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The second virial coefficient of hard alkane models
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The second virial coefficient for hard models of alkanes and other flexible molecules is determined
numerically using a new algorithm which increases the speed of the calculations by a few orders of
magnitude. For alkanes with few carbon atoms, linear and branched chains were considered and the
effect of branching was analyzed. For linear hard alkanes, the second virial coefficient was
computed for chains with up to 600 carbon atoms and the scaling behavior was studied. The effect
of changes in the chemical structure of a flexible molecule~i.e., bond length, bond angle! was also
studied. A fast and efficient empirical methodology to estimate the second virial coefficient of hard
chains is given. This methodology uses ideas of convex body geometry. It is shown that the
proposed methodology yields very good estimates of the second virial coefficient for chains with up
to 100 monomer units, but it predicts incorrectly the scaling law. The virial coefficients provided in
this work can be useful in the search of an equation of state for hard alkanes, since it is likely that
a good equation of state should provide good estimates of the second virial coefficient. ©1998
American Institute of Physics.@S0021-9606~98!50237-1#
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I. INTRODUCTION

In the last 15 years, the interest of the statistical therm
dynamics community on flexible molecules has increa
considerably. Now, a number of simulation and theoreti
studies are available for these molecules.1–14 It is likely that
perturbation theories will play a fundamental role in impro
ing our understanding of the behavior of melts and polym
solutions. To develop these perturbation theories, one n
a good equation of state for the hard flexible model. At t
point, there is a relatively good understanding of the beh
ior of some flexible models, such as the pearl-neckl
model~a collection of flexible tangent hard spheres!. For this
model, second virial coefficients,15 simulation data6,10

and good theoretical equations of state~EOS! are
available.10,12–14However, the situation is not so satisfacto
for hard models of somewhat more realistic polymers as
instance the alkane series. Recently, we have presented s
lation results for the EOS of repulsiven-alkanes with up to
30 carbon atoms,16,17 as well as a methodology to estima
the second virial coefficient.17 In addition to the interest tha
the second virial coefficient of chains have per se, we fou
that a very good EOS could be obtained for hardn-alkanes,
by forcing Wertheim’s equation for tangent hard spheres12,13

to reproduce the estimate of the second virial coefficien
obtained from our procedure. In this way, we have propo
what we believe is the first reliable EOS for ha
n-alkanes.17 However, the situation is not fully satisfactor
in several respects. First, we do not know if our estimates
the second virial coefficient of hardn-alkanes are in good
agreement with the exact values. Second, very little is kno
on the second virial coefficient of long hard models, desc
ing approximately the shape of a real polymer such as p
ethylene. Finally, it is also interesting to analyze the role
branching on the second virial coefficient, especially
short flexible molecules.
5670021-9606/98/109(13)/5670/11/$15.00
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In this work, we try to clarify some of these issues. Fir
we shall compute numerically the second virial coefficient
hardn-alkanes with up to 600 carbon atoms. In this way
will be possible to determine if the methodology proposed
our previous work is indeed reliable.17 These data can als
be useful for other workers looking for good EOS of ha
models of polyethylene, since one would expect that th
should yield a reasonable value of the second virial coe
cient. Second, we will test the general applicability of o
method by comparing its predictions with the exact vir
coefficient of several models. Third, the virial coefficient
branched alkanes will be computed and this will provi
ideas on the effect of branching. Finally, we study the sc
ing behavior of the second virial coefficient of long idealiz
flexible molecules, with up to 1000 monomers. This stu
was made possible due to the use of a new algorithm wh
increases the speed of the numerical calculations of the
ond virial coefficient by a few orders of magnitude.

The scheme of this paper is as follows. In Sec. II t
models used in this work and the computational details
described. In this section, a methodology to estimate the
ond virial coefficient of hard chains is also provided. In Se
III, results are presented for the second virial coefficient
several flexible hard models and compared with the pre
tions from our methodology. In Sec. IV we analyze the d
and the scaling law for the second virial coefficient of ve
long hard flexible chains.

II. MODELS AND CALCULATIONS

A. Models

Two kinds of hard flexible models have been conside
in this work. The first one is an extension of that used
previous work,16–18 where we attempted to mimic qualita
tively the shape of linear alkanes within the united ato
0 © 1998 American Institute of Physics
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approach. Thus, each CHn group is modeled as a hard sphe
of diameterd. The hard spheres are connected throug
bond of lengthl , chosen such that the reduced bond leng
L* 5 l /d, is set to 0.4123. The bond angleu is fixed to the
tetrahedral value, i.e., 109.5 degrees. The torsional deg
of freedom are treated within the rotational isomeric st
approximation19 ~RIS!, so that each torsional angle ma
adopt only three possible states: Thetrans (t), gauche1

(g1), andgauche2 (g2) states, which correspond to value
of 0, 120 and2120 degrees, respectively. In this way, t
number of possible conformations of a given alkane is
ways finite, but it becomes very large as the length of
chain is increased. A schematic representation of the m
may be found in Fig. 1 of Ref. 17.

The Hamiltonian of the system is divided into an int
and an intermolecular contribution, so that the total energ
given by:

U5U intra1U inter. ~1!

The intermolecular potential between the molecules
given by a site–site hard sphere interaction, while the
tramolecular interaction is divided into a short range part a
a long range part, following Flory’s division.19 The long
range part corresponds to a hard sphere interaction betw
monomers~i.e., hard spheres! five or more bonds apart. Th
short range interaction is given by the following expressi

U intra
short5ngE11ng1g2~E22E1!, ~2!

whereng is the number of pairs of carbon atoms three bon
apart which are in a relative configuration of type gauche
ng1g2 is the number of pairs of carbon atoms four bon
apart whose relative configuration is either ag1g2 or g2g1

sequence. For linear chains, Eq.~1! is equivalent to the pro-
cedure introduced by Flory, which has been used in a pr
ous study of the second virial coefficient ofn-alkanes with
attractive forces.20 In this work, we shall use Eqs.~1!–~2! for
both linear and branched chains, withE153337.83 J/mol
and E2511711.43 J/mol.21 A rigorous description of
branched alkanes would involve an individual study of t
short range intramolecular interactions for each molec
but in this work we keep the potential as simple as poss
and focus on the effect of branching on the second vi
coefficient.

In what follows, this hard alkane model will be denote
as the Flory-like model. It should be noted that the relat
populations of the different conformers are temperature
pendent through the short range intramolecular interactio
so thatB2 is also temperature dependent. We have thus u
a constant temperature ofT5366.88 K for all the calcula-
tions, as in previous work.16–18

Additionally, the previous model has been extended
describe what may be considered as the RIS approxima
to the well known pearl-necklace model.6,10 This has been
achieved by setting the reduced bond length to one and
short range intramolecular energy parameters to zeroL*
51, E15E250 J/mol!. To keep the number of conformer
finite, the bond angleu has been set to 104.4775 degre
which is approximately the average angle of tangent h
a
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sphere trimers. Note that, contrary to the Flory-like mod
the conformational properties of this pearl-necklace-l
model do not depend on temperature.

B. Numerical evaluation of B 2

The second virial coefficient of a flexible molecule
calculated from the average Mayer function according to
following equation:

B2522pE
0

`

^ f i j ~RCM!&confRCM
2 dRCM , ~3!

whereRCM is the distance between the centers of mass of
molecules,̂ &conf denotes a weighted conformational avera
~where the weight is the Boltzmann factor of the intram
lecular energy! and the Mayer function for a pair of conform
ers is given by:

f i j ~RCM!5^exp~2bU inter
i j ~RCM ,v i ,v j !!21&ori . ~4!

In this equation,U inter
i j (RCM ,v i ,v j ) is the energy between

conformersi and j with relative orientations given by the se
of anglesv i and v j , ^&ori denotes an unweighted orienta
tional average, andb is defined asb51/(kBT) wherekB is
the Boltzmann constant. For the RIS models, the numbe
conformers remains finite, so that Eq.~3! may be rewritten
as:

B25(
i 51

q

(
j 51

q

xixjBi j , ~5!

wherexi andxj are the molar fractions of the conformersi
and j , respectively,q is the total number of conformers o
the molecule and theBi j ’s are obtained from integration o
f i j . The molar fraction of each conformer is proportion
to the Boltzmann factor of the intramolecular ener
exp(2bUintra).

For a given relative orientation of a pair of selected co
formers, we have evaluated exp(2bUinter

i j (RCM ,v i ,v j )) ex-
actly at 999 points ofRCM , ranging from 0 to about five
times the mean radius of gyration. This otherwise prohi
tively expensive calculation was done by using a new al
rithm which requires one single calculation of the inte
atomic distances for all the points in theRCM segment.
Details of this procedure may be found in Appendix A. T
orientational averages required to calculate thef i j ’s from the
intermolecular Boltzmann factor were then evaluated
means of Conroy’s multidimensional integration method,22,23

while the Bi j ’s were calculated from numerical integratio
~using Simpson’s rule! of the latter function. For molecule
with up to eight monomer units, the orientational averag
were calculated using 76 079 relative orientations, wh
4822 orientations were used for bigger molecules.

The way the conformational average is evaluated
pends greatly on the size of the molecules considered. All
conformers of molecules with three or less torsional ang
may be enumerated without problems, so that the confor
tional average was evaluated exactly, by exhaustive e
meration. On the other hand, the number of pairs of differ
conformers of molecules with more than three torsio
angles becomes prohibitively large, so that the average
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evaluated approximately, by randomly selecting pairs of
dependent conformations, as obtained from a Monte C
simulation of the isolated chain. For the virial coefficients
mixtures of butane and longn-alkanes, the conformationa
population of butane was weighted exactly, while that of
long n-alkanes was weighted by randomly selecting co
formers from the MC simulation.

The samples of representative conformers were p
duced by means of a standard MC algorithm, where t
configurations are accepted or rejected according to the
tropolis criterion.24 Trial configurations were produced usin
the pivot algorithm,25 where an initial configuration is trans
formed into another by randomly choosing and rotating
torsional angle.

The size of the MC samples ranged from 2000 confor
ers for chains of 200 or less monomers to 1000 for chain
400 and 600 monomers, while the number of pairs of c
formers chosen to calculateB2 was roughly equal to the
number of conformers of the sample used.

C. Empirical estimation of B 2

In this work we shall also try to estimate the seco
virial coefficient of hard chains by using convex bod
geometry26–28 ~CBG!. One of the first attempts to introduc
CBG ideas in the search for EOS of chains was that of
ciso et al.29 Recently, we have introduced a ne
methodology17 which allows to estimate correctly the seco
virial coefficient of linear chains. Here we shall describe t
procedure briefly and we refer the reader to Ref. 17 for f
ther details.

We expect that the virial coefficients of two conforme
of the same molecule are not too different, as there are
most no volume differences and the shape is roughly sim
We may then expect that the crossed virial coefficient m
be approximately given by the following equation, denot
as Approximation 1:

Bi j 5~Bii 1Bj j !/2. ~6!

By replacing Eq.~6! into Eq. ~5! we obtain:

B25(
i 51

q

xiBii . ~7!

Let us now define the nonsphericity parameter of c
former i , a i , by the relation:30

Bii /Vi5113a i , ~8!

whereVi is the molecular volume of conformeri.
In Ref. 17 we propose a methodology to estimatea i by

using CBG which we shall denote as Approximation 2. A
cording to this methodology, the nonsphericity of a line
chain conformer may be estimated by means of stand
convex geometry relations, provided that the mean radiu
curvature of the conformer,Ri , is considered as that of a
equivalent parallelepiped. This leads to the following eq
tion:
-
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RiSi

3Vi
1

S Ltt..t

4
1

d

2
2Rtt..tDStt..t

3Vtt..t
, ~9!

whereSi is the surface of conformeri , Ri is the mean radius
of curvature of the equivalent convex body and the sec
term of the r.h.s. is a correcting term that ensures that
nonsphericity of the all-trans conformer is given almost e
actly. The subindextt..t stands for the all-trans conforme
andLtt..t is the distance between the first and the last car
atom in this configuration.

In order to extend Eq.~9! to branched alkanes we need
prescription for the correction term. The choice we ha
taken is to define it equal to that of then-alkane with the
same number of carbon atoms~e.g., for 2,3-dimethyl pentane
we shall use the correction term forn-heptane!.

Finally, by approximating the average of the product
a iVi to the product of the separated averages ofa i andVi ~a
very good approximation, as the different conformers pres
different values ofa i but very similar values ofVi!, the
estimate of the second virial coefficient for the chain, eith
linear or branched, is given by:

B25V̄~113ā !, ~10!

where the bar denotes the weighted conformational aver
The volume and surface required for the calculation ofa i for
a given conformer is evaluated by an exact numerical pro
dure developed by Dodd and Theodorou.31 The radius of
curvature is evaluated following the procedure described
Ref. 17. The conformational average is then evaluated
similar manner as that described in the previous section.
molecules with up to five torsional angles, the conform
tional averages could be calculated exactly by exhaus
enumeration, while those with more than five torsion
angles required a MC averaging.

In the next section we present the results of this wor

III. RESULTS

We shall start presenting results for the Flory model.
There are two questions which we would like to answ

concerning the second virial coefficient of hard alkan
namely, ~i! how sensitive is it to the conformation of th
chain?; and~ii ! how sensitive it is to the effect of branching
The first question tries to explain the effect of flexibility
while the second one tries to explore the differences betw
different isomers. Let us now focus on the first issue. In R
18 the second virial coefficient was evaluated for differe
conformers of hardn-alkanes. Moreover, the exact value
were compared17 with the approximated values obtaine
from convex body theory as described in the previous s
tion. The agreement was found to be good. Here, we s
therefore focus on branched alkanes, for which no result
been so far reported.

In Table I, we present the second virial coefficient f
different conformers of the molecule of 2-methyl penta
and 2,3,4-trimethyl pentane. These results were obtained
fixing the conformation of the alkane and determining t
second virial coefficient between two identical conformers
if they were considered rigid bodies. As it can be seen,
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TABLE I. Second virial coefficient for 2-methyl pentane and 2,3,4 trimethyl pentane conformers in units ofd3.
B2

exct is the exact second virial coefficient.B2
CBG is the CBG prediction proposed in this work.B2

Ale is the
prediction using the method proposed by Alejandreet al. anda i is the exact nonsphericity parameter of each
conformer. The number of carbon atoms three bonds apart which are in a relative configuration of type gauche
is denoted asng . The conformers are represented by the conformation of the carbon atoms of the main chain.

conformer ng B2
exct B2

CBG B2
Ale a i

2-methylpentane
tt 1 10.184 10.089 10.293 1.346
tg2 2 9.942 9.883 10.062 1.311
g2g1 2 9.322 9.281 9.436 1.241
g1g1 2 9.832 9.796 9.974 1.293
g2g2 3 9.082 9.087 9.218 1.205

2,3,4-trimethylpentane
tt 4 12.592 12.500 12.859 1.310
tg1 5 12.964 12.873 13.286 1.335
tg2 5 12.371 12.315 12.663 1.285
g1g1 6 12.290 12.211 12.575 1.277
g1g2 6 11.715 11.666 11.969 1.227
g2g1 6 12.322 12.247 12.602 1.282
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second virial coefficient changes significantly from one co
former to another, usually decreasing with the number
gauche bonds. It is also clear that, as the number of gau
bonds in the molecule increases, the molecule becomes m
spherical~i.e., the nonsphericity parameter takes lower v
ues!. The convex body method proposed is able to grasp
of this features and the predicted values are in good ag
ment with the exact ones.

We now focus on the second issue, i.e., the variation
the second virial coefficient with branching. In Table II, w
present results of the second virial coefficient for differe
hard alkanes. By comparing molecules with the same n
ber of carbon atoms, the following conclusions can be
tained:
-
f
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ore
-
ll
e-
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t
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-

~1! For alkanes with the same number of carbon atoms,
second virial coefficient decreases when going from
n-alkane to the branched alkane. This effect increase
the number of branches increases.

~2! For two branched alkanes which differ only in the loc
tion of the branch, the one with the branch closer to
middle of the main chain will present a smaller value
the second virial coefficient~compare for instance 2
methyl pentane and 3-methyl pentane or 2,2 dimet
pentane and 3,3 dimethyl pentane!.

~3! Two methyl groups on a certain carbon provoke a lar
reduction than an ethyl group on the same carbon a
~compare for instance 3,3 dimethyl pentane and 3-et
pentane!.
TABLE II. Second virial coefficients of several branched and linear alkanes in units ofd3. Notation as in Table
I. The symbolS denotes the spatial configuration of the asymmetric carbon atom.

Alkane B2
exct B2

CBG B2
Ale

ā

n-butane 6.622 6.585 6.658 1.212
2-methyl propane 6.529 6.441 6.571 1.193
n-pentane 8.425 8.348 8.487 1.293
2,2-dimethyl propane 7.993 7.810 8.098 1.218
2-methyl butane 8.115 7.993 8.202 1.239
n-hexane 10.392 10.385 10.474 1.377
2,2-dimethyl butane 9.500 9.402 9.672 1.245
2,3-dimethyl butane 9.593 9.492 9.751 1.259
2-methyl pentane 10.062 9.986 10.181 1.328
3-methyl pentane 9.806 9.751 9.944 1.291
n-heptane 12.531 12.505 12.614 1.464
2,2,3-trimethyl butane 10.910 10.763 11.174 1.255
2,2-dimethyl pentane 11.609 11.438 11.812 1.346
3,3-dimethyl pentane 11.072 10.976 11.324 1.275
3-ethyl pentane 11.528 11.439 11.727 1.335
n-octane 14.806 14.892 14.909 1.548
2,2,3,3-tetramethyl butane 12.198 12.098 12.588 1.249
2,2,3-trimethyl pentane~S! 12.791 12.685 13.117 1.318
2,3,3-trimethyl pentane 12.536 12.475 12.889 1.288
3-ethyl,3-methyl pentane 12.677 12.662 13.024 1.304
2,3,4-trimethyl pentane 12.884 12.794 13.198 1.329
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TABLE III. Second virial coefficients in units of the average molecular volume for several models and m
mer lengths. The numbers in parenthesis are a measure of the uncertainty as measured by the standard

of the calculations.V̄, is the average molecular volume in units ofd3, ā is the average of the nonsphericit
parameter. Rest of the notation as in Table I.

N V̄ B2
exct/V̄ B2

CBG/V̄ B2
Ale/V̄ ā

Flory model

10 3.2204~2! 6.151~4! 6.244~2! 6.190~1! 1.717
30 9.1954~2! 10.98~2! 11.56~1! 10.44~2! 3.302
60 18.1595~7! 16.93~7! 18.0~6! 15.3~4! 5.31

100 30.1101~8! 24.1~6! 24.8~6! 20.6~4! 7.71
200 59.9890~3! 39.54~2! 37.8~1! 30.8~16! 12.85
400 119.7490~2! 65.6~1! 57.4~3! 46.6~4! 21.60
600 179.5060~4! 89.43~2! 72.9~2! 59.2~20! 29.50

Open model
10 3.2639~1! 6.535~2! 6.666~1! 6.563~2! 1.845
30 9.3512~3! 12.24~4! 13.10~2! 11.68~2! 3.748
60 18.4819~1! 19.90~1! 21.0~3! 17.6~4! 6.298

100 30.6566~1! 29.3~1! 29.6~6! 24.1~8! 9.431

Long model
10 5.2360 14.42~1! 14.87~3! 14.07~4! 4.474
30 15.7080 33.94~3! 35.38~6! 29.8~4! 10.98
60 31.4159 60.3~1! 58.6~2! 47.3~2! 19.77

100 52.3599 92.2~1! 82.0~3! 65.2~4! 30.42

Pearl-necklace-like model
10 5.2360 12.55~2! 13.04~6! 12.36~3! 3.85
30 15.7080 24.8~1! 26.3~6! 23.2~4! 7.92
60 31.4159 39.5~1! 41.08~6! 35.08~4! 12.83

100 52.3599 56.7~1! 56.53~6! 47.59~4! 18.61
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The results of Table II show clearly the big differenc
in the second virial coefficient between linear and branc
alkanes. For instance, for alkanes with eight carbon ato
the variations inB2 can be of up to 20% and differences a
expected to be larger for longer chains.

Once more, comparing the numerical values ofB2 with
those obtained by using CBG, it can be seen that the ag
ment is quite good. We have also implemented the meth
ology proposed by Alejandreet al.32 ~which differs from
ours in the choice of the equivalent convex body from wh
the mean radius of curvature is taken!. In general, the treat
ment of this work is somewhat better than the latter meth

We shall analyze now the effect of changing the bo
length or bond angle on the second virial coefficient of line
chains. In Table III, results are presented for the Flory mo
as described in the previous section, for chains with a nu
ber of carbon atoms in the range 10–600. We also show
chains with up to 100 monomers, the results obtained
several modifications of the Flory model, namely, a mo
with the bond angle increased to 120 degrees~Open model!
and a model with the bond length increased toL* 51 ~Long
Model!. Also in Table III we present results for the pea
necklace-like model described in the previous section.
Table III, the exact and predicted second virial coefficie
are shown in units of the molecular volume, so that the
sults of the different models may be compared without
gard to the change in volume.

Inspection of Table III leads to the following conclu
sions:
d
s,

e-
d-

d.
d
r
l
-

or
r
l

n
s
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-

~1! The increases of the bond length or bond angle provo

an increase in the value ofB2 /V̄. In other words, the
molecule becomes more anisotropic when increasing
ther the bond length or bond angle. These trends w
anticipated in Ref. 17, based on our methodology to
timate virial coefficients from convex body theory but
is confirmed here by exact numerical determination
the virial coefficients.

~2! The estimates of the second virial coefficient are qu
good for all the models, thus showing that the metho
ology proposed is quite general and can be success
used for general chain models, regardless of the b
length, angle or torsional energy.

From the results of Tables I–III it is clear that the co
vex body methodology proposed to estimate the sec
virial coefficient is reliable. This success is a consequenc
two facts. The first is that the second virial coefficients a
correctly predicted for the different conformers of a giv
alkane, as was shown in Table I, while the second is that
approximation represented by Eq.~6! is indeed excellent.

To show that this is so, we present Table IV, whe
exact results for the crossed coefficients of a few pairs
conformers ofC200 are compared with those obtained fro
Approximation 1. The agreement is good, the typical er
being of about 1.5%. We also show a comparison betw
~1! the average of 45 exact crossed virial coefficients,Bi j ,
obtained from a randomly selected sample of 10 conform
and~2! the average of the corresponding 10Bii ’s, for several
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TABLE IV. Test of Approximation 1 for the Flory model. The approximation is tested for a few pairs of
conformers ofC200. N, number of carbon atoms.Bii

exct, exact second virial coefficient for conformeri . Bi j
exct,

exact crossed second virial coefficient for the chosen pair of conformers.Bi j
approx, estimate ofBi j from Eq. ~6!.

% err, mean percent error. We also present results (N530,60,100,200) for the exact average of the 45 different
pair of conformers that can be obtained from a random sample of 10 conformers. This average is compared to
the value predicted by Eq.~6! ~Approximation 1!. The second virial coefficients are given in units ofd3.

N Bii
exct Bj j

exct Bi j
exct Bi j

approx % err

200 2508 2630 2335 2342 0.3
200 1712 2506 2149 2109 1.9
200 1712 2111 1942 1912 1.5
200 2660 1712 2158 2186 1.3
200 2660 2506 2502 2583 3.2

30 - - 101.8 ~5! 102.1 ~5! 0.3
60 - - 305~4! 305~4! 0

100 - - 729~8! 732~8! 0.01
200 - - 2235~27! 2230~28! 0.2
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chain lengths. As it can be seen, the agreement is quite g
Notice that the error is now smaller~of about 0.2%! than for
individual pairs of conformers. This is a consequence of c
cellation of errors, as individualBi j are sometimes overest
mated whereas other they are underestimated. We can
clude that Eq. ~6! is an excellent approximation fo
estimating the crossed second virial coefficient between
different conformers of the same molecule. Moreover, if o
compares the average obtained from the calculation of 10Bii

alone~column labeled asBi j
approx in Table IV! with those of

the first part of Table III, it can be seen that the average o
Bii alone is already a very good estimate of the actualB2 as
calculated from an average of theBi j of 2000 pairs of con-
formers. This surprising result will be used in the next s
tion to estimate the second virial coefficient of chains w
up to 1000 monomers.

We have compared theB2 obtained for the pearl-
necklace-like model~see Table III! with those of the true
pearl-necklace model as obtained in Refs. 15, 33. For
true model, one obtainsB2 /V512.75, 25.17, 40.23 and
57.81 for N510, 30, 60 and 100, respectively~the results
were obtained by interpolation whenever required!. As it can
be seen, the results for the two models are quite sim
Although this is somewhat expected, it is certainly surpris
that both models agree so closely. Recall that the mo
differ in the fact that the bond angle was fixed in our calc
lations, whereas the true model is fully flexible~as far as the
spheres do not overlap! and that we use the RIS approxim
tion ~only three angles are used for each torsional degre
freedom!, whereas the true pearl-necklace model can ad
any value of the torsional angle.

Finally, we have evaluated numerically the second vir
coefficient for pairs ofn-alkanes~as described by the Flor
model! of very different length~i.e., C41C60, C41C100,
C41C200, andC41C400!. The results are shown in Table V
along with the predictions obtained from two different me
ods. The first one is based on an exact equation for theB2 of
two convex bodies, 1 and 2, of different size:28

B125
1
2~V11V21S1R21S2R1!. ~11!

We have used this equation for alkanes of different size, w
d.
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V, S andR replaced by their mean values and the results
shown in the third column of Table V. The agreement is se
to be reasonable but it deteriorates considerably for large
differences. On the other hand, the following empirical eq
tion is seen to predict the results with an error of less th
5% as it can be seen in Table V:

B125
1
2S B11

V2

V1
1B22

V1

V2
D . ~12!

Equation~12! was obtained after an algebraic analysis
Eq. ~39! of Ref. 17. In turns out that the approximation give
by Eq.~39! of our previous work17 contains implicitly a pre-
scription for B12 of the mixture which is just that given by
Eq. ~12!. Notice that Eq.~12! reduces to Eq.~6! when the
two molecules have the same volume as it is almost the c
for two conformers of the same chain. The good results
Eq. ~12! explain the success of the EOS for mixtures p
posed in Ref. 17. Equation~12! is quite successful in predict
ing the crossed second virial coefficient of chains with lar
differences in size. However, for true convex bodies w
large differences in size~i.e., mixtures of hard spheres! Eq.
~12! is poor whereas in this case Eq.~11! is exact.

The results presented so far have illustrated the role
conformation, branching and geometrical parameters~bond
length, angle! on the second virial coefficient. Moreover,
has been shown that the methodology proposed previo
gives good estimates of the second virial coefficient
chains with up to 100 monomer units, while it reduces t
cost of the computations by several orders of magnitu

TABLE V. Crossed virial coefficients ind3 units for alkanes~as described
by the Flory model! of different length.B12

exct is the exact crossed viria
coefficient.B12

CBG is the estimate given by Eq.~11! andB12
empi is the estimate

given by Eq.~12!.

Mixture B12
exct B12

CBG B12
empi

C41C60 53.54~6! 53.90 53.96
C41C100 87.0~1! 81.1 86.6
C41C200 170.1~2! 154.3 166.5
C41C400 336.6~3! 296.6 323.1
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TABLE VI. Interpenetration factorc for the Flory and for the pearl-necklace-like model. The second and t
columns refer to the Flory model, while the rest refers to the pearl-necklace-like model.^S2& is the mean square
radius of gyration~in units of d2! andB2 is the second virial coefficient in units ofd3.

N ^S2& c B2 ^S2& c

100 21.6~1! 0.325~5! 2961~7! 54.7~2! 0.329~3!
200 51.5~4! 0.288~4! 9769~25! 130~1! 0.296~4!
400 120.~2! 0.268~8! 32 480~120! 301~2! 0.279~4!
600 197.~1! 0.261~3! 65 320~240! 489~1! 0.271~2!
800 - - 108 069~1102! 684~4! 0.271~5!

1000 - - 163 368~1631! 899~2! 0.272~4!
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One obvious question which arises is whether the metho
ogy proposed, based on CBG, correctly predicts the sec
virial coefficient of polymers~i.e., very long chains!. We
shall analyze this question in the following section.

IV. THE VIRIAL COEFFICIENT OF VERY LONG CHAINS

The study of the virial coefficient of very long har
chains has interest per se. Experimentally, the osmotic
ond virial coefficient of polymers under good solvent con
tions can be measured and it is thought that it behaves a
second virial coefficient of a hard long chain.34,35 From a
computational point of view, the calculation of the virial c
efficient of hard chains presents at the moment some pr
cal difficulties. With the computers now available, the lim
in the numerical calculation seems to be located at about
monomer units.33,36–38Although this is a large number, it i
still small compared to the number of monomers of typi
polymers~i.e., 1000–1 000 000!. Theoretically, de Gennes39

has developed a model for the scaling of the second v
coefficient of very long chains. Experimental35 work and re-
cent numerical calculations15,36,38 seem to confirm de
Gennes’ ideas. In this section we analyze whether the C
methods can predict correctly the scaling laws for the sec
virial coefficient of chains.

In Table III, the second virial coefficient for the Flor
model with up to 600 carbon atoms was presented. It can
seen that, although the convex body methodology is q
successful for molecules with up to 100 monomers, it fa
for bigger molecules. As it will be shown now, this is due
the fact that the CBG methodology predicts an incorrect s
ing.

According to de Gennes, the ratio of the second vir
coefficient of the chain divided by the mean squared rad
of gyration to the 3/2 power yields a constant in the limit
very long chains. This behavior is usually described in ter
of the so-called interpenetration factor, defined by the f
lowing ratio:

c52
B2

~4p^S2&!3/2, ~13!

where^S2& is the mean squared radius of gyration.
Evidence that Eq.~13! is correct comes from experimen

tal work and from recent numerical calculations,15,36,38 as
well as from our own results.

In Table VI, we show thêS2& andc for the Flory-like
model and for the pearl-necklace-like model. Also shown
l-
nd
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the B2 for the latter model for chain lengths of up to 100
monomers. TheB2 for chains of up to 600 monomers wer
calculated as explained in Sec. II A, while those of chains
800 and 1000 monomers were calculated by averaging
Bii . As discussed in the previous section we believe that
procedure provides an accurate estimate of the second v
coefficient.

In Fig. 1, c is plotted for the Flory- and the pear
necklace-like model. As can be seen,c seems to reach a
constant value of 0.26–0.27 for both models, in good agr
ment with renormalization group theory40 and with previous
numerical work.36

According to Eq.~13!, B2 scales aŝ S2&3/2. In good
solvent conditions~i.e., for hard intramolecular interactions!
it is well known that^S2& scales as:

^S2&}N2n, ~14!

whereN is the number of monomer units. The best estim
of n now available is 0.588.41 We checked the scaling law
for the mean squared radius of gyration for the chain mod
of this work and found excellent agreement with Eq.~14!
and the valuen50.588. Therefore, according to de Genne
B2 scales as:

B2}N3n}N1.764, ~15!

FIG. 1. The interpenetration factorc for different values ofN and two
polymer models. Full line: pearl-necklace-like model; dashed line: Fl
model.
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and our results support this conclusion~in agreement with
previous work by other authors!. Which is the scaling law
predicted by the convex body treatment? According to t
treatment:

B25VS 113
RS

3VD}RS. ~16!

Now, both the molecular surface and volume scale asN,
whereas the mean radius of curvature as obtained from
methodology scales as the mean radius of gyration~see fur-
ther discussion of this issue in Appendix B!. Therefore, the
CBG predicts:

B2}N1.588. ~17!

Numerical analysis of the scaling law of our estimates ofB2

from the CBG was found to be consistent with Eq.~17!. By
comparing Eq.~17! with Eq. ~15! one concludes that th
scaling law predicted by the CBG methodology to estim
B2 is wrong. When the Alejandreet al.32 recipe is used to
predict the mean radius or curvature, the same qualitativ
wrong behavior is obtained. In fact, the predicted virial c
efficients are low for very long chains, which can be und
stood by looking at the different scaling laws presented
Eq. ~15! ~right! and Eq.~17! ~wrong!. We have also tried to
take the mean radius of curvature of the chain from ano
convex body, as for instance a hard ellipsoid42 with three
different lengths for the main semi-axes, but the results
not improve. In fact, according to Eq.~17!, the convex body
ideas fail to predict the scaling law of the second virial c
efficient of very long chains, regardless of the choice of
convex body from which the mean radius of curvature
taken, since it always leads to a radius of curvature wh
scales as the mean radius of gyration. However, as desc
in the previous section, it can be used successfully to pre
the virial coefficients of chains with less than 100 monom
units.

Finally, let us discuss briefly the site–site correlati
function in the limit of zero density for some of the chains
this work. @The reader is referred to Appendix C~method 1!
for details of the calculations.# Let us denote bygkl(r ) the
site–site correlation function between sitek of one molecule
and sitel of another molecule when averaged over all pair
conformers. Although the behavior of the individualgkl(r )
has some interest, it is obvious that for long chains it is m
interesting to discuss the behavior of the site–site correla
function averaged over all pair of sites. This site–site cor
lation function is defined as:

g~r !5
1

N2 (
k51

N

(
l 51

N

gkl~r !. ~18!

In Fig. 2 g(r ) is plotted for the pearl-necklace-lik
model whenN510,30,60. Some obvious features are:

~1! The value ofg at contact (r 5s) decreases with the
length of the chain. In fact, it seems to go to zero
very long chains.

~2! The correlation hole@whereg(r ) is less than 1 by more
than 2%# is of the order of three times the mean radius
gyration of the molecule.
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~3! At zero density the site–site correlation function reach
an asymptotic form for large values ofN when the site–
site distance is scaled by the the mean radius of gyrat

We have also obtained the individualḡkl at zero density
for the hard alkane models considered in this work~linear
and branched!. These site–site correlation functions a
needed for the implementation of the mean field perturba
theory of alkanes presented in the following paper. Sec
virial coefficients and site–site correlation functions of a
kanes~linear and branched! obtained in this work will be
used for the implementation of this perturbation theory.

V. CONCLUSIONS

In this work we have computed numerically the seco
virial coefficient for hard models of both linear and branch
alkanes. It is found that branching reduces the value of
second virial coefficient when compared to a linear ch
with the same number of carbon atoms. When branch
occurs in the middle of the chain, this decrease is more p
nounced. Furthermore, when branching occurs in a gi
position, two methyl groups reduces more efficiently the s
ond virial coefficient than an ethyl group. The results of th
work show that branching changes substantially the sec
virial coefficient of hard alkane chains. It is expected th
this difference will also be reflected in the equation of sta
This expectation is born from the fact that a very good E
for hard n-alkanes has been recently proposed where
solely knowledge ofB2 was enough to predict the compres
ibility factor in all the density range. Agreement between th
EOS and simulation was very good for linear chains. W
expect this to be also true for branched alkanes.

A simple prescription to estimate the crossed virial c
efficient was provided and good agreement with the num
cal data was found. Virial coefficients for a pearl-necklac
like model were also determined. In this model the bo
angle was fixed and only three discrete values were allow
for the torsional angles. A comparison was made with

FIG. 2. Average site–site correlation function@as defined by Eq.~18!# at
zero density for the pearl-necklace-like model with 10~solid line!, 30 ~long
dashed line! and 60~short dashed line! monomer units. The site–site dis
tancer is scaled by the square root of the mean square radius of gyratio
the moleculê S2&1/2.



le

ro
.
th
of
n
r
p

o
o

or
o

at

si
he
he

o
co

th

he
pa

r
e
o

sh

-

ac
at
te

hi
t
s

s
Le
es
-

r

:

-

ry
.s.
left

r of

of

l-

f
-

rd
the

nd

5678 J. Chem. Phys., Vol. 109, No. 13, 1 October 1998 L. G. MacDowell and C. Vega
model with no restrictions on the bond and torsional ang
Differences between both models were very small.

A methodology based on convex body geometry is p
posed to estimate the second virial coefficient of chains
has been shown that this methodology predicts correctly
second virial coefficients of the different conformers
branched alkanes. For linear chains this was also show
previous work. The second virial coefficient between diffe
ent conformers can be also correctly estimated from a sim
prescription@i.e., Eq.~6! of this work#. These two facts lead
to a quite good estimate of the second virial coefficient
linear and branched alkanes. The method seems to w
properly for chains with up to 100 monomer units. F
longer chains the methodology fails and the scaling law
the second virial coefficient predicted by this approxim
method is not correct.

Finally, some results were presented for the site–
correlation function of the pearl-necklace-like model in t
limit of zero density. It is shown that the contact value of t
site–site correlation function tends to zero as the length
the chain increases. Also the region where the site–site
relation function is less than one increases with the size
the chain, and it is roughly of the order of several times
mean radius of gyration of the molecule.

The results presented in this work will be used in t
perturbation theory of alkanes proposed in the following
per.
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APPENDIX A: THE MAYER FUNCTION OF
POLYMERS FROM A COLLISION ALGORITHM

The algorithm we use in this work is based on the f
that the history of all the collisions of two conformers
fixed relative orientation as they are moved along the in
molecular center of mass vector,RCM, may be determined
by a single evaluation of the interatomic distances. In t
way one can reduce the computational cost with respec
traditional methods by as many times as there are node
RCM.

Consider two conformers,i and j , whose center of mas
is placed at the origin of a laboratory reference frame.
$r k

0% and $r l
0% be the set of initial coordinates of the spher

of conformersi and j , respectively, for a given relative ori
entation defined byv i andv j .

Let us now translate the center of mass of conformej
along thez axis, in small steps of lengthj. The coordinates
of atoms in this molecule aftern steps are simply given by

r l
n5r l

01nj k̂, ~A1!
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wherek̂ is a unit vector along thez axis. Subtractingr k
0 from

r l
n it may be trivially shown that the condition for overlap

ping of the spheres is given by:

nj,6~s22bkl
2 !1/22Dzkl

0 , ~A2!

where

Dzkl
0 5zl

02zk
0,

bkl
2 5~xl

02xk
0!21~yl

02yk
0!2.

bkl is the well-known impact parameter of collision theo
and the plus and minus sign in the first term of the r.h
describe whether the collision occurs at the right or at the
of spherek, respectively.

Let us now divide all the possible pairs of atoms$k,l %,
into three different categories, depending on the numbe
roots they have in Eq.~A2!:
1. Those pairs that will never collide~no roots!, which we

may ignore. These pairs are determined from either
two conditions:

~a! bkl
2 .s2,

~b! Dzkl
0 .0 ands2,Dzkl

0 1bkl
2 .

2. Those pairs that initially overlap~one root!, which may be
determined from the conditions2.Dzkl

0 1bkl
2 . For each

of these pairs we calculate the value ofn, hkl , such that
overlap no longer occurs.

3. Those pairs that will eventually overlap~two roots!,
which are determined from the conditions2,Dzkl

0 1bkl
2

andDzkl
0 ,0. For each of the pairs in this group we ca

culate, ~i! the value ofn, mkl , for which overlap will
begin to occur and~ii ! the value ofn, okl , where overlap
will stop occurring.

Once the sets$hkl%, $mkl% and$okl% are determined, the
Mayer function for the orientationv i ,v j may be evaluated
for all the nodes ofRCM , RCM,n , by the iterative procedure
described below:
1. If $hkl% is not an empty set, find its biggest element,hi j

and setf (RCM,n)521 as long asn,hi j .
2. If $hkl% is an empty set,

~a! find the smallest element of$mkl%, mi j and set
f (RCM,n)50 as long asn,mi j ,

~b! set f (RCM,n)521 for all n such thatmi j <n,oi j .

3. Update the set of$hkl% by including those elements o
$okl% such thatmkl,n,okl . Also, exclude these ele
ments from$mkl% and$okl%.

4. Repeat the procedure until$hkl%, $mkl% and$okl% become
empty sets.

The algorithm described is useful for a system of ha
spheres but it may be easily extended to molecules where
interaction site is a hard sphere plus a square well.

APPENDIX B: SCALING LAW OF B 2 AS OBTAINED
FROM CONVEX BODY GEOMETRY

In this Appendix we derive the scaling law ofB2 as
predicted from the empirical method proposed in Ref. 17 a
used in this work.
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A look at Eq.~10! shows thatB2 should scale asV̄ā. On
the other hand, Eq.~9! shows thatā scales asRS/V, since
the second member of the right hand side is a small cor
tion term. Now, one expects that bothS and V be linear
functions ofN, so that, essentially,ā scales asR̄. One is
thus lead to the believe that any convex body approach
lead to a scaling law forB2 of the form:

B2}V̄•R̄. ~B1!

In the approach proposed in Ref. 17, the value ofR for a
given conformer is taken to be that of a parallelepiped w
sides chosen such that its principal moments of inertia ma
those of the conformer. Using Eqs.~23!–~26! of Ref. 17 it
can be shown that this leads to the following expression
R:

R5A 3

8N
~AI x1I y2I z1AI x1I z2I y1AI y1I z2I x!,

~B2!

whereI x , I y andI z stand for the three principal moments
inertia of the conformer.

Now, both theoretical considerations43 and numerical
calculations20 show that asN goes to infinity, the ratio of the
principal moments of inertia of a flexible molecule reache
constant, well defined value. This implies that each of
square roots of Eq.~B2! scale in the same way and we ne
consider just one of them in order to study the scaling
havior of R. Using Eq. ~27! of Ref. 17 for the principal
moments of inertia, and considering only the first square r
of Eq. ~B2!, one gets:

R}A1

N (
k51

N

zk
2. ~B3!

In terms of the mean radius of gyration, this scaling behav
may be written as:

R}AS2. ~B4!

So that one expects thatR̄ will scale as^S2&1/2. This
leads to the following scaling behavior forB2 :

B2}N^S2&1/2}N11n}N1.588. ~B5!

Actually, Eq. ~B1! shows that any convex body approa
with a mean radius of curvature scaling as the mean radiu
gyration will lead to a wrong scaling behavior forB2 .

APPENDIX C: CALCULATION OF THE SITE–SITE
CORRELATION FUNCTIONS

Let us start computing the site–site correlation funct
between two molecules of fixed geometry. Later, we sh
show how to perform the average over all pairs of confor
ers. The site–site correlation function,gkl

i j , between sitek of
moleculei and sitel of moleculej ~wherei and j may be for
instance two different conformers!, can be obtained from the
pair correlation function of the molecules by the followin
equation:
c-

ill

h
h

r

a
e

-

ot

r

of

ll
-

gkl
i j ~r !5E g2~Rref ,v i ,v j !pkl~Rref ,v i ,v j ;r !

3
Rref

2

r 2

dRref

dr
dv idv j , ~C1!

whereRref is the distance between the reference points~one
in moleculei and the other in moleculej ! which define the
position of the molecules whilev i andv j are vectors defin-
ing their orientation;g2 is the molecular pair correlation
function andpkl is the fraction of molecules found in a
infinitesimal interval around (Rref ,v i ,v j ), such that the dis-
tance between sitesi and j lye in the interval@r 1dr#. This
equation may be derived by equating the number of m
ecules with sitesk,l at a distancer as obtained from the
definitions ofgkl

i j andg2 .
Equation~C1! can be implemented numerically in tw

different ways depending on the choice of the reference p
used to define the location of the molecule. Usually, the c
ter of mass is the choice. In this case,Rref is just the distance
between the centers of mass of the molecules, i.e.,RCM

~Method 1!. However, another possible choice is to use sitk
as the reference point of moleculei and sitel as the refer-
ence point of moleculej ~Method 2!. Let us describe briefly
the implementation of both methods:

Method 1. We divide the distance between the cente
mass,RCM , in M small intervals of sizeDRCM and use a
simple trapezoid rule to integrate overRCM for each different
orientation. Mathematically, we express this as:

gkl
i j ~r !

5 (
n51

M K g2~RCM,n ,v i ,v j !pkl~RCM,n ,v i ,v j ;r !
RCM,n

2

r 2 L ,

~C2!

where the brackets denote an orientational average. This
entational average is performed withNori relative orienta-
tions. In Eq. ~C2! the indexn runs over theM values of
RCM . Since we are considering the zero density limit,g2 is
either null or unity, depending on whether there is over
between the molecules or not, whilepkl takes the value of 1
if sites k and l are found in the interval@r ,r 1DRCM# and
zero otherwise. This choice forpkl ensures that the ratio o
dR to dr that appears in Eq.~C1! becomes unity. An expres
sion which differs from Eq.~C2! only in the quadrature rule
was proposed for the first time by Alvarezet al.44 and by
Anta.45

Method 2. In this caseRref is just r andpkl is obviously
equal to one. Accordingly, Eq.~C1! can be rewritten as:

gkl
i j ~r !5^g2~r ,v i ,v j !&. ~C3!

It is straightforward to show that the average of the r.h.s.
the above equation is related to the Mayer function, as m
sured from reference points atk and l . Thus, in order to
calculategkl

i j (r ) one can just as well use the efficient alg
rithm described in Appendix A. This alternative may turn o
to be quite convenient if the number of monomers of t
molecule is small.
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To check both methods we computed the zero den
limit of the site–site correlation functions for the simple ha
dumbbell system. Results obtained from Eq.~C2! were iden-
tical to those of Eq.~C3! and moreover we got perfect agre
ment with previously published results for this system.46

Once the site–site correlation function between sitek
and l has been obtained for a pair of molecules of fix
geometry there is still the problem of obtaining the conf
mational average, according to the following equation:

gkl5(
i 51

i 5q

(
j 51

j 5q

xixjgkl
i j . ~C4!

This average was solved numerically by means of a M
sampling procedure, equal to that described in the text for
second virial coefficients.
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