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The adsorption isotherms for diatomic ¯ uids in disordered porous media have been obtained
from grand canonical Monte Carlo computer simulation. A disordered porous medium, or
matrix, is prepared by quenching an equilibrium con® guration of spherical hard core mol-
ecules. In addition, canonical Monte Carlo simulations have been performed for equilibrium
binary mixtures that represent counterparts of quenched± annealed systems in question. For
the same chemical potential of diatomic molecules at a ® xed density of matrix species, the
structure and the density of the diatomic ¯ uid in the binary mixture and in the quenched
medium are very similar. This behaviour holds also for systems with attractive interactions in
the region of high temperatures. Observed similarity of the structural and thermodynamic
properties of the mixture and the corresponding annealed ¯ uid± quenched matrix system
permits the use of the thermodynamics of the mixture to evaluate some properties of
quenched± annealed ¯ uids. Calculations were made of the adsorption isotherm of the diatomic
¯ uid in a disordered hard sphere matrix using a successful theoretical equation of state for
mixtures, agreement with computer simulation data was excellent.

1. Introduction

During the last decade the study of adsorption of
¯ uids in pores of well de® ned geometry (slit-like and
cylindrical pores, spherical cavities) has received consid-
erable attention, such that at present we have quite a
good understanding of these systems [1]. However, in
recent years interest in the problem of adsorption in
disordered porous materials has grown considerably
[2± 17]. In these systems, the adsorbent is disordered
even on a molecular length scale. One example of micro-
porous material is silica gel, commonly used in experi-
mental studies of adsorption. Madden and Glandt [2]
were the ® rst to realize that the study of adsorption in
disordered porous materials could bene® t from the
advances of liquid state theory. In their seminal work
[2], Madden and Glandt considered a ¯ uid± microporous
adsorbent system as a binary mixture with one quenched
component (called the matrix) and an annealed com-
ponent representing a ¯ uid. From an analysis of the

Mayer cluster expansions for this system, a set of
Ornstein± Zernike-like (OZ) equations, denominated
commonly as the Madden and Glandt (MG) equations,
has been derived. However, Given and Stell [3, 4] have
shown, more recently, that certain graphs were missing
in the original derivation, and proposed the correct ver-
sion of the OZ-like equations, known as the Replica
Ornstein± Zernike (ROZ) equations.

Thermodynamic equations for adsorption isotherms
and other properties from the results of the ROZ equa-
tions have been obtained also [5± 7]. Since then, several
theoretical and simulation studies of the adsorption of
simple and complex ¯ uids in disordered microporous
media have appeared [8± 17].

Equilibrium ¯ uid mixtures and ¯ uids con® ned in
porous media evidently are di� erent types of system
that are described by di� erent OZ equations and require
di� erent routes for the thermodynamics. Surprisingly, it
appeared that some properties of quenched± annealed
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¯ uids and usual mixtures in the case of a large di� erence
in diameters of matrix and ¯ uid particles are very similar
[8]. A reasonable explanation of this similarity has been
provided in [8]. Very recently, Vega has performed a
cluster expansion analysis and shown that a mixture of
hard spheres and point-like particles and its quenched±
annealed counterpart (with hard spheres quenched) are
characterized by identical structural properties [18]. In
this work we will present computer simulation results
for this particular model which give further evidence
of the similarity of properties of the two systems. It
seems, however, that a similarity of properties of a
¯ uid mixture and the annealed ¯ uid± quenched matrix
system is not restricted only to the case of a large di� er-
ence in diameters of particles. Evidence for similarity
between the two systems composed of particles of
similar size has been obtained by Ford, Thompson
and Glandt [13], and for ¯ exible hard molecules in dis-
ordered porous media by two of us [14].

At present, the similarity between properties of a mix-
ture and their quenched± annealed counterparts is not
fully understood even for simple models. However, it
may have some important practical consequences. To
study mixtures is simpler than ¯ uids in microporous
environment. The similarity between both systems
means that one can apply successful theoretical
approaches for mixtures, available for a number of
systems, to study adsorption of ¯ uids in random
porous materials.

In this work we shall focus on the study of a mol-
ecular ¯ uid (a diatomic molecule) in a disordered
porous medium prepared by the quench of spherical
particles. We have many goals. First, we would like to
analyse in detail whether a similarity between mixtures
and quenched-annealed systems holds in the case of
molecular ¯ uids. Second, since very good equations of
state for mixtures of hard spheres and diatomics are
available [19± 24], the possibility of obtaining the
adsorption isotherms for molecular ¯ uids in a quenched
microporous environment from the theory of mixtures
will be considered. Since the diatomic molecule can be
considered as a product of in® nitely strong association
between monomers, the results presented in this work
may be of interest for the study of association within
porous materials. This area has received increasing
attention recently [17, 25± 27]. Moreover, we shall con-
sider hard core models and a model with attractive inter-
actions to see how our conclusions depend on the
presence of interparticle attraction.

The structure of this work is the following. In Section
2 we present the molecular models and details of the
simulations. Section 3 describes brie¯ y a theoretical
equation of state for mixtures of hard spheres and
hard diatomic molecules. In Section 4 the results of

our study are presented. In the ® nal section a discussion
and conclusions are given.

2. Models and simulation details

In this section the potential models used in this work
and the details of the simulations are described. The
models in question contain two components. Compon-
ent 1 is a ¯ uid of hard spheres of diameter D , and com-
ponent 2 is a ¯ uid of hard dumbbells (HD). The HD
consists of two tangent hard spheres of diameter s .
Therefore, the reduced bond length of the dumbbell is
L * = L /s = 1 where L is the bond length.

The interaction between two molecules of component
1 (spheres) u mm is given by:

u
H
mm (r ) =

0, r > D

¥ , r < D .{ (1)

where r is the distance between centres of spheres. The
interaction between two diatomic molecules is

u
H
ff = å

i=2

i=1
å
j=2

j=1

u
H (r i j ), (2)

where

u
H (r i j ) =

0, r i j > s ,
¥ , r i j < s .{ (3)

The summation in equation (2) runs over the two inter-
action sites of the diatomic molecule and r i j is the dis-
tance between the sites i and j of two diatomic
molecules. Finally, the interaction between the diatomic
molecule and the sphere is given by

u
H
mf = å

i=2

i=1

u
H (r i ), (4)

with

u
H (r i ) =

0, r i > (D + s ) /2,
¥ , r i < (D + s ) /2,{ (5)

where r i is the distance from site i of the diatomic mol-
ecule to the centre of the sphere. In the equations above
the superscript H denotes a hard core interaction. The
origin of the subscripts mm, f f and mf , used to label the
sphere± sphere, diatomic± diatomic and sphere± diatomic
interactions, respectively, will be clari® ed below. Three
types of hard core model will be considered in this work.
In model 1 (M1) D = s such that the sphere and the two
beads which constitute the diatomic molecule are of the
same diameter. In model 2 (M2) we choose D = 7s , such
that the diameter of the sphere is seven times larger than
the diameter of the beads of the diatomic. In model 3
(M3) we have assumed s = 0, such that component 1
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represents a ¯ uid of hard spheres with diameter D , and
component 2 represents point-like particles which
cannot penetrate spheres.

The last model considered in this study is denoted
M4. It is a modi® cation of M1 in which hard core inter-
actions are replaced by Lennard-Jones (LJ) ones. The
sphere± sphere, sphere± site and site± site interactions
become

u
LJ = 4e LJ

s LJ

r( )
12
- s LJ

r( )
6[ ]. (6)

The values of e LJ and s LJ used for the sphere± sphere,
sphere± diatomic site, and diatomic site± diatomic site
interactions are chosen to be equal. For this model the
reduced bond length of the diatomic molecule also is
unity (L * = L /s LJ = 1) where s LJ is the parameter
de® ning the LJ interaction. To avoid problems with
long range corrections to thermodynamic properties,
the LJ interactions were truncated and shifted at
r = 2.5s LJ.

The characteristics of the models studied in this work
are summarized in table 1.

Reduced densities will be de® ned as q *
1 = q 1 s

3 for
component 1 and q *

2 = q 2 s
3 for the diatomic molecules

(component 2), where q 1 and q 2 are the number densities
of spheres and diatomic molecules, respectively, and s is
either the size of beads of the HD or the LJ size par-
ameter in the model M4. In the system with attractive
forces (M4) the reduced temperature will be de® ned as
T * = k T /e .

Two physically di� erent types of system will be con-
sidered. The ® rst is an equilibrium binary mixture. In the
simulations of an equilibrium binary mixture the mol-
ecules of both components move within the simulation
box. The second consists of a quenched matrix made up
of spherical molecules (then the spheres are not moved

during simulations) in which the diatomic molecules
adsorb and equilibrate.

The equilibrium binary mixture was studied by canon-
ical N V T Monte Carlo (MC) simulation [28]. In the
course of simulation, the intermolecular structure has
been calculated. Also, the residual part of the chemical
potential of the diatomic molecule was evaluated by
using Widom’s test particle method [29]. Therefore, the
total chemical potential of the diatomic molecule was
obtained using the relation

¹2

k T
= ln (q *

2) - ln k exp (- b U
test) l (7)

where k . . . l denotes thermal average. Equation (7) can
be implemented readily. During the N V T MC simula-
tion a diatomic test particle has been inserted randomly
into the mixture from time to time. The interaction
energy of the test particle with the rest of the particles
of the system has been computed. In this way
k exp (- b U

test) l was evaluated. In the N V T simulations
of the systems denoted as M1, M2, M3 we always used
128 molecules of component 1 (the spheres). For M4
system, 256 molecules of the component 1 were used
instead. The number of diatomic molecules was chosen
to provide for molar fractions x 2 = 1 /3 and x 2 = 1 /2.
We performed 2 ´ 105 MC steps for equilibration and
106 MC steps for obtaining averages. Each MC step
consists of an attempt to displace all the particles of
the system. The sphere± sphere, sphere± site, and site±
site correlation functions were obtained during the
run. By site we mean the interaction site of the diatomic
molecule. The pressure of the system was computed
using the virial theorem. For the LJ system the internal
energy also was computed during the simulations. After
each 10 MC steps we performed 5000 attempts to
inserting a test diatomic particle to compute the residual
chemical potential.

Now let us describe the grand canonical Monte Carlo
(GCMC) simulations carried out for diatomic molecules
con® ned in a matrix of quenched spheres. First, an N V T

MC simulation of a system containing only spheres is
performed (for the M1, M2, M3 models these are hard
spheres whereas for M4 system they are spherical LJ
particles). Five di� erent equilibrium con® gurations of
spheres have been selected from these simulations. The
spheres preserve their positions, i.e., they remain ® xed,
during the rest of the calculations. Each con® guration of
spheres de® nes a random porous medium (matrix) in
which the adsorption of diatomic molecules (¯ uid)
takes place. Hence, the labelling mm (matrix± matrix),
� (¯ uid± ¯ uid) and mf (matrix± ¯ uid) has been used in
equations (1) ± (8) to denote the sphere± sphere, diatomic±
diatomic and sphere± diatomic interactions. For each
con® guration of the spheres we perform GCMC
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Table 1. Models considered in this work (H denotes hard
body interaction and LJ indicates Lennard-Jones inter-
actions). In models M1, M2, and M3 component 1 is a
hard sphere of diameter D , whereas component 2 is a hard
diatomic molecule formed by two tangent hard spheres of
diameter s . Obviously when s = 0 the diatomic molecule
reduces to a point. In model M4 the sphere± sphere,
sphere± site and site± site interactions are of LJ type with
the same value of s and ².

Model Interaction D s

M1 H 1 1
M2 H 7 1
M3 H 1 0
M4 LJ 1 1



[30], such that the adsorption isotherm for a particular
con® guration of matrix particles is obtained. The
adsorption isotherm gives the density of the diatomic
molecules con® ned in the random medium as a function
of the chemical potential, at a ® xed temperature. A
GCMC simulation is performed for each of the ® ve
independent con® gurations of matrix particles. There-
fore, for each thermodynamic state, the results reported
(concerning the structure and thermodynamics) corre-
spond to the average of simulations over ® ve indepen-
dent con® gurations of the matrix particles. The input
data in GCMC simulations are temperature, volume,
and chemical potential, and in our case the con® gura-
tion of the matrix particles. General details concerning
GCMC simulations can be found in [28, 30]. In each of
the GCMC simulations we performed 2 ´ 105 MC steps
for equilibration and 106 MC steps to collect the
ensemble averages. In the simulations an MC step con-
sists of attempts to displace and rotate (independently)
all the diatomic molecules in the system, and of attempts
to insert or delete a diatomic molecule approximately
every 100 trials of displacing the molecules. During the
simulations, the average density of the diatomic mol-
ecules, the sphere± site and the site± site correlation func-
tions have been determined. In the case of the LJ system
the internal energy of the diatomic molecule in the
porous media has been determined.

There are two main questions which we would like to
answer using the simulations. The ® rst is: are the struc-
tures of the diatomic molecular ¯ uid in the binary mix-
ture and in the microporous medium similar when the
chemical potential of the diatomic molecule is the same
in both systems? The second question is: are the densities
of diatomic molecules in the binary mixture and in the
microporous medium similar when both systems present
the same chemical potential for the diatomic molecule?
If the answer to this second question would be a� rma-
tive, then a route to determine the adsorption isotherm
may involve an equation of state (EOS) for the corre-
sponding mixture. In the next section such an EOS for
the hard sphere± hard diatomic mixture is presented.

3. Theoretical EOS for hard sphere± hard diatomic

mixture

Wertheim [19]and Chapman et al. [20]have proposed
an EOS for a multicomponent system of chains of tan-
gent hard spheres of the same diameter. Later, Jackson
et al. [21± 24] extended this equation for heteronuclear
chains (each chain is formed by tangent hard spheres
with di� erent diameters) and mixtures of chains. This
extension is usually referred to as bonded hard sphere
(BHS) theory and will be used in this work. We shall
describe this theory only brie¯ y, referring the reader to
[21± 24] for a more detailed presentation. The Helmholtz

free energy A , and the compressibility factor of the
system Z , for a mixture of hard spheres of diameter D

and hard dumbbells with L * = L /s = 1, and diameter s ,
given by BHS theory can be expressed as

m mixture = 1 ´ x 1 + 2 ´ x 2, (8)

Z =
p

q k T
= (m mixture)Z CS

- x 2 1 + q
d ln (g22 ( s ) )

dq( ) , (9)

A /N k T = A
ideal /N k T + A

res /N k T , (10)

A
ideal /N k T = ln (q s 3) - 1 + x 1 ln (x 1) + x 2 ln (x 2), (11)

A
res /N k T = m mixtureA

res
CS /(N s k T ) - x 2 ln (g22 ( s ) ), (12)

where x 1 and x 2 are the molar fractions of component 1
(hard spheres) and the component 2 (hard dumbbells),
respectively, q is the total number density of molecules,
and m mixture is the average length of the molecules in the
mixture. By Z CS = p V /(N s k T ) we denote the compress-
ibility factor following from Boublik± Mansoori± Car-
nahan± Starling± Leland (BMCSL) [31, 32] EOS of the
`unbonded’ mixture consisting of N s spheres. The
unbonded mixture is obtained by breaking (deleting)
bonds of the chains of the mixture (in our case the
hard dumbbell bonds must be deleted). The free
energy A

res
CS /(N s k T ) is the residual free energy per site

of the unbonded mixture given by the BMCSL EOS,
and g22 ( s ) is the contact value of the radial distribution
function between the monomers forming the dumbbell,
however, in the unbonded mixture. The expressions for
Z CS, A

res
CS and g22 needed to implement equations (9)±

(12) can be found elsewhere [21± 24].
For a particular case, in which the diameter D of

particles of component 1 is equal to s , the compress-
ibility factor and the residual part of the free energy
can be rewritten in a simpler manner:

Z =
p

q k T
= (m mixture)

1 + y + y
2 - y

3

(1 - y )3

- (m mixture - 1) 1 + y - y
2 /2

(1 - y ) (1 - y /2)
(13)

A
res

N k T
= (m mixture - 1) ln

2(1 - y )2

(2 - y )( )
- (m mixture) (2y - 3)

(1 - y )2 - 3(m mixture - 1) (14)

where the volume fraction y , and the average volume of
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the molecules of the mixture, V mixture are determined by

V mixture = x 1V 1 + x 2V 2, (15)

y = q V mixture . (16)

In equation (15), V 1,V 2 stand for the molecular volume
of components 1, 2, respectively. The residual chemical
potential of component 2 (dumbbells), ¹

res
2 , can obtained

from the thermodynamic relation

¹
res
2 /k T = ¶ A

res /k T

¶ N 2( ) T ,V ,N 1

, (17)

where N 1 and N 2 are the number of spherical and di-
atomic molecules, respectively. In the case when D = s ,
equation (14) has been used for A

res, whereas when
D /= s , equation (12) has been applied.

4. S imulation results

In this section we will present the results obtained for
the model systems described in the previous section.
First we shall comment brie¯ y on the conditions
chosen for our computer experiments. The packing frac-
tion (density) of spheres is the same in all cases, h = 0.1.
Thus, when the spheres are quenched they form a matrix
which can represent a porous material of high porosity
as, for instance, silica aerogel, which has a porosity of
95% [33]. Nevertheless, the purpose of this investigation
is not to mimic a speci® c experimental situation but
rather to explore the similarities between a diatomic
¯ uid con® ned in a random medium and the corre-
sponding binary mixture. The densities chosen for the
diatomic ¯ uid also are low. The e� ect of density on the

similarities between the con® ned ¯ uid and mixture will
be commented upon later.

In table 2, computer simulation results for the binary
mixtures M1 and M4 are presented. For a given number
density of spheres and diatomic molecules simulation
results for the compressibility factor, the residual chemi-
cal potential, and the interaction energy of the diatomic
molecule are given.

In table 3, simulation results for M1 mixture are com-
pared with the predictions of BHS theory. As can be
seen, agreement is quite good, both for the compress-
ibility factor and for the residual chemical potential.
This is not surprising since it has been shown previously
that BHS theory describes well the compressibility
factor of the M1 mixture [23]. Here we observe that
this agreement also is excellent for the chemical poten-
tial.

With the properties of binary mixtures M1 and M4
presented, let us now look for the properties of the di-
atomic ¯ uid in a disordered porous medium, from the
GCMC simulations. We shall start with the results for a
hard core system denoted as M1. As the input value for
the chemical potential in the GCMC simulations we
have used the values of ¹2 given in the ® rst column of
table 4. This value of the chemical potential is obtained
by adding the ideal term (ln (q *

2) ) to the residual chemi-
cal potential of the diatomic molecule (sixth column of
table 3). Now, the output of the simulation is the
average density of the diatomic molecules con® ned in
a disordered porous medium. This result is presented
in the second column of table 4. The last column of
table 4 gives the number density of dumbbells in an
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Table 2. MC results for the equilibrium binary mixtures denoted as M1 and M4 in table I. The
reduced number densities of spherical q *

1 and diatomic q *
2 molecules are presented. For M4

model simulations were performed for the reduced temperature T * = 2.5. For each state,
results are presented for the compressibility factor Z , the residual chemical potential ¹

res of
the diatomic particles and the interaction energy U 2 of the diatomic particles with the rest of
molecules in the system. N 2 stands for the number of diatomic molecules.

Model q *
1 q *

2 ¹
res
2 /k T Z = p /( q k T ) U 2 /(N 2²)

M1 0.190 986 0.095 493 4.064(1) 2.72 0
M1 0.190 986 0.190 986 8.139(9) 4.95 0
M4 0.190 986 0.095 493 0.275(1) 1.229 - 5.270(3)
M4 0.190 986 0.190 986 1.494(1) 2.006 - 6.988(2)

Table 3. Comparison between theory and simulation (MC) for the compressibility factor and
residual chemical potential of the diatomic molecule, in the hard sphere (1) ± hard diatomic
(2) mixture denoted as M1 in table I.

Model q *
1 q *

2 Z
MC

Z
theory

¹
res,MC
2 /k T ¹

res,theory
2 /k T

M1 0.190 986 0.095 493 2.72 2.66 4.064 4.05
M1 0.190 986 0.190 986 4.95 4.91 8.139 8.10



equilibrium mixture having the same number density of
spheres and the same chemical potential for the dumb-
bell as the quenched system. By comparing the last two
columns of table 4 we observe that, at the same chemical
potential, the number densities of diatomic particles in
the binary mixture and con® ned in the porous medium
are equal within the uncertainty of the GCMC simula-
tion results (the number density of spherical particles is
the same in both systems). The closeness between the
densities of the diatomic particles in the porous
medium and in the mixture, at the same chemical poten-
tial, is the central result of this work. It proves that the
adsorption isotherms of diatomic molecules in disor-
dered microporous media can be obtained from the
theoretical developments for binary equilibrium mix-
tures. Of course this is only an approximation, but the
results collected in table 4 show that it is a fairly good
approximation. Moreover, the results of table 4 give
further evidence of the fact that, for certain properties,
the con® ned diatomic particles in the quenched medium
and the binary mixture show a resemblance. The ® rst
indication of that was obtained in [8] for mixtures of
spherical hard particles. Further evidence was obtained
in [13], again for mixtures of spherical hard particles,
and in [14] for ¯ exible molecules in microporous
media. Now, in this work, we show that this is again
true for a sphere± diatomic mixture. The message of
table 4 is is that for the same number density of the
matrix particles and chemical potential of the diatomic
molecules the number densities of the diatomic particles
in the mixture and in the porous medium are very close.

The results presented so far emphasize the similarities
between the binary mixture and the quenched medium.
Does this similarity extent also to structural properties?
To analyse this point, ® gures 1 and 2 present the results
for site± site correlations functions. We have de® ned two

site-site correlation functions, namely the sphere± site,
gmf (r ) , and the site± site, g ff (r ) , i.e.

gmf (r ) =
1
2 å

i=1,2
g

i
mf (r ), (18)

g ff (r ) =
1
4 å

i=1,2
å
j=1,2

g
i,j
ff (r ), (19)

where the indexes i and j run over the interaction sites of
the diatomic molecule and g

i
mf and g

i,j
ff are the correla-

tion functions between a sphere and the site i of the
diatomic molecule, and between sites i and j of di� erent
diatomic molecules, respectively.

Figure 1 gives the results for the sphere± site correla-
tion function gmf (r ) in the binary mixture and in the
porous medium. The results shown in ® gure 1(a ) corre-
spond to the lowest value of the chemical potential (i.e.,
to the lowest density of diatomic molecules ). It can be
seen that the sphere± site correlations are similar in the
two systems. Figure 1(b ) shows the results for the
highest chemical potential (i.e., for the highest diatomic
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Figure 1. Sphere± site gmf correlation functions for the M1
model: solid line, binary mixture; and dashed line,
quenched media. Results for (a ) a low and (b ) a high
chemical potential of the diatomic molecule (see table 4).

Table 4. Average reduced density of the diatomic particles in
the quenched medium, q *

2,quenched , as obtained from
GCMC simulations for model M1. The chemical potential
used for the diatomic in GCMC simulations was obtained
by adding to the residual part presented in table 2 the
ideal contribution to the chemical potential. The reduced
number density of the spherical particles constituting the
matrix is q *

1 = 0.190986. The last column is the number
density of the diatomic molecule, q *

2,mixture, in the binary
equilibrium mixture with the same chemical potential as
the diatomic.

¹2 /k T q *
2,quenched q *

2,mixture

1.715 0.0935(5) 0.095 493
6.483 0.190(2) 0.190 986



density). The di� erences between the quenched system
and the binary mixture are clear: the contact values are
higher in the case of a partly quenched system; i.e. the
diatomic molecules tend to be closer to the spherical
obstacles in the quenched system rather than in the
binary mixture.

Figure 2 presents the results for the site± site correla-
tion functions g ff (r ) in the binary mixture and in the
porous medium and includes the results for (a ) the
lowest chemical potential (i.e., for the lowest density of
diatomic molecules) and (b ) for the highest chemical
potential. It can be seen that the resemblance of the
site± site correlations in the two systems is stronger
than for the sphere± site correlation functions.

The conclusions so far obtained from a study of the
hard core systems are:

(i) thermodynamic properties are quite similar in
the binary mixture and in the random media
for the same number density of matrix particles
and for the same chemical potential of the ¯ uid
(diatomic) particles.

(ii) the ¯ uid± ¯ uid correlation functions in the ran-
dom medium are quite close to those in the bin-
ary mixture; and

(iii) the largest di� erences between the two systems
(a diatomic ¯ uid con® ned in a random porous
medium and in a binary mixture) are in the
shapes of the ¯ uid± matrix correlation functions.

By analysing points (i) ± (iii), an obvious conclusion is
that thermodynamic properties of ¯ uids in con® ned
media depend mainly on the ¯ uid± ¯ uid correlations
and, to a minor extent, on the ¯ uid± matrix correlations.
Only in this way can points (i) ± (iii) be consistent. An
interesting observation in this context is that the com-
pressibility route to the thermodynamic properties of the
¯ uid in the porous media includes ¯ uid± ¯ uid correla-
tions only [5, 7, 8].

Let us now analyse whether the analogy between the
mixture and the ¯ uid con® ned in a random porous
material holds when attractive forces are present. For
that purpose we have performed simulations of an LJ
system, denoted as M4 (table 1). The simulations are
performed at T * = 2.5 to avoid the vapour± liquid coex-
istence curve of the mixture. Table 2 presents the results
for the binary M4 mixture. Table 5 results from GCMC
simulations for the number density and internal energy
of the diatomic molecules are presented. The input
chemical potentials used in GCMC simulations are
those of the diatomic molecule in the binary mixtures
presented in table 2 (by adding the ideal term to the
residual part). Again, it is clear that, for a given chemi-
cal potential, the values of the densities of the diatomic
molecule in the binary mixture and in the quenched
medium are close. The density of the diatomic molecules
is higher in the mixture than in the porous medium.
Di� erences between the mixture and the random
porous media are slightly larger than for the M1
system which means that attractive forces increase some-
what the di� erences between both systems. Neverthe-
less, these di� erences are not large.

As mentioned above, the densities considered in this
work are low: as density increases and correlations
become stronger we expect that the similarity between
the binary mixture and the con® ned system will diminish
for the hard body system and for the LJ system.

Additionally, we have performed GCMC simulations
where the matrix was an equilibrium con® guration of an
HD system, but where the ¯ uid± matrix and ¯ uid± ¯ uid
interactions were LJ. The results for this case are
denoted by M4* in table 5. The reason for performing
this calculation is that it is expected that the properties
of con® ned ¯ uid systems with attractive forces will
depend on the prequenching conditions of the matrix.
Our results show that the values of the density of the
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Figure 2. Site± site gff correlation functions for M1 model:
solid line, binary mixture; and dashed line, quenched
media. Results for (a ) a low and (b ) a high chemical
potential of the diatomic molecule (see table 4).



diatomics (adsorption isotherm) are not signi® cantly dif-
ferent from the results for model M4; nevertheless, the
internal energy appears to be slightly lower than for
model M4. Even in this case the adsorption isotherms
could be estimated successfully from theories of mix-
tures.

Let us now analyse the structural results for the LJ
potential. In ® gure 3(a ) the results for gmf in the mixture
and in the random media are presented. Figure 3(a )
corresponds to the state with the low chemical potential
of the diatomic molecule and ® gure 3(b ) to the state with
the high chemical potential. In ® gure 4 the g ff functions
are presented for both systems (a ) low and (b ) high
chemical potential. As in the systems of hard bodies
we again ® nd that ¯ uid± ¯ uid correlations g ff are the
same in the binary mixture and in the porous material,
but that the di� erences between the two systems are
larger in the gmf functions. Hence, this study of the
M4 system illustrates that conclusions (i) ± (iii) also are
valid for systems with attractive forces.

It is important to emphasize at this point that the
binary mixture and the random porous medium are
di� erent systems in a number of ways. The thermody-
namic routes to be used in the two systems and the
Ornstein± Zernike equations to be solved to determine
the structure are di� erent. The message of our results
is that even though the two systems are di� erent and
cannot be identi® ed, in a number of cases some proper-
ties are similar; therefore, one can use the theory of
mixtures with success to obtain a good approximation
to the properties of the adsorbed system.

There is one particular system where the binary mix-
ture and the random porous material are identical in
many respects. This is the system constituted by spheres
and points which was denoted as M3 in table 1. For this
system it has been shown by graph theory that the struc-
ture is identical in both systems [18]. To show further
evidence of this we have performed simulations of the

sphere± point system. We have considered an equimolar
mixture of spheres and points. The volume fraction of
the system is y = 0.25. First we perform N V T MC simu-
lations of the mixture. The residual chemical potential of
the points which can be obtained from the Widom test
particle method obviously is ¹

res
2 /k T = - ln (1 - y ) .

Using this value of the chemical potential as input, a
second GCMC simulation of con® ned points in a
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Table 5. Average density of the diatomic molecule in the quenched medium, q *
2,quenched , obtained from

GCMC simulations for the LJ sphere± LJ diatomic model M4. Model M4* means that the matrix
was an equilibrium con® guration of HS; nevertheless fm and � interactions were LJ. The reduced
number density of the spherical particles constituting the matrix is q *

1 = 0.190 986. The chemical
potential of the diatomic particles used in the GCMC simulations was obtained by adding the ideal
contribution to the residual part presented in table 2. The number density of the diatomic molecule,
q *

2,mixture, in the binary equilibrium mixture with the same chemical potential as the diatomic is
presented. Interaction energies of the diatomic molecule in the quenched medium, U 2,quenched and in
the binary mixture U 2,mixture as obtained from simulation are shown also.

Model ¹2 /k T q *
2,quenched q *

2,mixture U 2,quenched /(N 2²) U 2,mixture /(N 2²)

M4 - 2.073 0.0933(14) 0.095 493 - 5.25(6) - 5.270(3)
M4 - 0.162 0.187(2) 0.190 986 - 6.94(3) - 6.988(2)
M4* - 2.073 0.0920(10) 0.095 493 - 5.18(2) - 5.270(3)
M4* - 0.162 0.185(2) 0.190 986 - 6.88(2) - 6.988(2)

Figure 3. Sphere± site gmf correlation functions for M4
system: solid line, binary mixture; and dashed line,
quenched media. Results for (a ) a low and (b ) chemical
potential of the diatomic molecule (see table 5).



matrix of hard spheres was carried out. Figure 5 pres-
ents the results for gmf , g ff and gmm in the binary mixture
and in the porous media. Obviously, the gmm of the
porous media correspond to the radial distribution func-
tion of pure hard spheres. As can be seen, the structure
in the two systems is identical. The sphere± point case is
one example of a system where the identi® cation
between mixture and porous media is exact.

Finally, we shall give an example of how the statistical
mechanical theory of mixtures can be used successfully
to predict adsorption isotherms. Let us consider an M2
model consisting of hard spheres of diameter D = 7s
and a diatomic molecule composed of two beads of
diameter s , and let us consider the problem of the
adsorption of the diatomic ¯ uid in the random porous
medium of spheres. Porous materials have been mod-
elled in the past as randomly distributed spheres [34,
35]. For instance, a few years ago Kaminsky and
Monson [35] proposed a simple model for the adsorp-
tion of methane in silica gel. Methane molecules were
described as spherical particles and the silica gel was
modelled as a random con® guration of spheres of dia-
meter seven times larger. Therefore an M2 model can be
considered as a very naõÈ ve approximation to the prob-

lem of the adsorption of a linear molecule, as for
instance ethane in silica gel [35, 36]. However, our inten-
tion was not to study ethane adsorbed in silica gel, since
for such a goal a more accurate study of the shape of the
intermolecular forces must be carried out. Rather we
wish to perform a theoretical approximation to the
problem of predicting an adsorption isotherm. To deter-
mine the adsorption isotherm one needs to know the
chemical potential for a given density of adsorbed mol-
ecules. We shall approximate the chemical potential of
the diatomic adsorbed molecules in the random porous
media from that of the diatomic particle in the binary
mixture, and to describe the mixture we shall use BHS
theory. We have also performed GCMC simulations of
an M2 model. The results from these simulations are
presented in table 6, and ® gure 6 presents the adsorption
isotherms for the M2 model as obtained from BHS
theory and from GCMC simulations. As can be seen,
agreement between theory and simulation is excellent.
The complicated problem of getting the adsorption iso-
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Figure 4. Site± site gff correlation functions for M4 system:
solid line, binary mixture; and dashed line, quenched
media. Results for (a ) a low and (b ) a high chemical
potential of the diatomic molecule (see table 5).

Figure 5. Structure for the M3 model (sphere± point system),
volume fraction y = 0.25. The system contains the same
number of spheres and points. Results of the binary mix-
ture are given by the solid line whereas those of the ran-
dom media are given by the dashed line: (a ) matrix± matrix
correlation function gmm; (b ) matrix± ¯ uid correlation
function gmf ; and (c ) ¯ uid± ¯ uid correlation function gff .



therm for a diatomic ¯ uid in a matrix of hard spheres is
reduced to the simpler problem of getting the chemical
potential from a reliable analytical EOS of the mixture.
Figure 6 illustrates the main message of this work:
adsorption isotherms can be determined in an approx-
imate way from the EOS of binary mixtures. Finally,
® gure 7 shows the gmf and g ff functions obtained from
GCMC simulations.

5. Conclusions

We have performed computer simulations for mix-
tures of spherical and diatomic molecules. By using
the Widom test particle method, the chemical potential
of the diatomic molecule in the mixture was computed.
Then, by using this value of the chemical potential as
input, GCMC simulations of a con® ned diatomic ¯ uid

in a medium of quenched spheres were performed. The
output of these simulations is the average density of
diatomic molecules. It was found that ¯ uid± ¯ uid corre-
lation functions (site± site) are quite similar in the binary
mixture and in the quenched media. However, larger
di� erences between the two systems were found for the
matrix± ¯ uid correlation functions. Thermodynamic
properties of the diatomic ¯ uid in the binary mixture
and con® ned in the porous material are quite similar,
which suggests that the thermodynamic properties of the
¯ uid in the porous material depend mainly on ¯ uid± ¯ uid
correlation functions. Nevertheless, we expect that the
similarity mentioned above will diminish as the density
increases. All these conclusions are valid both for hard
body models and models including attractive forces.
Here, we want to stress that the results for systems
with attractive forces were obtained for relatively high
temperatures in order to avoid the region of coexistence
of phases. Since the phase equilibria for mixtures and
for con® ned ¯ uids in disordered porous media are very
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Figure 6. Adsorption isotherm for the M2 model. The num-
ber density of spheres of the matrix is q *

1 = 0.000 556 8,
which corresponds to a volume fraction of y = 0.1. For
each value of the chemical potential the average reduced
density of the diatomic molecule in the porous material q *

2
is given. The solid line is the results from BHS theory, and
the symbols are the results for the GCMC simulations.

Table 6. GCMC results for adsorption of diatomic molecules
in a matrix of hard spheres (model M2, see table 1): ¹ is
the input chemical potential of the diatomic molecules
used in the simulations, q *

1 is the reduced number density
of matrix molecules, and q *

2 is the average reduced density
of diatomic molecules as obtained from the simulation
results.

Model ¹2 /k T q *
1 q *

2

M2 - 1.01 0.000 556 8 0.0795(1)
M2 1.54 0.000 556 8 0.1526(6)

Figure 7. Structural results as obtained from GCMC simula-
tions for the adsorption of a diatomic ¯ uid in a matrix of
hard spheres (results correspond to M2 model and the
densities are those reported in table 6): solid line, low
chemical potential and dashed line, high chemical poten-
tial of the diatomic. (a ) Results for the matrix± ¯ uid cor-
relations and (b ) results for the ¯ uid± ¯ uid correlations.



di� erent, it is in the regions near these phase transitions
where one expects that the similarity between a ¯ uid in a
mixture and a ¯ uid con® ned in disordered porous
medium will disappear.

The extension of Wertheim’ s theory of association
performed by Jackson et al. [21± 24], (bonded hard
sphere, BHS, theory) provides a fairly good description
of the EOS and chemical potential of the hard sphere±
hard diatomic particle mixture. This is true for several
size ratios between the sphere and the beads which con-
stitute the diatomic molecule. Moreover, our ® nding
concerning the similarity in the thermodynamic proper-
ties of the mixture and the ¯ uid con® ned in a quenched
medium allows us to go one step further. We simply
assume that the chemical potential of the diatomic mol-
ecule in the quenched medium is the same as in the
binary mixture. In this way, adsorption isotherms for
hard models of diatomic molecules in hard sphere
matrices were computed. The agreement with simulation
was found to be excellent. The importance of this result
is that a complicated problem has been mapped into a
simpler one. The diatomic molecule within the porous
material can be regarded as the limiting case of in® nitely
strong association between monomers within a solid
material. The case of partial association could be treated
on the same basis. We could imagine that the system is a
ternary mixture of monomers, dimers and the spherical
particles of the matrix. Wertheim’s theory of association
could be used to obtain the degree of association in this
ternary mixture. By identifying the mixture with the
random porous material an approximate adsorption iso-
therm for the associating ¯ uid within the porous
material could be obtained.

Again it is important to stress that the mixture and the
annealed ¯ uid are di� erent systems. Only in the case of
in® nite di� erence in size do the two systems become
identical [18]. This was suggested in a previous work
and it has been con® rmed here by computer simulations
of the hard sphere± point mixture. However, this paper
plus previous work show that this similarity holds, even
when di� erences in size are small. At this stage we do
not have an explanation. Further theoretical work is
required, exploring the conditions under which mixtures
and ¯ uids con® ned in quenched media di� er signi® -
cantly. Nevertheless, since it seems that, for many
systems, di� erences are small, one can take advantage
of that and use the equilibrium theory of mixtures for
determining adsorption isotherms. In this work it has
been shown that this approach yields excellent results
for the adsorption of diatomic molecules within
porous media. In fact with an analytical and simple
EOS of the mixture a quite good description of the
adsorption isotherm of the diatomic molecules is
obtained.
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