorption in a disordered porous media.
The simulation results will be compared with the theory for
the complete dimerization limit. In the simulated model the
interaction between diatomics is taken in the form of hard-sphere
atom-atom potentials

where the indexesm, n run over atoms of the diatomic molecules
i andj, and the superscript hs denote a hard-sphere interaction.
Everywhere in our simulations the diatomics are made of tangent
hard spheres. The interaction between matrix hard spheres and
a diatomic is

The quenched-annealed system (consisting of matrix hard
spheres and diatomics) will be studied by grand canonical MC
(GCMC) simulations32,33 and MC NVT simulations. First, a
MC NVT simulation of a one-component fluid made up of hard
spheres is performed. One of the equilibrium configurations is
quenched; i.e., it remains fixed during the rest of GCMC run
for adsorbed diatomic molecules calculations.
The input data in GCMC simulations are the chemical

potential for diatomics, volume of the system simulated in the
NVT ensemble, and the configuration of the matrix particles.
We have performed several GCMC simulations at a given
chemical potential of fluid species, but for “independent”
configurations of matrix species chosen from the productive part
of the NVT run. By independent we understand that these
configurations are distanced from each other for at least 105

steps.
Details concerning GCMC simulations can be found in refs

32 and 33. In the GCMC runs we have performed 2× 105

MC steps for equilibration of a diatomic fluid and 106 MC steps
for the collection of ensemble averages. A MC step consists
of attempts to displace and rotate (independently) all the
diatomics in the system, as well as of attempt to insert or delete
a diatomic molecule. During the course of the simulations, the
average density of the diatomic molecules, the matrix sphere-
diatomic atom, and the fluid atom-atom distribution functions
will be determined. In some cases, the results obtained from
each GCMC simulation have been averaged over three matrix
configurations. In fact, we have observed that the results do
not differ even if we take them for only one of chosen matrix
configurations. Similar conclusion has been already obtained
by Page and Monson in the simulation study of liquid-vapor
phase transition in a fluid confined to disordered matrix.
The simulations for a partially dimerized fluid, i.e., for a

thermodynamically equivalent mixture of hard spheres and
diatomics, have been performed using the MC NVT simulations.
We quench equilibrium configurations for the one-component
hard-sphere fluid as mentioned above. Then we insert hard

h10(r) ) h0
10(r) + (ø1)h1

10(r) (14)

F1 ) F0
1 + (F0

1)2∫ dr Fas(r) y0011(r) (15)

c00(r) ) [1 + f00(r)] exp[γ00(r)] - 1- γ00(r) (16)

cR
10(r) ) [1 + f10(r)] exp[γ0

00(r)][δR,0 + δR,1γR
10(r)] - δR,0 -

γR
10(r) (17)

cRâ
11(r) ) [1 + fnon

11 (r)] exp[γ00
11(r)]{δR,0δâ,0 +

δR,1δâ,0γRâ
11(r) + δR,1δâ,1[(γ00

11(r))2 + γRâ
11(r)]} - δR,0δâ,0 -

γRâ
11(r) + δR,1δâ,1 exp[γ00

11(r)]Fas(r) (18)

cRâ
11(2)(r) ) exp[γ00

11(2)(r)]{δR,0δâ,0 + δR,1δâ,0γRâ
11(2)(r) +

δR,1δâ,1[(γ00
11(2)(r))2 + γRâ

11(r)]} - δR,0δâ,0 - γRâ
11(2)(r) (19)

y00
11(r) ) exp{h00

11(r) - c1100(r)} (20)

cR
10(r) ) f10(r) yR

10(r)

cRâ
11(r) ) fnon

11 (r) yRâ
11(r) + (1- δR,0)(1- δâ,0)y00

11(r) Fas(r)
(21)

cRâ
11(2)(r) ) 0

u11(ij ) ) ∑
m)1,2

∑
n)1,2

ui,j
hs(rmn) (22)

u10(ij ) ) ∑
m)1,2

ui,j
hs(rmj) (23)
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spheres and hard dumbbells until we obtain the desired density
and composition (we restrict ourselves to the case of equimo-
lecular mixture of monomers and dimers) of the confined fluid.
Then we perform a MC NVT simulation where we have
evaluated the chemical potential using the method of Widom.
Actually in these simulations we do not focus on the value of
association energy that results in certain composition of adsorbed
fluid. Let us proceed now with the description of the results
obtained.

5. Results

We would like to discuss first the results obtained in the
theory and simulations for states close to complete dimerization
versus simulation data for adsorbed diatomic fluid.
In Figure 1 we present the fluid-fluid pair distribution

functions,g11(r), obtained from the solution of the associative
ROZ equations with HNC and PY closure. While solving the
equations we have used the values for fluid density from
simulations. The simulation data for the distribution functions
of atoms belonging to different diatomics also are given in
Figure 1. In Figure 1a, the results are for adsorbed diatomic
fluid at the density of diatomicsFd ) 0.095 493, which
corresponds to the chemical potential of diatomics,âµd ) 1.715.
In Figure 1b the density of diatomic molecules isFd ) 0.190 986

corresponding toâµd ) 6.483. A comparison between the
theory and simulations has been performed as follows. We have
taken the value of adsorbed diatomic fluid density from the
simulations and choose the association energy in the theory,
such that at this density (F1 ) 2Fd) the fraction of monomers
(resulting from eq 15) is very small. A small difference between
theoretical and simulated models may yield some discrepancies
between the results of both approaches; we are convinced,
however, that this effect is negligible.
We would like to make the following comment. In fact, it

is impossible to reach a complete dimerization regime while
solving integral equations numerically for the model with an
association site of finite diameter. One has to have in mind
that in analytical solutions of associating models involving the
PY closure, the complete dimerization regime must be intro-
ducedby hand in the early stage of the treatment, see, for
example, ref 34. The equations for adsorption of simple and
associating fluids in disordered porous media do not possess
analytical solutions, however.
We conclude, from the results given in Figure 1, that the

HNC theory is very successful in the description of the pair
distribution functions of fluid particles for a low value of the
chemical potential of fluid species. For high values of the
chemical potential the HNC approximation overestimates the
contact value ofg11(r), i.e., atr ) 1, while the PY approximation
underestimates it, in comparison with simulation data. At low
values of the chemical potential, the PY approximation yields
poor results at small interparticle separations. For larger
distances between particles, the results of both approximations
become closer to each other, and the HNC is more successful
anyway. However, the PY closure overestimates the value of
the cusp atr ) 2 for both chemical potentials in question. Very
similar trends to those described by us atâµd ) 6.483, in the
description of the contact value ofg11(r), have been observed
in comparison of simulation and theoretical data for adsorbed
hard-sphere fluid at high density.9 Evidently the PY closure
neglects the blocking effects, due to the presence of matrix
species, inc11(r). However, it seems that the HNC closure
overestimates the blocking effect of the matrix for high values
of the chemical potential. Very recently Meroni et al.12 have
shown that the performance of the HNC can be essentially
improved for high densities of adsorbed fluid, if the bridge
function contribution would be included into the closure. This
issue for associating fluids is difficult and requires special study;
we hope to gain some progress in solving this problem in a
future work.
The fluid-matrix distribution function,g10(r), from the theory

and simulations is shown in Figure 2 for the same states as in
Figure 1. For both values of the chemical potential we observe
that the HNC approximation slightly overestimates the values
for the distribution functiong10(r) for small distances while the
PY closure underestimates this function. The discrepancy
between the PY result and the simulation data is larger for the
lowest value ofâµd, i.e., âµd ) 1.715. The HNC is more
successful in the description of a characteristic cusp atr ) 2
for both values of the chemical potential. We would like to
conclude that for the states close to complete dimerization, the
HNC approximation is sufficiently accurate to describe cor-
relation in adsorbed fluid as well as between fluid particles and
matrix species for different values of the chemical potential, at
least for intermediate density matrix,F0 ) 0.190 986.
Let us proceed with the examination of the results corre-

sponding to states of incomplete dimerization. In Figure 3 we
present the results forg11(r), for adsorbed dimerizing fluid in

Figure 1. Fluid-fluid pair distribution functions,g11(r), for a dimer-
izing fluid in a state close to a complete association limit from the
associative ROZ equations with PY (solid line) and HNC (dashed line)
closures, and from the GCMC simulations for adsorbed diatomic
molecules (triangles). In (a, top) the chemical potential of diatomic
molecules fixed in GCMC isâµd ) 1.715, whereas in (b, bottom)âµd

) 6.483. The corresponding densities,F1 ) 0.190 986 andF1 )
0.381 972, are taken as an input for theoretical evaluation of the
structure. The disordered matrix density isF0 ) 0.190 986.
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which the number of unbounded hard spheres and diatomics is
equal, 50% each. There is a large discrepancy between the PY
result and simulation data forg11(r) for small distances between
particles if the chemical potential of adsorbed diatomic fluid is
low, âµd ) 0.08. On the other hand, the HNC result is of much
better quality, as it follows from our comparison with simula-
tions. For the highest value of the chemical potential,âµd )
3.10, the quality the PY approximation improves. Nevertheless,
the HNC theory is more accurate.
Figure 4 contains our results forg10(r) for the same system

as in Figure 3. It can be seen that for low values of the chemical
potential of diatomic molecules,âµd ) 0.08 (Figure 4a), the
HNC reproduces the simulation data almost exactly. The PY
result is of poor quality for this case. For a higher value of the
chemical potential,âµd ) 3.10 (Figure 4b), both theories almost
agree with computer simulation results for small matrix-fluid
distances. The HNC overestimates the contact value, i.e.,
overestimates adsorption of fluid species on the matrix, while
the PY underestimates contact value ofg10(r).
We would like to summarize at this point our opinion about

the structure of adsorbed fluid from the theory and simulations.
Evidently, we have restricted ourselves to a single matrix density
that lies somewhere in between low and intermediate densities.
This makes GCMC simulations less difficult in comparison to
a high-density matrix case. It follows from our results that the
HNC approximation works better than the PY one; the latter
approach neglects blocking effects of matrix species on the
correlations between fluid particles and probably is not too

accurate in describing association in the region of parameters
studied. Computer simulations of the blocking contribution
require sophisticated efforts. However, it seems that blocking
term contribution is important, if adsorbed fluid is characterized
by a low value of the chemical potential. For higher values of
the chemical potential, the blocking term contribution becomes
less important at this matrix density, and the PY and the HNC
closures work almost with similar accuracy. We are convinced,
however, that at a higher matrix density in the region of chemical
potentials studied in this work the blocking term contributions
will become more important.

6. Conclusions

In this work we have investigated the structure of dimerizing
and dimer fluids in random porous media. We have compared
the predictions of the associative replica Ornstein-Zernike
(AROZ) equations for a hard-sphere model that permits dimer-
ization due to associative site-site interactions with structure
data from computer simulations. Two closures have been used
to solve the AROZ equations, namely, the associative HNC and
the associative PY approximation. From our results we
conclude that the HNC closure is superior to the PY for all
cases studied in this work.
In future theoretical work and simulations of models with a

more sophisticated form of the nonassociative interparticle

Figure 2. The matrix-fluid pair distribution functions,g10(r), for the
same system as in Figure 1. The nomenclature of lines and symbols is
as in Figure 1. In (a, top) and (b, bottom) the results for low and high
value of the chemical potential of adsorbed diatomic molecules,âµd

) 1.715 andâµd ) 6.483 are shown, respectively.

Figure 3. The fluid-fluid pair distribution functions,g11(r), for a
dimerizing fluid in partially dimerized state from the associative ROZ
equations with PY (solid line) and HNC (dashed line) closures, and
from MC simulations for adsorbed diatomic molecules (triangles). In
(a, top) the chemical potential of diatomic molecules in adsorbed fluid,
which is evaluated from MC simulations, isâµd ) 0.08, whereas in
(b, bottom)âµd ) 3.10. The corresponding fluid densities:F1 ) 0.191
andF1 ) 0.382 are taken as an input for theoretical evaluation of the
structure. The disordered matrix density isF0 ) 0.190 986.
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interactions, we plan to use these closures for the description
of the structural and thermodynamic properties. The adsorption
isotherms for models with associative interactions and attractive
forces have not been obtained from computer simulations so
far. Moreover, a closed form expressions for the chemical
potential of associating fluids adsorbed in disordered porous
media, similar to the development of Kierlik et al.14, is
unavailable at the moment. Therefore it is difficult to evaluate
validity of theoretical approaches based on thermodynamic
perturbation theory35 for a dimerizing model, as well as for more
sophisticated four-site model,36 at present. A comparison of
the theory with simulations for adsorption isotherms will become
a subject of our future work.
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Figure 4. Matrix-fluid pair distribution functions,g10(r), for the same
system as in Figure 3. The nomenclature of lines and symbols is as in
Figure 3. In (a, top) and (b, bottom) the results for low and high value
of the chemical potential of adsorbed diatomic molecules,âµd ) 0.08
andâµd ) 3.10, are shown, respectively.
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