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The second virial coefficient of hard alkane models
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The second virial coefficient for hard models of alkanes and other flexible molecules is determined
numerically using a new algorithm which increases the speed of the calculations by a few orders of
magnitude. For alkanes with few carbon atoms, linear and branched chains were considered and the
effect of branching was analyzed. For linear hard alkanes, the second virial coefficient was
computed for chains with up to 600 carbon atoms and the scaling behavior was studied. The effect
of changes in the chemical structure of a flexible mole¢iée, bond length, bond anglavas also
studied. A fast and efficient empirical methodology to estimate the second virial coefficient of hard
chains is given. This methodology uses ideas of convex body geometry. It is shown that the
proposed methodology yields very good estimates of the second virial coefficient for chains with up
to 100 monomer units, but it predicts incorrectly the scaling law. The virial coefficients provided in
this work can be useful in the search of an equation of state for hard alkanes, since it is likely that
a good equation of state should provide good estimates of the second virial coefficieh@98
American Institute of Physic§S0021-96068)50237-]

I. INTRODUCTION In this work, we try to clarify some of these issues. First,
In the last 15 years, the interest of the statistical thermoWe shall compute numerically the second virial coefficient of
dynamics community on flexible molecules has increasedardn-alkanes with up to 600 carbon atoms. In this way, it
considerably. Now, a number of simulation and theoreticalVill be possible to determine if the methodology proposed in
studies are available for these molecdie¥.It is likely that ~ OUr previous work is indeed reliabté.These data can also
perturbation theories will play a fundamental role in improv- be useful for other workers looking for good EOS of hard
ing our understanding of the behavior of melts and polymefModels of polyethylene, since one would expect that they
solutions. To develop these perturbation theories, one needéould yield a reasonable value of the second virial coeffi-
a good equation of state for the hard flexible model. At thiscient. Second, we will test the general applicability of our
point, there is a relatively good understanding of the behavMethod by comparing its predictions with the exact virial
ior of some flexible models, such as the pearl-necklac&oefﬁ‘:ient of several models. Third, the virial coefficient of
model(a collection of flexible tangent hard sphexeBor this branched alkanes will be computed and this will provide
model, second virial coefficientg, simulation dat&® ideas on the effect of branching. Finally, we study the scal-
and good theoretical equations of stalEOS are ing behavior of the second virial coefficient of long idealized
available!®12-1However, the situation is not so satisfactory flexible molecules, with up to 1000 monomers. This study
for hard models of somewhat more realistic polymers as fofvas made possible due to the use of a new algorithm which
instance the alkane series. Recently, we have presented sinjlicréases the speed of the numerical calculations of the sec-
lation results for the EOS of repulsivealkanes with up to ond virial coefficient by a few orders of magnitude.
30 carbon atom!” as well as a methodology to estimate The scheme of this paper is as follows. In Sec. Il the
the second virial coefficierf. In addition to the interest that Models used in this work and the computational details are
the second virial coefficient of chains have per se, we foundlescribed. In this section, a methodology to estimate the sec-
that a very good EOS could be obtained for hardlkanes, ond virial coefficient of hard chains is also provided. In Sec.
by forcing Wertheim'’s equation for tangent hard sph&r&s lll, results are presented for the second virial coefficient of
to reproduce the estimate of the second virial coefficient ag§everal flexible hard models and compared with the predic-
obtained from our procedure. In this way, we have proposed©ons from our methodology. In Sec. IV we analyze the data
what we believe is the first reliable EOS for hard @nd the scaling law for the second virial coefficient of very
n-alkanest’ However, the situation is not fully satisfactory '0ng hard flexible chains.
in several respects. First, we do not know if our estimates of
the second virial coefficient of hand-alkanes are in good ||. MODELS AND CALCULATIONS
agreement with the exact values. Second, very little is know% Models
on the second virial coefficient of long hard models, describ- "
ing approximately the shape of a real polymer such as poly- Two kinds of hard flexible models have been considered
ethylene. Finally, it is also interesting to analyze the role ofin this work. The first one is an extension of that used in
branching on the second virial coefficient, especially forprevious work!®=*® where we attempted to mimic qualita-
short flexible molecules. tively the shape of linear alkanes within the united atom
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approach. Thus, each Glgroup is modeled as a hard sphere sphere trimers. Note that, contrary to the Flory-like model,

of diameterd. The hard spheres are connected through 4he conformational properties of this pearl-necklace-like

bond of lengthl, chosen such that the reduced bond lengthmodel do not depend on temperature.

L*=I/d, is set to 0.4123. The bond angheis fixed to the

tetrahedral value, i.e., 109.5 degrees. The torsional degregs Numerical evaluation of B,

of freedom are treated within the rotational isomeric state

approximatiod® (RIS), so that each torsional angle may

adopt only three possible states: Ttrans (t), gauche

(g™), andgauche (g~) states, which correspond to values

of 0, 120 and— 120 degrees, respectively. In this way, the o 5

number of possible conformations of a given alkane is al- B2= _2Wf0 (fij(Rem)) conRomd Rem s €)

ways finite, but it becomes very large as the length of the

chain is increased. A schematic representation of the mod&hereRcy is the distance between the centers of mass of the

may be found in Fig. 1 of Ref. 17. molecules{ )., denotes a weighted conformational average
The Hamiltonian of the system is divided into an intra (Where the weight is the Boltzmann factor of the intramo-

and an intermolecular contribution, so that the total energy isecular energyand the Mayer function for a pair of conform-

given by: ers is given by:

U=U, ot Uy, D fij(Row) = (exp( — BUjhe Row 101 @) = Do (4)

] . _In this equation,U:ﬂ'nel(RCM,wi ,;) is the energy between
_ The intermolecular potential between the molecules igonformers andj with relative orientations given by the set
given by a site—site hard sphere interaction, while the iny anglesw; and w;, ()o; denotes an unweighted orienta-
tramolecular interaction is divided into a short range part angjgnal average, ang is defined as3= 1/(kgT) wherekg is
a long range part, following Flory's divisiot. The long  the Boltzmann constant. For the RIS models, the number of

range part corresponds to a hard sphere interaction betweggnformers remains finite, so that E@) may be rewritten
monomers(i.e., hard sphergdive or more bonds apart. The 4.

short range interaction is given by the following expression:

The second virial coefficient of a flexible molecule is
calculated from the average Mayer function according to the
following equation:

q q
UShot=ngE; +ng+ - (Eo—Ey), 2 By= 2, le XiX;Bij (5)
whereng is the number of pairs of carbon atoms three bondsvherex; andx; are the molar fractions of the conformers
apart which are in a relative configuration of type gauche andnd j, respectivelyq is the total number of conformers of
Ng+g- is the number of pairs of carbon atoms four bondsthe molecule and th8;;'s are obtained from integration of
apart whose relative configuration is eithegsg~ org g™ fij. The molar fraction of each conformer is proportional
sequence. For linear chains, Efj) is equivalent to the pro- to the Boltzmann factor of the intramolecular energy
cedure introduced by Flory, which has been used in a previexp(—BUina) -
ous study of the second virial coefficient nfalkanes with For a given relative orientation of a pair of selected con-
attractive force€? In this work, we shall use Eqél)—(2) for ~ formers, we have evaluated expBUi e Rem » i ,0j)) ex-
both linear and branched chains, wilh=3337.83 J/mol actly at 999 points oRcy, ranging from O to about five
and E,=11711.43 J/mof* A rigorous description of times the mean radius of gyration. This otherwise prohibi-
branched alkanes would involve an individual study of thetively expensive calculation was done by using a new algo-
short range intramolecular interactions for each moleculetithm which requires one single calculation of the inter-
but in this work we keep the potential as simple as possiblatomic distances for all the points in tHe;, segment.
and focus on the effect of branching on the second viriaDetails of this procedure may be found in Appendix A. The
coefficient. orientational averages required to calculatefthis from the

In what follows, this hard alkane model will be denoted intermolecular Boltzmann factor were then evaluated by
as the Flory-like model. It should be noted that the relativemeans of Conroy’s multidimensional integration metRo&?
populations of the different conformers are temperature dewhile the B;;’s were calculated from numerical integration
pendent through the short range intramolecular interactiongusing Simpson'’s ruleof the latter function. For molecules
so thatB, is also temperature dependent. We have thus usedith up to eight monomer units, the orientational averages
a constant temperature df=366.88 K for all the calcula- were calculated using 76 079 relative orientations, while
tions, as in previous worke 18 4822 orientations were used for bigger molecules.

Additionally, the previous model has been extended to  The way the conformational average is evaluated de-
describe what may be considered as the RIS approximatiopends greatly on the size of the molecules considered. All the
to the well known pearl-necklace mode® This has been conformers of molecules with three or less torsional angles
achieved by setting the reduced bond length to one and thmay be enumerated without problems, so that the conforma-
short range intramolecular energy parameters to zéfo ( tional average was evaluated exactly, by exhaustive enu-
=1, E;=E,=0J/mo). To keep the number of conformers meration. On the other hand, the number of pairs of different
finite, the bond angle has been set to 104.4775 degrees,conformers of molecules with more than three torsional
which is approximately the average angle of tangent haréngles becomes prohibitively large, so that the average was
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dependent conformations, as obtained from a Monte Carlo RS, o E_Rtt..t)slt..t
simulation of the isolated chain. For the virial coefficients of aizw 3V ,
mixtures of butane and long-alkanes, the conformational ! t..t
population of butane was weighted exactly, while that of thewhereS is the surface of conformer R; is the mean radius
long n-alkanes was weighted by randomly selecting con-of curvature of the equivalent convex body and the second
formers from the MC simulation. term of the r.h.s. is a correcting term that ensures that the
The samples of representative conformers were prononsphericity of the all-trans conformer is given almost ex-
duced by means of a standard MC algorithm, where triahctly. The subindext..t stands for the all-trans conformer
configurations are accepted or rejected according to the MeandL; . is the distance between the first and the last carbon
tropolis criterion?* Trial configurations were produced using atom in this configuration.
the pivot algorithnf> where an initial configuration is trans- In order to extend Eq9) to branched alkanes we need a
formed into another by randomly choosing and rotating gprescription for the correction term. The choice we have
torsional angle. taken is to define it equal to that of thealkane with the
The size of the MC samples ranged from 2000 conformsame number of carbon atortesg., for 2,3-dimethyl pentane
ers for chains of 200 or less monomers to 1000 for chains ofve shall use the correction term forheptang
400 and 600 monomers, while the number of pairs of con-  Finally, by approximating the average of the product of
formers chosen to calculat®, was roughly equal to the «;V; to the product of the separated averagesa;adndV; (a
number of conformers of the sample used. very good approximation, as the different conformers present
different values ofe; but very similar values ot;), the
estimate of the second virial coefficient for the chain, either
In this work we shall also try to estimate the secondlinear or branched, is given by:
virial coefficient of hard chains by using convex body _ _
geometry®=28 (CBG). One of the first attempts to introduce Bo=V(1+3a), (10)

CBG ideas in the search for EOS of chains was that of Enyhere the bar denotes the weighted conformational average.
ciso etal® Recently, we have introduced a new The volume and surface required for the calculatiomofor
methodology’ which allows to estimate correctly the second a given conformer is evaluated by an exact numerical proce-
virial coefficient of linear chains. Here we shall describe thedure deve|oped by Dodd and Theodo?’éuThe radius of
procedure briefly and we refer the reader to Ref. 17 for furcyrvature is evaluated following the procedure described in
ther details. Ref. 17. The conformational average is then evaluated in a
We expect that the virial coefficients of two conformers sjmilar manner as that described in the previous section. For
of the same molecule are not too different, as there are a|'n0|ecu|es with up to five torsional ang]eS, the conforma-
most no volume differences and the shape is roughly similatjonal averages could be calculated exactly by exhaustive

We may then expect that the crossed virial coefficient mayenymeration, while those with more than five torsional
be approximately given by the following equation, denotedangles required a MC averaging.

evaluated approximately, by randomly selecting pairs of in- (Ltt..t d
+

©)

C. Empirical estimation of B,

as Approximation 1: In the next section we present the results of this work.
Bj=(B;+B)/2. (6)  lll. RESULTS
. . _ We shall start presenting results for the Flory model.
By replacing Eq/(6) into Eq.(5) we obtain: There are two questions which we would like to answer

concerning the second virial coefficient of hard alkanes,
q namely, (i) how sensitive is it to the conformation of the
Bo= 2, xBj;. (7)  chain?; andii) how sensitive it is to the effect of branching?
=t The first question tries to explain the effect of flexibility,
) . while the second one tries to explore the differences between
Let us now define the noonspherlcny parameter of CoNyjitterent isomers. Let us now focus on the first issue. In Ref.
formeri, o, by the relatior 18 the second virial coefficient was evaluated for different
conformers of harch-alkanes. Moreover, the exact values

Bii /Vi=1+3a;, (8  were compared with the approximated values obtained
from convex body theory as described in the previous sec-
whereV; is the molecular volume of conformér tion. The agreement was found to be good. Here, we shall

In Ref. 17 we propose a methodology to estimatdy  therefore focus on branched alkanes, for which no result has
using CBG which we shall denote as Approximation 2. Ac-been so far reported.
cording to this methodology, the nonsphericity of a linear In Table |, we present the second virial coefficient for
chain conformer may be estimated by means of standardifferent conformers of the molecule of 2-methyl pentane
convex geometry relations, provided that the mean radius adind 2,3,4-trimethyl pentane. These results were obtained by
curvature of the conformeR,, is considered as that of an fixing the conformation of the alkane and determining the
equivalent parallelepiped. This leads to the following equasecond virial coefficient between two identical conformers as
tion: if they were considered rigid bodies. As it can be seen, the
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TABLE I. Second virial coefficient for 2-methyl pentane and 2,3,4 trimethyl pentane conformers in udits of
B is the exact second virial coefficierS®® is the CBG prediction proposed in this work," is the

2

prediction using the method proposed by Alejandtal. and «; is the exact nonsphericity parameter of each
conformer. The number of carbon atoms three bonds apart which are in a relative configuration of type gauche
is denoted as;. The conformers are represented by the conformation of the carbon atoms of the main chain.

conformer Ng BS BSBC BS'® @

2-methylpentane

tt 1 10.184 10.089 10.293 1.346
tg~ 2 9.942 9.883 10.062 1.311
g gt 2 9.322 9.281 9.436 1.241
gtg* 2 9.832 9.796 9.974 1.293
g9 3 9.082 9.087 9.218 1.205
2,3,4-trimethylpentane

tt 4 12.592 12.500 12.859 1.310
tg* 5 12.964 12.873 13.286 1.335
tg~ 5 12.371 12.315 12.663 1.285
gtg* 6 12.290 12.211 12.575 1.277
gtg” 6 11.715 11.666 11.969 1.227
gg* 6 12.322 12.247 12.602 1.282

second virial coefficient changes significantly from one con<1) For alkanes with the same number of carbon atoms, the
former to another, usually decreasing with the number of second virial coefficient decreases when going from the
gauche bonds. It is also clear that, as the number of gauche n-alkane to the branched alkane. This effect increases as
bonds in the molecule increases, the molecule becomes more the number of branches increases.
spherical(i.e., the nonsphericity parameter takes lower val-(2) For two branched alkanes which differ only in the loca-
ues. The convex body method proposed is able to grasp all tion of the branch, the one with the branch closer to the
of this features and the predicted values are in good agree- middle of the main chain will present a smaller value of
ment with the exact ones.
We now focus on the second issue, i.e., the variation of methyl pentane and 3-methyl pentane or 2,2 dimethyl

the second virial coefficient with branching. In Table II, we

the second virial coefficienfcompare for instance 2-

pentane and 3,3 dimethyl pentane

present results of the second virial coefficient for different(3) Two methyl groups on a certain carbon provoke a larger
hard alkanes. By comparing molecules with the same num- reduction than an ethyl group on the same carbon atom
ber of carbon atoms, the following conclusions can be ob- (compare for instance 3,3 dimethyl pentane and 3-ethyl

tained:

pentang

TABLE II. Second virial coefficients of several branched and linear alkanes in units dfotation as in Table
I. The symbolS denotes the spatial configuration of the asymmetric carbon atom.

Alkane ngct BSBG Béle ;
n-butane 6.622 6.585 6.658 1.212
2-methyl propane 6.529 6.441 6.571 1.193
n-pentane 8.425 8.348 8.487 1.293
2,2-dimethyl propane 7.993 7.810 8.098 1.218
2-methyl butane 8.115 7.993 8.202 1.239
n-hexane 10.392 10.385 10.474 1.377
2,2-dimethyl butane 9.500 9.402 9.672 1.245
2,3-dimethyl butane 9.593 9.492 9.751 1.259
2-methyl pentane 10.062 9.986 10.181 1.328
3-methyl pentane 9.806 9.751 9.944 1.291
n-heptane 12.531 12.505 12.614 1.464
2,2,3-trimethyl butane 10.910 10.763 11.174 1.255
2,2-dimethyl pentane 11.609 11.438 11.812 1.346
3,3-dimethyl pentane 11.072 10.976 11.324 1.275
3-ethyl pentane 11.528 11.439 11.727 1.335
n-octane 14.806 14.892 14.909 1.548
2,2,3,3-tetramethyl butane 12.198 12.098 12.588 1.249
2,2,3-trimethyl pentan®) 12.791 12.685 13.117 1.318
2,3,3-trimethyl pentane 12.536 12.475 12.889 1.288
3-ethyl,3-methyl pentane 12.677 12.662 13.024 1.304
2,3,4-trimethyl pentane 12.884 12.794 13.198 1.329
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TABLE lll. Second virial coefficients in units of the average molecular volume for several models and mono-
mer lengths. The numbers in parenthesis are a measure of the uncertainty as measured by the standard deviation
of the calculationsV, is the average molecular volume in unitsd, « is the average of the nonsphericity
parameter. Rest of the notation as in Table I.

N v BSYV BSEOV BYe/V a
Flory model
10 3.22042) 6.1514) 6.2442) 6.1901) 1.717
30 9.19542) 10.982) 11.561) 10.442) 3.302
60 18.159%7) 16.937) 18.006) 15.34) 531
100 30.11018) 24.1(6) 24.86) 20.64) 7.71
200 59.989() 39.542) 37.81) 30.916) 12.85
400 119.749(@) 65.61) 57.43) 46.64) 21.60
600 179.506(%) 89.432) 72.92) 59.220) 29.50
Open model
10 3.26391) 6.5352) 6.6661) 6.5632) 1.845
30 9.35123) 12.244) 13.102) 11.682) 3.748
60 18.48191) 19.901) 21.03) 17.64) 6.298
100 30.65661) 29.31) 29.66) 24.1(8) 9.431
Long model
10 5.2360 14.4Q) 14.8713) 14.0714) 4.474
30 15.7080 33.98) 35.386) 29.94) 10.98
60 31.4159 60.3) 58.62) 47.32) 19.77
100 52.3599 92Q) 82.013) 65.24) 30.42
Pearl-necklace-like model
10 5.2360 12.5) 13.046) 12.363) 3.85
30 15.7080 248) 26.36) 23.24) 7.92
60 31.4159 398) 41.086) 35.084) 12.83
100 52.3599 56.2) 56.536) 47.594) 18.61

The results of Table Il show clearly the big differences(1) The increases of the bond length or bond angle provokes
in the second virial coefficient between linear and branched  an increase in the value @&,/V. In other words, the
alkanes. For instance, for alkanes with elght carbon atoms, molecule becomes more anisotropic when increasing ei-
the variations irB, can be of up to 20% and differences are  ther the bond length or bond angle. These trends were
expected to be larger for longer chains. . anticipated in Ref. 17, based on our methodology to es-

Once more, comparing the numerical valuesSefwith timate virial coefficients from convex body theory but it
those obtained by using CBG, it can be seen that the agree- s confirmed here by exact numerical determination of
ment is quite good. We have also implemented the method-  he virial coefficients.
ology proposed by Alejandret al® (which differs from (2) The estimates of the second virial coefficient are quite
ours in the choice of the equivalent convex body from which good for all the models, thus showing that the method-

the mean _radius Qf curvature is takemn general, the treat- ology proposed is quite general and can be successfully
ment of this work is somewhat better than the latter method. <o for general chain models, regardless of the bond

We shall analyze now the effect_ c_)f changir_wg the _bond length, angle or torsional energy.
length or bond angle on the second virial coefficient of linear
chains. In Table Il results are presented for the Flory model ~ From the results of Tables I-Ill it is clear that the con-
as described in the previous section, for chains with a numvex body methodology proposed to estimate the second
ber of carbon atoms in the range 10—600. We also show, fovirial coefficient is reliable. This success is a consequence of
chains with up to 100 monomers, the results obtained fotwo facts. The first is that the second virial coefficients are
several modifications of the Flory model, namely, a modelcorrectly predicted for the different conformers of a given
with the bond angle increased to 120 degré@gen modgl  alkane, as was shown in Table I, while the second is that the
and a model with the bond length increased.to=1 (Long  approximation represented by E@) is indeed excellent.
Model). Also in Table Il we present results for the pearl- To show that this is so, we present Table IV, where
necklace-like model described in the previous section. Irexact results for the crossed coefficients of a few pairs of
Table I, the exact and predicted second virial coefficientsconformers ofC,q are compared with those obtained from
are shown in units of the molecular volume, so that the reApproximation 1. The agreement is good, the typical error
sults of the different models may be compared without re-being of about 1.5%. We also show a comparison between
gard to the change in volume. (1) the average of 45 exact crossed virial coefficieBs,

Inspection of Table Il leads to the following conclu- obtained from a randomly selected sample of 10 conformers,
sions: and(2) the average of the correspondingB@'s, for several



J. Chem. Phys., Vol. 109, No. 13, 1 October 1998 L. G. MacDowell and C. Vega 5675

TABLE IV. Test of Approximation 1 for the Flory model. The approximation is tested for a few pairs of
conformers ofC,q,. N, number of carbon atom&3“', exact second virial coefficient for conformierBf™®,

exact crossed second virial coefficient for the chosen pair of conforB#ts™, estimate oB;; from Eq. (6).

% err, mean percent error. We also present resilts 0,60,100,200) for the exact average of the 45 different

pair of conformers that can be obtained from a random sample of 10 conformers. This average is compared to
the value predicted by E@6) (Approximation 1. The second virial coefficients are given in unitsdf

N BﬁXC[ Bjej)(c[ BiEjXCI Bie}pprox % err
200 2508 2630 2335 2342 0.3
200 1712 2506 2149 2109 1.9
200 1712 2111 1942 1912 15
200 2660 1712 2158 2186 1.3
200 2660 2506 2502 2583 3.2

30 - - 101.8(5) 102.1 (5) 0.3

60 - - 3054) 305(4) 0
100 - - 7298) 7328) 0.01
200 - - 223527) 223029) 0.2

chain lengths. As it can be seen, the agreement is quite gooWl, S andR replaced by their mean values and the results are
Notice that the error is now smalléof about 0.2%than for  shown in the third column of Table V. The agreement is seen
individual pairs of conformers. This is a consequence of canto be reasonable but it deteriorates considerably for large size
cellation of errors, as individud;; are sometimes overesti- differences. On the other hand, the following empirical equa-
mated whereas other they are underestimated. We can cotien is seen to predict the results with an error of less than
clude that Eg.(6) is an excellent approximation for 5% as it can be seen in Table V:
estimating the crossed second virial coefficient between two Vv
different conformers of the same molecule. Moreover, ifone  B,,=1 s
compares the average obtained from the calculation &;10 Va
alone(column labeled ag{"™*in Table IV) with those of Equation(12) was obtained after an algebraic analysis of
the first part of Table IIl, it can be seen that the average of 1Gq. (39) of Ref. 17. In turns out that the approximation given
Bji alone is already a very good estimate of the acBhs by Eq.(39) of our previous work’ contains implicitly a pre-
calculated from an average of tig; of 2000 pairs of con-  scription for B;, of the mixture which is just that given by
formers. This surprising result will be used in the next sec£q. (12). Notice that Eq.(12) reduces to Eq(6) when the
tion to estimate the second virial coefficient of chains withtwo molecules have the same volume as it is almost the case
up to 1000 monomers. for two conformers of the same chain. The good results of
We have compared th®, obtained for the pearl- Eq.(12) explain the success of the EOS for mixtures pro-
necklace-like mode(see Table I} with those of the true posed in Ref. 17. Equatiof12) is quite successful in predict-
pearl-necklace model as obtained in Refs. 15, 33. For thihg the crossed second virial coefficient of chains with large
true model, one obtain®,/V=12.75, 25.17, 40.23 and differences in size. However, for true convex bodies with
57.81 forN=10, 30, 60 and 100, respectivelthe results |arge differences in sizé.e., mixtures of hard spheregq.
were obtained by interpolation whenever requjréds it can  (12) is poor whereas in this case Ed.) is exact.
be seen, the results for the two models are quite similar.  The results presented so far have illustrated the role of
Although this is somewhat expected, it is certainly Surprising;onformation, branching and geometrical parametband
that both models agree so closely. Recall that the modelgngth, angle on the second virial coefficient. Moreover, it
differ in the fact that the bond angle was fixed in our calcu-has been shown that the methodology proposed previously
lations, whereas the true model is fully flexilfles far as the gives good estimates of the second virial coefficient of
spheres do not overlaand that we use the RIS approxima- chains with up to 100 monomer units, while it reduces the

tion (only three angles are used for each torsional degree afost of the computations by several orders of magnitude.
freedom), whereas the true pearl-necklace model can adopt

any value of the torsional angle.
Finally, we have evaluated numerically the second virialTABLE V. Crossed virial coefficients in® units for alkanegas described
coefficient for pairs oh-alkanes(as described by the Flory by the Flory model of different length.Bf;" is the exact crossed virial
mode) of very different length(i.e., C,+ Cgo, Ca+Cioo coefficient.BSEC is the estimate given by E¢L1) andB$5™ is the estimate
- N ' iven by Eq.(12).
C4+ Cyg0, andC,+ Cyqo. The results are shown in Table V, given by Eq.(12
along with the predictions obtained from two different meth-  vixture et BCEG Pl
ods. The first one is based on an exact equation foBthef

. (12

2
an_l + By

: , 20 Ca+Ceo 53.546) 53.90 53.96

two convex bodies, 1 and 2, of different siZe: e a7ad) o1 o
Bi,= %(V1+ V,+ SR+ SRy). (11 C4+Coo 170.12) 154.3 166.5
Ca+Cago 336.43) 296.6 323.1

We have used this equation for alkanes of different size, with
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TABLE VI. Interpenetration factors for the Flory and for the pearl-necklace-like model. The second and third
columns refer to the Flory model, while the rest refers to the pearl-necklace-like mi88eis the mean square
radius of gyration(in units of d?) andB, is the second virial coefficient in units df.

N (s o B> () o
100 21.61) 0.3255) 2961(7) 54.72) 0.3293)
200 51.54) 0.2884) 976925) 130(1) 0.2964)
400 120(2) 0.2688) 32 480120 301(2) 0.2794)
600 197(1) 0.2613) 65 3204240 48911) 0.2712)
800 - - 108 0681102 684(4) 0.2715)
1000 - - 163 3681631 89912) 0.2724)

One obvious question which arises is whether the methodothe B, for the latter model for chain lengths of up to 1000
ogy proposed, based on CBG, correctly predicts the secormtionomers. Thd, for chains of up to 600 monomers were
virial coefficient of polymers(i.e., very long chains We  calculated as explained in Sec. Il A, while those of chains of
shall analyze this question in the following section. 800 and 1000 monomers were calculated by averaging 250
B;; . As discussed in the previous section we believe that this
procedure provides an accurate estimate of the second virial
coefficient.

The study of the virial coefficient of very long hard In Fig. 1, ¢ is plotted for the Flory- and the pearl-
chains has interest per se. Experimentally, the osmotic se@recklace-like model. As can be seef,seems to reach a
ond virial coefficient of polymers under good solvent condi-constant value of 0.26—0.27 for both models, in good agree-
tions can be measured and it is thought that it behaves as theent with renormalization group thedRand with previous
second virial coefficient of a hard long chaf™ From a  numerical worl®
computational point of view, the calculation of the virial co- According to Eq.(13), B, scales agS?*)%2 In good
efficient of hard chains presents at the moment some practsolvent conditiondi.e., for hard intramolecular interactions
cal difficulties. With the computers now available, the limit it is well known that(S?) scales as:
in the numerical calculation seems to be located at about 500
monomer units>*®~%Although this is a large number, it is (S?)xN2Y (14)
still small compared to the number of monomers of typical ’
polymers(i.e., 1000-1 000 OQOTheor_etlcaIIy, de Genn%"s- . whereN is the number of monomer units. The best estimate
has developed a model for the scaling of the second viria f » now available is 0.588' We checked the scaling law

coe{flment Of_ velry Iolng Ic?a%ss.&lgé(perlmeriﬁaWork ?nd re(:j— for the mean squared radius of gyration for the chain models
cent numerical - calcuiatio seem fo- confirm ~de %f this work and found excellent agreement with Efj4)

IV. THE VIRIAL COEFFICIENT OF VERY LONG CHAINS

Gennes' ideas. In this section we analyze whether the CBG 1o \a16,~0.588. Therefore, according to de Gennes,
methods can predict correctly the scaling laws for the secon scales as:
2 .

virial coefficient of chains.
In Table lll, the second virial coefficient for the Flory

model with up to 600 carbon atoms was presented. It can be BN o N7 (15
seen that, although the convex body methodology is quite
successful for molecules with up to 100 monomers, it fails
for bigger molecules. As it will be shown now, this is due to 0.34 . r . T T
the fact that the CBG methodology predicts an incorrect scal-
ing.
According to de Gennes, the ratio of the second virial %% 1\ o= Pear recklce e mode l
coefficient of the chain divided by the mean squared radius
of gyration to the 3/2 power yields a constant in the limit of 030 | ]

very long chains. This behavior is usually described in terms
of the so-called interpenetration factor, defined by the fol-

lowing ratio: 0.28 | . _
=2, (13 oz | I ]
(4m(S%)) :
where(S?) is the mean squared radius of gyration.
Evidence that Eq(13) is correct comes from experimen- 024 = 250 200 =0 p— prn 7000

tal work and from recent numerical calculations®38 as N

well as from our own results. 2 . FIG. 1. The interpenetration factap for different values ofN and two
In Table VI, we show thQS > E_md ‘ﬁfor the Flory'“ke polymer models. Full line: pearl-necklace-like model; dashed line: Flory
model and for the pearl-necklace-like model. Also shown arenodel.
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and our results support this conclusi@n agreement with
previous work by other authorsWhich is the scaling law
predicted by the convex body treatment? According to this
treatment:

1.0 |

0.8

RS
1+355

3V (16)

)OCRS os |

BZZV(
Now, both the molecular surface and volume scaldlas
whereas the mean radius of curvature as obtained from our
methodology scales as the mean radius of gyrasee fur-
ther discussion of this issue in Appendix.B herefore, the

CBG predicts:

BZOc N1.588

04 |

02 |

7

Numerical analysis of the scaling law of our estimate8gf
from the CBG was found to be consistent with Efj7). By FIG. 2. Average site—site correlation functipas defined by Eq(18)] at
Comparing Eq.(17) with Eq. (15) one concludes that the zero den_sity for the pearl-necklaceflike model with@ﬁlid Iine)., 30(!ong.

. . . dashed ling and 60(short dashed linemonomer units. The site—site dis-
sca_llng law predicted by the_ CBG m%tzhodqlogy to eStImat%ancer is scaled by the square root of the mean square radius of gyration of
B, is wrong. When the Alejandret al** recipe is used t0  the molecule(s?)Y2
predict the mean radius or curvature, the same qualitatively
wrong behavior is obtained. In fact, the predicted virial co-
efficients are low for very long chains, which can be under-(3) At zero density the site—site correlation function reaches
stood by looking at the different scaling laws presented by ~— an asymptotic form for large values bfwhen the site—
Eq. (15) (right) and Eq.(17) (wrong. We have also tried to site distance is scaled by the the mean radius of gyration.
take the mean radius of curvature of the chain from another
convex body, as for instance a hard ellip4didith three
different lengths for the main semi-axes, but the results d
not improve. In fact, according to E¢L7), the convex body
ideas fail to predict the scaling law of the second virial co-

e.

efficient of very long chains, regardless of the choice of th virial coefficients and site—site correlation functions of al-

convex pody_from which the mean Tad'us of Curvature.'skanes(linear and branchedobtained in this work will be

taken, since it always leads to a radius of curvature which . ) ) :
: . . u&ed for the implementation of this perturbation theory.

scales as the mean radius of gyration. However, as describe

in the previous section, it can be used successfully to predict

the virial coefficients of chains with less than 100 monomerv' CONCLUSIONS

units._ _ _ _ _ _ In this work we have computed numerically the second
Finally, let us discuss briefly the site—site correlationvirial coefficient for hard models of both linear and branched

function in the limit of zero density for some of the chains of alkanes. It is found that branching reduces the value of the

2.0 3.0 4.0
r/<&>"%

1.0 5.0

We have also obtained the individugl, at zero density
(gor the hard alkane models considered in this wdikear
and branched These site—site correlation functions are
needed for the implementation of the mean field perturbation

theory of alkanes presented in the following paper. Second

this work.[The reader is referred to Appendix(@ethod }
for details of the calculationkLet us denote by, (r) the
site—site correlation function between ditef one molecule

second virial coefficient when compared to a linear chain
with the same number of carbon atoms. When branching
occurs in the middle of the chain, this decrease is more pro-

and sitel of another molecule when averaged over all pair ofnounced. Furthermore, when branching occurs in a given

conformers. Although the behavior of the individ@(r)

position, two methyl groups reduces more efficiently the sec-

has some interest, it is obvious that for long chains it is morend virial coefficient than an ethyl group. The results of this
interesting to discuss the behavior of the site—site correlatiomork show that branching changes substantially the second
function averaged over all pair of sites. This site—site correvirial coefficient of hard alkane chains. It is expected that

lation function is defined as:

1 N N o
9N =1p 2 2 Gulr). (18
k=11=1
In Fig. 2 g(r) is plotted for the pearl-necklace-like
model whenN=10,30,60. Some obvious features are:

(1) The value ofg at contact (=0o) decreases with the
length of the chain. In fact, it seems to go to zero for
very long chains.

(2) The correlation hol¢whereg(r) is less than 1 by more
than 29 is of the order of three times the mean radius of
gyration of the molecule.

this difference will also be reflected in the equation of state.
This expectation is born from the fact that a very good EOS
for hard n-alkanes has been recently proposed where the
solely knowledge oB, was enough to predict the compress-
ibility factor in all the density range. Agreement between this
EOS and simulation was very good for linear chains. We
expect this to be also true for branched alkanes.

A simple prescription to estimate the crossed virial co-
efficient was provided and good agreement with the numeri-
cal data was found. Virial coefficients for a pearl-necklace-
like model were also determined. In this model the bond
angle was fixed and only three discrete values were allowed
for the torsional angles. A comparison was made with a
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model with no restrictions on the bond and torsional anglesyherek is a unit vector along the axis. Subtracting(k’ from

Differences between both models were very small.

i

it may be trivially shown that the condition for overlap-

A methodology based on convex body geometry is proping of the spheres is given by:

posed to estimate the second virial coefficient of chains. It
has been shown that this methodology predicts correctly the

né<+(o?—b2)?— Az, (A2)

second virial coefficients of the different conformers of where

branched alkanes. For linear chains this was also shown in

previous work. The second virial coefficient between differ-
ent conformers can be also correctly estimated from a simple
prescriptioni.e., Eq.(6) of this work]. These two facts lead

0__0__0
Az, =z —z,

bZ=(xP—xQ) 2+ (y)—yp)2.

to a quite good estimate of the second virial coefficient ofok is the well-known impact parameter of collision theory

linear and branched alkanes. The method seems to woid the plus and minus sign in the first term of the r.h.s.
properly for chains with up to 100 monomer units. For describe whether the collision occurs at the right or at the left

longer chains the methodology fails and the scaling law oPf spherek, respectively.

the second virial coefficient predicted by this approximate
method is not correct.

Let us now divide all the possible pairs of atofisl},

into three different categories, depending on the number of

Finally, some results were presented for the site—sitgoots they have in EqA2):

correlation function of the pearl-necklace-like model in thel.

limit of zero density. It is shown that the contact value of the
site—site correlation function tends to zero as the length of

the chain increases. Also the region where the site—site cor-

relation function is less than one increases with the size of

the chain, and it is roughly of the order of several times the2

mean radius of gyration of the molecule.

The results presented in this work will be used in the
perturbation theory of alkanes proposed in the following pa-
per.
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APPENDIX A: THE MAYER FUNCTION OF 2.

POLYMERS FROM A COLLISION ALGORITHM

The algorithm we use in this work is based on the fact
that the history of all the collisions of two conformers at

fixed relative orientation as they are moved along the inter3_

molecular center of mass vectd®cy, may be determined
by a single evaluation of the interatomic distances. In this

3.

Those pairs that will never collidgo roots, which we
may ignore. These pairs are determined from either of
two conditions:

(@ by>a?,

(b) Az);>0 ando?<Azp+b?,.

Those pairs that initially overlane roo}, which may be
determined from the condition®>Azp+bZ . For each
of these pairs we calculate the valuemfh,,, such that
overlap no longer occurs.

Those pairs that will eventually overlafiwo roots,
which are determined from the conditiarf<Azg,+ b,
and A22|<0. For each of the pairs in this group we cal-
culate, (i) the value ofn, my,, for which overlap will
begin to occur andii) the value ofn, o,,, where overlap
will stop occurring.

Once the set§hy}, {m,} and{oy} are determined, the

Mayer function for the orientatiow; ,; may be evaluated
for all the nodes oRcy, Rewn, by the iterative procedure
described below:

1.

If {hy} is not an empty set, find its biggest elemem,
and setf(Rgy,n) = —1 as long asi<h;; .
If {hy} is an empty set,

(@ find the smallest element ofmy}, m; and set
f(Rcm,n) =0 as long asn<my;,

(b) setf(Rcm,n)=—1 for all n such thatm;j<n<o;; .

Update the set ofhy} by including those elements of

{0y} such thatm,<n<o,,. Also, exclude these ele-
ments from{m,,} and{oy,}.

way one can reduce the computational cost with respect tg Repeat the procedure unfiily}, {my} and{o} become

traditional methods by as many times as there are nodes in

Rem-
Consider two conformer$,andj, whose center of mass

empty sets.
The algorithm described is useful for a system of hard

is placed at the origin of a laboratory reference frame. LeSPheres butit may be easily extended to molecules where the

{rYy and{r"} be the set of initial coordinates of the spheres
of conformers andj, respectively, for a given relative ori-
entation defined by; and w; .

interaction site is a hard sphere plus a square well.

APPENDIX B: SCALING LAW OF B, AS OBTAINED

Let us now translate the center of mass of conforner From CONVEX BODY GEOMETRY

along thez axis, in small steps of length The coordinates
of atoms in this molecule aftar steps are simply given by:

In this Appendix we derive the scaling law &, as

predicted from the empirical method proposed in Ref. 17 and

r'=rP+ngk, (A1)

used in this work.
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A look at Eq.(10) shows thaBz_shouId scale_a‘s{—a. On T _
the other hand, E(9) shows thatx scales aRSV, since gk,(r)—f 92(Rrer, @i, @) Pra(Rrer, 01, 0551
the second member of the right hand side is a small correc-
tion term. Now, one expects that bohand V be linear eredefefd q -
functions ofN, so that, essentiallyg scales aRR. One is T2 dr SR €D

thus lead to the believe that any convex body approach will _ :
lead to a scaling law foB, of thgform' y app whereR,¢ is the distance between the reference pojote
2 .

in moleculei and the other in moleculp which define the
BZMV.E_ (B1) position of the molecules while; and w; are vectors defin-
_ ing their orientation;g, is the molecular pair correlation
In the approach proposed in Ref. 17, the valu®dbra  fynction andp,, is the fraction of molecules found in an
given conformer is taken to be that of a parallelepiped withinfinitesimal interval aroundRf, »; ,;), such that the dis-
sides chosen such that its p.rincipal moments of inertia matcthnce between sitdsand] lye in the intervalr +dr]. This
those of the conformer. Using Eq@3)—(26) of Ref. 17 it gquation may be derived by equating the number of mol-
can be shown that this leads to the following expression fogcyles with sitesk,l at a distance as obtained from the
R definitions ofgl, andg,.
3 Equation(C1) can be implemented numerically in two
R=V3N (Wl L= VLt L=y L+ = 1), different ways depending on the choice of the reference point
(B2) used to defme the Iocgtlon of t'he molequ[e. Usually, the cen-
ter of mass is the choice. In this cagy,; is just the distance
wherel,, I, andl, stand for the three principal moments of between the centers of mass of the molecules, Rey
inertia of the conformer. (Method 1. However, another possible choice is to uselsite
Now, both theoretical consideratidisand numerical as the reference point of moleciileand sitel as the refer-
calculationd® show that ad\N goes to infinity, the ratio of the ence point of molecul¢ (Method 2. Let us describe briefly
principal moments of inertia of a flexible molecule reaches ahe implementation of both methods:
constant, well defined value. This implies that each of the = Method 1. We divide the distance between the center of
square roots of EqB2) scale in the same way and we needmass,Rcy, in M small intervals of sizeAR¢y and use a
consider just one of them in order to study the scaling besimple trapezoid rule to integrate oMggy, for each different
havior of R. Using Eq.(27) of Ref. 17 for the principal orientation. Mathematically, we express this as:
moments of inertia, and considering only the first square root i
of Eq. (B2), one gets: gwi(r)

2
RCM,n
2 )

M
z. (B3) :nz:l 92(Rem,n s @i, @) Pri(Remyn » i, 0 51) ;

In terms of the mean radius of gyration, this scaling behavior (€2
may be written as: where the brackets denote an orientational average. This ori-

5 entational average is performed with,,; relative orienta-
Rex \/S— (B4) tions. In Eq.(C2) the indexn runs over theM values of
So that one expects th& will scale as(S*)Y2 This  Rcwm- Since we are conside_ring the zero density Iirg'g,is
leads to the following scaling behavior f&: either null or unity, depending on whether there is overlap
between the molecules or not, whipe, takes the value of 1
B, N(S%) 2o N1 7o NT-588 (B5)  if sitesk and| are found in the intervalr,r + ARgy] and

h Z€ro otherwise. This choice fqu,, ensures that the ratio of
éde to dr that appears in EqC1) becomes unity. An expres-
sion which differs from Eq(C2) only in the quadrature rule
was proposed for the first time by Alvaret al** and by

Actually, Eq. (B1) shows that any convex body approac
with a mean radius of curvature scaling as the mean radius
gyration will lead to a wrong scaling behavior fBs,.

Anta*®®
Method 2. In this cas® is justr andpy, is obviously
APPENDIX C: CALCULATION OF THE SITE-SITE equal to one. Accordingly, EqC1) can be rewritten as:
CORRELATION FUNCTIONS -
gi(r)=(gz(r,w;,))). (€3

Let us start computing the site—site correlation function
between two molecules of fixed geometry. Later, we shallt is straightforward to show that the average of the r.h.s. of
show how to perform the average over all pairs of conform-the above equation is related to the Mayer function, as mea-
ers. The site—site correlation functiag)) , between sité of ~ sured from reference points &tand|. Thus, in order to
moleculei and sitel of moleculej (wherei andj may be for  calculategy,(r) one can just as well use the efficient algo-
instance two different conformerscan be obtained from the rithm described in Appendix A. This alternative may turn out
pair correlation function of the molecules by the following to be quite convenient if the number of monomers of the
equation: molecule is small.
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To check both methods we computed the zero density?C. Vega, S. Lago, and B. Garzon, J. Chem. P 2182(1994).
limit of the site—site correlation functions for the simple hard *°P. J. Flory Statistical Mechanics of Chain Moleculéd/iley, New York,
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Once the site—site correlation function between sKes 2o, conroy, J. Chem. Phyd7, 5307 (1967,
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geometry there is still the problem of obtaining the confor-2*Mm. p. Allen and D. J. TildesleyComputer Simulation of LiquidClaren-

mational average, according to the following equation:

i=q j=q
gkI:izzl 1,21 XXy - (CH

don, Oxford, 198Y.

2N. Madras and A. D. Sokal, J. Stat. Ph$8, 109 (1988.

26, Hadwiger,Altes und Neues uber konvexe KorgBirkhauser, Basel,
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277, Kihara, Adv. Chem. Phys5, 147 (1963.
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