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Solid–fluid equilibrium for a molecular model with short ranged
directional forces
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The phase diagram of a system of hard spheres with short-range tetrahedral association has been
determined by computer simulation and theory. The fluid phase and two solid phases were
considered. One of these solid phases is a low-density solid closely related in structure to ice Ic and
the other is a high-density solid closely related in structure to ice VII. At high temperatures freezing
occurs into the high-density solid whereas at low temperatures freezing occurs into the low-density
solid. At an intermediate temperature a triple point is found where the fluid coexists with the two
solids simultaneously. Although the low-density solid melts to a high-density fluid, this transition is
found to be metastable with respect to the transformation into a high-density solid. This is evidence
that short-range tetrahedral attractive forces are not in and of themselves sufficient to explain the
anomalous melting of water. Our results indicate that vapor–liquid equilibrium for the model is
preempted by solidification. Monte Carlo simulation results for the fluid phase are described
successfully by Wertheim’s theory whereas those of the solid phases are described qualitatively by
the cell theory. ©1998 American Institute of Physics.@S0021-9606~98!52346-X#
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I. INTRODUCTION

Although the solid–fluid equilibrium of model potentia
for simple molecules such as the hard sphere and Lenn
Jones potentials was studied over thirty years ago1,2 it is only
relatively recently that the solid–fluid equilibrium of non
spherical molecular models has received comprehensive
tention. Frenkel and Mulder3 determined the phase diagra
of hard ellipsoids as a part of a study focused primarily
the nematic to isotropic phase transition. In this decade
solid–fluid equilibrium of hard spherocylinders have be
determined by Jacksonet al.4 and by Bolhuis and Frenkel.5

For hard dumbbells the fluid–solid equilibrium has been
termined by Singer6 and by ourselves.7–9 Other studies of
solid–fluid equilibrium for nonspherical molecules have
cluded quadrupolar hard dumbbells,10 a nonlinear triatomic
hard-sphere model of propane,11 ionic systems,12 and freely
jointed chains of tangent hard spheres.13 Some ideas on the
role played by shape, polarity, chain flexibility, and ion
forces in the fluid–solid equilibrium are emerging from the
studies.

The studies above do not address the issue of how so
fluid equilibrium is influenced by short-range direction
forces present in hydrogen bonded systems such as w
The study of the liquid–solid transition for simple models
water have received attention recently. The formation
crystals from the fluid phase has been considered by Sv
chev and Kusalik.14 Also Baez and Clancy have determine
by simulation the fluid–solid transition for a simple model
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water.15,16Speedy17 has studied the dense phases of a sim
tetravalent network forming model system using molecu
dynamics. This model exhibits several interesting featu
including a transition from an icelike phase a more den
amorphous structure. This behavior resembles the meltin
ice Ih under pressure. A key feature of Speedy’s model is
presence of repulsions between pairs of nonbonded m
ecules in the network. These repulsions are sufficiently lo
ranged to act between next nearest neighbors. Speedy a
that this is the key ingredient in the model which allows it
mimic the high-density behavior of water. A less attracti
feature of the model is that the connectivity of the network
permanent. This feature is presumably acceptable for
properties of the solid but seems less appropriate for
liquid where fluctuations in the network connectivity a
more important. Indeed there is evidence that the crysta
amorphous phase transition in Speedy’s model terminate
a critical point.17

In this paper we describe studies of solid–fluid equil
rium in a molecular model introduced by Kolafa an
Nezbeda.18 The model exhibits short-ranged repulsion a
short-ranged directional forces which are saturated when
molecules are tetrahedrally coordinated. Thus the mode
capable of describing the effects of association. Moreo
network formation is reversible so that changes in connec
ity associated with first-order phase transitions can be m
eled. The model has been used successfully to describe s
structural features of liquid water and the phase diagram
binary mixtures including water as one of th
components.19–22

The primary tool we use to study the model is Mon
8 © 1998 American Institute of Physics
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Carlo simulation. However, we also examine the applica
ity of two theoretical approaches. For the fluid phase
investigate the accuracy of Wertheim’s thermodynamic p
turbation theory.19,20,23–25For the solid phase we shall us
cell theory.26 It has been found recently that the cell theo
provides a fair description of the solid phase of a variety
systems including hard spheres, hard-sphere mixtures27,28

Lennard-Jones, hard dumbbells,29 quadrupolar hard
dumbbells,30 and ionic systems.12

In our work we have considered three phases: A fl
phase and two solid phases. One solid phase has tetrah
coordination of the molecules and resembles the ice Ic ph
The other solid phase has a higher density and resemble
ice VII structure. These two choices do not exhaust the p
sibilities for solid structures in this system but are repres
tative of the low-density and high-density solid phas
formed by water. At high temperature the model exhib
equilibrium between the fluid and the high-density so
phase. At lower temperatures equilibrium between the fl
and the low-density solid is observed and between the l
and high-density solids. Equilibrium between the lo
density solid and a fluid of higher density~corresponding to
expansion on freezing! has been calculated but the equili
rium phases are metastable with respect to coexistence o
fluid and high-density solid phases. This would indicate t
short-ranged directional forces are not in themselves s
cient to explain the anomalies in the solid–fluid equilibriu
of water. The vapor–liquid coexistence region for the mo
has been calculated using the Wertheim thermodynamic
turbation theory. The results indicate that vapor–liquid co
istence is preempted by solid–fluid coexistence in a man
similar to that previously observed for systems of ha
spheres with spherically symmetric short rang
attractions.39

The outline of this paper is as follows. In Sec. II w
describe the molecular model, the Monte Carlo simulatio
the solid phases considered and the methodology for ca
lating solid phase free energies. Our applications of W
theim’s thermodynamic perturbation theory and the c
theory are described in Sec. III. Our results are presente
Sec. IV and the our conclusions in Sec. V.

II. MOLECULAR MODELS AND SIMULATION DETAILS

A. Molecular model

The model used in this work was proposed by Kola
and Nezbeda18 as a reference system for perturbation the
studies of water and other hydrogen bonded systems.
model consists of a hard sphere of diameters, with four
additional interaction sites. These four interaction sites
disposed in a tetrahedral geometry. Two of them~denoted
for convenience as hydrogen sites! are located on the surfac
of the hard sphere~i.e., the distance to the center of th
sphere is 0.5s!. The other two sites~denoted for conve-
nience as electron sites! are located at a distancey from the
center of the sphere. In this work we usey50.45s. There is
no interaction between either two hydrogen sites or two e
tron sites. However, the interaction between an electron
of molecule 1 and an hydrogen site of molecule 2 is given
a square well, i.e.
l-
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In this work two values ofl will be used. In particular we
shall usel* 5l/s50.15, the value chosen by Nezbed
et al. in their studies, and alsol* 50.10. One advantage o
using values ofl* less than 0.15 is that each interaction s
can form bonds with only one other interaction site~one site
bonding two other sites is not possible! and there is only one
bond between a pair of molecules. Following Kolafa a
Nezbeda we refer to this model as the primitive model
water~PMW!. Kolafa and Nezbeda18 determined the secon
virial coefficient of the PMW model analytically, and th
Boyle temperature~where the second virial coefficient van
ishes! can be easily computed. For the model withl*
50.15, TB* 50.134 whereas for the model withl* 50.10,
TB* 50.101 where the reduced temperatureT* has been de-
fined asT* 5T/(e/k) where k is the Boltzmann constant.

B. Solid structures

For the solids two different cubic structures were co
sidered: An ice Ic like structure and an ice VII like structur
For convenience we will refer to these as the low-dens
solid ~LDS! and high-density solid~HDS!, respectively.
These two structures are illustrated in Fig. 1. In the lo
density solid there are 8 molecules per unit cell~4 inside the
unit cell, one on each vertex, each shared with 7 neighbo
unit cells, and one on each face, each shared with one ne
boring unit cell! as in a diamond lattice. The orientation o
the molecule within the unit cell is such that each molec
can form square well bonds with each of its four near
neighbors. The close packed density~maximum density
without hard sphere overlaps! for this structure is given by
rcp* 5rcps

3533/2/850.6495 wherer is the number density
The LDS structure corresponds to that of ice Ic.31,32 We
could also consider a hexagonal structure similar to the h
agonal structure of water, usually denoted as ice Ih. Ho
ever, since both structures exhibit saturation with respec
network bond formation and have the same close pac
density we expect little difference between their thermod
namic properties.15,33 Previous studies of hard spheres34 and
hard dumbbells7 have shown that for such systems, so
structures with the same close packed density have q
similar thermodynamic properties.

In the HDS structure there are two molecules per u
cell ~one in the center of the cubic unit cell and one at ea
vertex, each shared with 7 neighboring unit cells!. Again the
orientation of the molecules is such that each molecule
form square well bonds with four of the eight nearest neig
bors. The reduced close packed density of the structure
rcp* 533/2/451.2989. This structure is similar to that ic
VII. 31,35

As we mentioned in the Introduction there are seve
other solid structures which could have been considere
this work including those resembling ice III, ice V, and ic
VI. On the other hand, the two structures we have chosen
representative of low-density and high density-solids w
hydrogen bonding formation. On this basis we believe t
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significant conclusions about the appearance of low-den
solids in the phase diagrams of associating systems ca
obtained from this work.

For a given value ofl* there is a minimum density a
which the two solid structures lose all bonds~in the perfect
lattice!. This density is given by

r limit* 5rcp* /~11l* 20.05!3. ~2!

By using Eq.~2! with l* 50.15 we obtain for the low-
density solidr limit* 50.4880 and for the HDSr limit* 50.976.

C. Monte Carlo simulations

We have performed NpT Monte Carlo~MC! simulations
of the PMW in the fluid and solid phases. Since we a
considering crystals of cubic symmetry we have used iso
pic volume scaling. We used 216 molecules for the LDS a
128 molecules for the HDS. For the fluid phase we used b
128 and 216 molecules. We typically performed 40 0
cycles for equilibration and 40 000 cycles for obtaining a

FIG. 1. Solid structures used in this work for the PMW model:~a! LDS; ~b!
HDS. For the LDS the eight molecules in a single unit cell are shown.
the HDS eight molecules from four unit cells are shown.
ity
be

e
-

d
th
0
-

erages. A cycle involves an attempt at moving each of
molecules of the system~translation and rotation! and an
attempt to change the volume of the system. The accepta
ratio was kept in the range of 40 percent for the parti
moves and of 30 percent for changes in volume. We chec
the program in three different ways. First for high tempe
tures we reproduced the known hard-sphere results. Se
we checked that the pressure obtained from the virial th
rem~see Ref. 18 for the implementation of the virial theore
to the PMW model! was consistent with the input pressure
our isobaric Monte Carlo simulations. Finally, we compar
our results for the pressure and internal energy of the fl
with those published previously by Kolafa and Nezbed18

and the results agree within the estimated uncertainties.

D. Solid phase free energy calculations

To calculate solid phase free energies we implemen
the Frenkel–Ladd34 methodology. Further details of thi
methodology as applied to nonspherical molecules can
found in Ref. 3 and in our previous work.7,8,10 The Einstein
crystal field that was used in the simulations is given by

Hfield /~kT!5(
i 51

N FlE,1~Ri2Ri,0!21lE,2 sin2 ca,i

1lE,2S cb,i

p D 2G , ~3!

whereRi andRi,0 represent the location of the center of ma
of molecule i for the current configuration and for the initi
perfect lattice configuration, respectively. The anglesca and
cb are defined as follows. Letai,0 and bi,0 be two perpen-
dicular unit vectors assigned to each molecule in the per
lattice ~the vectorsa and b are shown in Fig. 2!. ai and bi
represent these vectors in the current configuration.ca,i is
the angle formed by the vectorsai and ai,0 and cb,i is the
angle formed by the vectorsbi andbi,0 . The units oflE,1 and
lE,2 are chosen so that the right hand side of Eq.~3! is
dimensionless. The form of the external field used here gu
antees that the energy is invariant under a symmetry op
tion of the molecule. For instance a rotation of 180 degr
about theb0 axis exchanges the locations of the two hydr
gen sites~and those of the two electron sites also!. This
rotation leaves the anglecb unchanged but changes the ang

r

FIG. 2. Reference vectorsa0 andb0 used in the free energy calculations
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ca by p radians. The presence of the term sin2 ca guarantees
the invariance of the Einstein crystal energy under this sy
metry operation of the molecule. In general, for rotatio
about a twofold axis of the molecule there should be a te
in the field of the form sin2( ) to guarantee the invariance o
the energy under a 180 degree rotation. The same proce
was used for hard dumbbells7 and for a nonlinear hard tri
atomic model of propane.11

The orientational contribution to the free energy of t
reference noninteracting Einstein crystal is given by

AE,or

NkT
5

1

8p2 E exp$2lE,2@sin2 ca1~cb /p!2#%

3sin adadfdg, ~4!

where a, f, and g are the three Euler angles defining t
orientation of the molecule and the subscripti has been
dropped since the integral is the same for all molecules.
follow Gray and Gubbins36 in our definition of the Euler
angles. By choosing thea0 vector as the z axis~so that the
Euler anglea is identical toca! then the integral in Eq.~4!
can be further simplified to give

AE,or /NkT51/~8p2!E exp$2lE,2@sin2 a1~cb /p!2#%

3sin adadfdg. ~5!

The anglecb is in general a function of all three Eule
angles, and the integral of Eq.~5! must be performed nu
merically. However, for large values oflE,2 the only signifi-
cant contribution to the integral arises whena is close to
zero. Whena is close to zero the anglecb can be identified
with the Euler angleg at least up top. Note that by con-
struction the Euler angleg ranges from zero to 2p whereas
we have definedcb only from zero top. Therefore, for large
values oflE,2 , the integrand does not depend onf andcb

can be identified withg so that Eq.~5! yields

AE,or /NkT51/~2p!E
0

p

exp@2lE,2 sin2 a#

3sin adaE
0

p

exp@2lE,2~g/p!2#dg, ~6!

or simply

AE,or /NkT5E
0

1

exp@2lE,2~12x2!#dx

3E
0

1

exp@2lE,2x82#dx8, ~7!

wherex5cosa andx85g/p. We checked that Eqs.~5! and
~7! gave identical results for large values oflE,2 . This sim-
plification was used by Shen and Monson11 in their work on
a triatomic hard-sphere model of propane with large val
of the force constant. The difference between the free ene
of the PMW solid and that of the interacting Einstein crys
is denoted asDA2 and is given by
-
s

ure

e

s
gy
l

DA2 /~NkT!51/NE
0

lE,maxK (
i 51

N H @~Ri2Ri,0!/s#2

1sin2 ca,i1S cb,i

p D 2J L dl, ~8!

where the angled brackets stand for canonical average
the interacting Einstein crystal.

The difference between the free energies of interact
and noninteracting Einstein crystals is obtained from

DA1 /~NkT!521/N lnK expF2(
i , j

uPMW~ i , j !/~kT!G L ,

~9!

where the brackets denote canonical ensemble average
configurations of the noninteracting Einstein crystal. T
DA1 term is comparable in magnitude to the internal ene
of the solid. The final expression for the free energy of t
PMW model is given by

A5AE1DA11DA21DA3 , ~10!

whereAE is the free energy of an ideal Einstein crystal,DA1

is the difference between the free energy of an ideal Eins
crystal and that of the Einstein crystal with PMW intera
tions,DA2 is the difference in free energy between the PM
solid and an Einstein crystal with PMW interactions a
DA3 is the difference between a system with an unco
strained center of mass and one with a fixed center of m
Expressions for the translational contribution toAE and for
the DA3 can be found elsewhere.7,34

Once the free energy has been determined for a gi
density and temperature the free energy at other densitie
temperatures can be obtained by thermodynamic integra
~using the P,V,T equation of state for changes in density
the internal energy for changes in temperature!. We checked
our free energy calculations by evaluating the free energ
of the CsCl like solid at two different densities~i.e., r*
51.171 andr* 51.240!. Thermodynamic integration yield
DA51.107, whereas the difference in the free energy
evaluated from our free energy calculations yieldsDA
51.115. The difference is consistent with the statistical er
in the equation of state and free energy calculations.

There is one final issue concerning the solid phase
energies for the PMW model. In the two solid structur
considered so far the centers of mass and orientations o
molecules in the equilibrium solid are fixed. In the perfe
solid structure each molecule has four square well bon
However, there is the possibility of having a solid, with th
same distribution of centers of mass, but with orientatio
disorder while keeping four hydrogen bonds per molecu
There is an additional contribution to the free energy of
solid due to this orientational disorder. This is the we
known problem of the residual entropy of ice. Pauling es
mated this residual entropy to be31,37

Adisorder/NkT52Sdisorder/~Nk!52 ln~ 3
2!520.405.

~11!

A more accurate estimate obtained by Nagle38 is
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Adisorder/NkT520.410. ~12!

These estimates are sufficiently close that the choice of e
one does not affect the calculation of the phase diag
within the uncertainties of our calculations. Our strategy is
estimate the free energy of the solid with orientational ord
and then to add the contribution given by Eq.~11! to esti-
mate the free energy of the solid with orientational disord
A similar approach was used previously for hard dumbbe7

with L* 51, where the possibility of configurational dege
eracy in the solid also exists.

III. THEORIES FOR FLUID AND SOLID PHASE
PROPERTIES

A. Thermodynamic perturbation theory

The implementation of Wertheim’s thermodynamic pe
turbation theory for the PMW model has been described
Nezbedaet al.19,20 and we shall provide here only the ma
results. The free energy, internal energy and compressib
factor of the PMW model are given according to Wertheim
theory by

A

NkT
5

AHS

NkT
1

2c

11c
24 ln~11c!, ~13!

U

Ne
52

2c

11c
, ~14!

Z5
p

rkT
5ZHS22y

112c

~11c!2 ~dc/dy!, ~15!

wherec is given by

c50.5S F11192S expS 1

T* D21D yJG0.5

21D , ~16!

andJ is given by

J5E
1

l21

S~R!gHS~R!R2dR, ~17!

wheregHS is the radial distribution function of hard sphere
and S~R! is the probability for a particular hydrogen bon
between two molecules when the distance between the ce
of mass is R. This probability has been reported elsewh
@in fact it is 1

8 of Eq. ~5! of Ref. 18#. We have defined the
volume fraction y as

y5r
p

6
s3. ~18!

To compute J, an expression forgHS is needed. We fol-
low Iglesias and Nezbeda20 and shall use the expression

gHS~R!5
120.5y

~12y!3 2
9y~11y!

2~12y!3 ~R21!. ~19!

Replacing this expression forgHS into Eq. ~15! it can be
shown that J can be expressed as

J5
c1~12y/2!2c2y~11y!

~12y!3 , ~20!
er
m
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where the constantsc1 and c2 depend onl* . ~For l*
50.15: c152.37531025 and c252.82031026. For l*
50.10: c152.05131026 and c251.19631027.! The final
expression for Z is then

Z5ZHS2
96~exp~1/T* !21!

~11c!2

3
c1y~11y20.5y2!22c2y2~112y!

~12y!4 . ~21!

B. Cell theory

Here we shall describe briefly our implementation of t
cell theory for the PMW model. We refer the reader to o
previous work for further details.29,30We shall start from the
perfect lattice. One molecule~labeled arbitrarily as molecule
1! will be chosen as the central molecule. The interact
energy of molecule 1 with the rest of the molecules of t
solid ~all molecules but 1 stay in their equilibrium lattic
position! is given by

U~1!5U01DU~1!, ~22!

whereU0 is the lattice energy of molecule 1 in its equilib
rium configuration andDU(1) is the change in the interac
tion energy of molecule 1 when it moves from the equili
rium configuration. According to the cell theory th
configurational free energy of the solid is given by

Acell
c /~NkT!5U0/~2kT!2 lnS q1

s3D , ~23!

whereq1 is the cell configurational partition function~free
volume! and is given by

q151/~8p2!E exp~2DU~1!/~kT!!dR1dv1 , ~24!

whereR1 andv1 define the position and orientation of mo
ecule 1, respectively. Equation~24! is evaluated numerically
by Monte Carlo integration.29,30

IV. RESULTS

We begin by presenting the results obtained for the fl
phase. Two temperatures were considered namelyT*
50.25 andT* 50.15. For the higher temperature we gen
ally started from a low-pressure state and then compres
the system by progressively increasing the pressure.
checked that the same densities were obtained by expan
from a high-pressure fluid state. For the lower temperat
we started from the states generated atT* 50.25 and then
performed five long runs slowly decreasing the temperat
down to T* 50.15. The runs used in this cooling sequen
were three times longer than those used on isotherms in
der to facilitate equilibration as the temperature was
creased. In Fig. 3 the simulation results for the equation
state~EOS! and internal energy are compared with the
sults from the Wertheim theory for the casel* 50.15. The
agreement between theory and simulation is very good
was also shown previously by Nezbedaet al.19,20 For tem-
peratures lower thanT* 50.15 simulations of the fluid phas
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become much more difficult due to the long relaxation tim
of the system. Given the quality of the agreement shown
Fig. 3 we have used the Wertheim theory to calculate
fluid properties used in our phase equilibrium calculation

According to the Wertheim theory there is a vapo
liquid equilibrium for the PMW model.20 In Fig. 4 the
vapor–liquid coexistence curves predicted by the theory
shown forl* 50.15 andl* 50.10. The critical temperature
predicted for the two models areT* 50.103 and T*
50.083, respectively. The critical temperature decrea
with l* since the volume where attractive forces act shrin
with the range of the potential. The effect is similar to th
found previously for potentials with attractive forces
spherical symmetry.39 For models with short-range attractiv
forces it has been found that there is no vapor–liquid eq
librium. In fact Frenkelet al. showed that the vapor–liquid
equilibrium is located inside the vapor–solid coexisten
curve.39 A natural question to ask is whether the the vapo
liquid equilibrium presented in Fig. 4 for the PMW is pre
empted by a vapor–solid transition. We shall return to t
point later.

FIG. 3. Simulation and theoretical results for the equation of state
internal energy of the PMW model withl* 50.15. MC results of this work
for T* 50.25 ~filled circles!, for T* 50.15 ~open circles!, and from Ref. 18
for T* 50.15 ~open triangles!. Results from Wertheim theory forT*
50.25 ~solid line! and T* 50.15 ~dashed line!. ~a! Equation of state.~b!
Internal energy.
s
in
e

re

es
s
t

i-

e

s

We turn now to the simulation results for the low
density solid structure. ForT* 50.25 the low-density solid
phase is not mechanically stable and it melts spontaneou
Selected results for the low-density solid are shown in Ta
I for the temperatureT* 50.12. From the values of the con
figurational energy it is evident that there is almost compl
square well bond saturation at all the densities, indicat
that bond breaking is a rare event. Although not reported

d

FIG. 4. Coexistence densities for vapor–liquid equilibrium in the PM
model as obtained from the Wertheim theory. Solid line:l* 50.15, dashed
line l* 50.10.

TABLE I. Results of the MC simulations of the solid phase for the PM
model with l* 50.15 andl* 50.10. Results for the LDS and HDS ar
reported. Although we performed simulations at different temperatures
report here results for one temperature only. The number of molecules
in the simulations is denoted asN.

Solid N l* T* p* r* U/(Ne)

LDS 216 0.15 0.12 14 0.635 21.993
LDS 216 0.15 0.12 12 0.625 21.998
LDS 216 0.15 0.12 10 0.621 21.999
LDS 216 0.15 0.12 8 0.616 21.996
LDS 216 0.15 0.12 6 0.611 21.998
LDS 216 0.15 0.12 2 0.600 21.998
LDS 216 0.15 0.12 0.5 0.596 21.994
HDS 128 0.15 0.12 35 1.226 22.000
HDS 128 0.15 0.12 25 1.207 22.000
HDS 128 0.15 0.12 20 1.198 22.000
HDS 128 0.15 0.12 10 1.178 22.000
HDS 128 0.15 0.12 6 1.169 21.999
HDS 128 0.15 0.12 4 1.161 21.999
HDS 128 0.15 0.12 0.5 1.158 21.999
LDS 64 0.10 0.10 15 0.633 21.999
LDS 64 0.10 0.10 10 0.629 21.999
LDS 64 0.10 0.10 8 0.627 21.999
LDS 64 0.10 0.10 4 0.624 21.999
LDS 64 0.10 0.10 2 0.623 21.999
LDS 64 0.10 0.10 0.5 0.622 21.999
HDS 54 0.10 0.10 35 1.244 21.999
HDS 54 0.10 0.10 25 1.239 21.999
HDS 54 0.10 0.10 15 1.234 21.999
HDS 54 0.10 0.10 10 1.230 21.999
HDS 54 0.10 0.10 5 1.228 21.999
HDS 54 0.10 0.10 0.5 1.225 21.999
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Table I we also performed simulations for the LDS wi
T* 50.075. Also in this case we found square well bo
saturation at all the densities. In determining the tempera
dependence of the free energy for our calculations of
phase diagram we use the approximationU/(Ne).22. In
Fig. 5~a! the reduced pressurep* 5p/(kT/s3) for the low-

FIG. 5. Pressure vs density as obtained from MC for the PMW solid w
l* 50.15. ~a! Results for the LDS withT* 50.12 ~open circles! and T*
50.075~open triangles!. The simulation results of the LDS can be describ
by the equationp* 52228.1151383.293r* . ~b! Results for the HDS at
T* 50.12 ~open circles! and T* 50.075 ~open triangles!. The simulation
results for the HDS can be described by the equationp* 52556.54
1489.563r* .
re
e

density solid is plotted as a function of the density for t
temperaturesT* 50.12 andT* 50.075. For the system siz
we have studied the solid is mechanically stable down
zero pressure. The variation of the pressure with densit
almost linear for these temperatures. Moreoverp/T is prac-
tically independent of the temperature for a given reduc
density, differences lying within the simulation error. W
shall use this result in our calculations of the phase diag
rather than repeat simulations of the same solid structure
many different temperatures.40 It is interesting to note tha
the density at zero pressure for the LDS occurs at 91.63%
its close packed density. For the HDS it occurs at 89% of
close packed density. We have studied the variation w
temperature of the zero pressure density for the LDS. For
temperature range studied (T* 50.005– 0.12) the zero
pressure density was found to be practically independen
temperature, differences being within the numerical unc
tainty. Therefore, the PMW model is not able to reprodu
the negative values of the thermal expansivity at atmosph
pressure found experimentally for ice for temperatures l
than 50 K.31,33 It is not clear whether this is due to the sim
plicity of the model or to the presence of quantum effects
real water for these low temperatures.

For the low-density solid we have evaluated the fr
energy at a reference density and temperature. Results o
free energy calculations are presented in Table II. In Fig
we show the phase diagram obtained forT* 50.12 when
considering only the fluid and the low-density solid pha
The sequence of phase transitions is fluid to low-den
solid to fluid, i.e., we have re-entrant behavior. It is tempti
to identify this feature with the behavior of water where t
ice Ih phase can coexist with a more dense liquid. In f
when compressing the low-density solid to high pressu
the spontaneous melting to a high-density liquid was
served for T* 50.12. This is similar to the low-density
solid–high-density fluid melting observed by Speedy17 for a
permanently connected network model. Notice, howev
that the bonds in the present model are reversible and
degree of bonding in the high-density fluid is less than in
solid. However, in order to gain a wider perspective on
phase diagram we need also to consider the HDS phase

In Table I we have also presented selected simula
results for the HDS. Results for the free energy are show
Table II. As can be seen in Table I the configurational ene
per molecule in HDS is also close toU/(Ne)522, indicat-
ing square well bond saturation. In Fig. 5~b! the reduced
ree

TABLE II. Free energy calculations for the LDS and HDS structures withl* 50.15 andl* 50.10. Pauling’s
contribution to the free energy (Adisorder) has been included in the results reported in the last column. All f
energies are given in NkT units. The number of values oflE considered to perform the integration of Eq.~8!
is denoted asNlE

. The maximum value of the field used in the free energy calculations is denoted aslE,max.

Solid l* N T* r* lE,max NlE
DA2 DA1 Aref

LDS 0.15 216 0.12 0.60 8000 10 211.4328 216.6493 22.4636
HDS 0.15 128 0.12 1.171 8000 10 210.636 17 216.6627 21.7177
HDS 0.15 128 0.12 1.240 20 000 20 212.302 13 216.6198 20.6021
LDS 0.10 64 0.10 0.623 20 000 15 210.8103 219.9573 22.5459
HDS 0.10 54 0.10 1.226 20 000 15 29.7576 219.9844 21.5428
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pressure is plotted as a function of the reduced density
two temperatures. Again we have found that in our simu
tions the solid is mechanically stable down to zero press
We do not observe melting even at very low pressures
with long runs. In Fig. 5~b! it can be seen that the pressure
linear and density and moreover thatp/T does not depend on
temperature. In Fig. 7 the phase transitions for the PM
with l* 50.15 andT* 50.12 is presented. The sequence
phase transitions when increasing pressure is fluid to l
density solid to HDS. The melting of the low-density solid
a high-density fluid indicated in Fig. 6 is preempted by t
low-density solid to HDS transition.

In Fig. 8~a! our estimate of the temperature-dens
phase diagram for the PMW withl* 50.15 is presented. A

FIG. 6. Pressure vs density and phase transitions for the PMW model
l* 50.15 andT* 50.12. Only the fluid~as described by Wertheim’s theory!
and the LDS were considered. The tie lines correspond to the phase tr
tions found for this sytem when only these two phases are considered

FIG. 7. Pressure vs density and phase transitions for the PMW model
l* 50.15 andT* 50.12. In this case, the fluid, the LDS and the HDS we
considered. The tie lines represented by solid lines correspond to p
transitions that actually occur for this system. The tie lines represente
dashed lines correspond to phase transitions that occur between meta
phases.
or
-
e.
d

f
-

high temperatures we have a fluid to HDS transition. Ther
a triple point at aboutT* 50.129. At lower temperatures w
have first a fluid to low-density solid transition. On com
pressing the low-density solid we have a further transit
from the low-density solid to the high-density solid. Clear
the vapor–liquid equilibrium we have calculated from t
Wertheim theory occurs in a region where the fluid is n
thermodynamically stable. Before condensation to liquid c
occur the low-density fluid freezes into the low-density sol
The situation resembles that found for systems with sph
cally symmetric attractive forces of very short range~e.g.,
the square well potential with small values of the w
width!.39

In Fig. 8~b! the phase diagram is shown in ap* 2T*
diagram. At the maximum in temperature of the fluid-LD
coexistence line the density change between both ph

ith

si-

ith

se
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FIG. 8. Phase diagram for the PMW model withl* 50.15. ~a! T* 2r*
diagram. The vapor–liquid equilibrium predicted by the Wertheim theory
represented by the dashed line. The densities of the LDS in the LDS–H
solid transition have been slightly incremented with respect to the ac
values for visual clarity.~b! p* 2T* diagram showing the region of stability
of each phase. The triple point where the three solid lines meet corres
to T* 50.1295 andp* 50.90. The dashed line indicates a phase transit
between the metastable fluid and the metastable LDS. The filled circle
dicates the state where the transition between the metastable phases
withouth density change.
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vanishes. This occurs at a point~filled circle! where neither
of these phases is stable with respect to the HDS. From
figure it is clear that in order to have re-entrant behavior
states where the LDS phase is thermodynamically stable
coexistence line for the fluid and HDS should be pushed
higher pressures. This would require a change in the mo
that would render the high-density solid less stable.

We have also considered the phase diagram of the m
with l* 50.10. Our motivation is to analyze if a reduction
the range of the potential brings reentrance in the phase
gram. Since our aim is exploratory rather than quantitative
this case we have used smaller system sizes. For the
density solid 64 molecules were used in the simulatio
whereas for the HDS we used 54 molecules. Werthe
theory was used to describe the fluid for the PMW withl*
50.10. In Tables I and II MC results for the PMW wit
l* 50.10 are shown. The phase diagram is presented in F
9~a! and in 9~b!. The phase diagram resembles closely t
determined forl* 50.15.

In all the calculations presented so far we have includ
the orientational disorder contribution as given by Eq.~11! in
the free energy of the solid. It is interesting to see the eff
of removing of this term on the phase diagram. In Fig. 10
phase diagram obtained in this way is presented for the
tem with l* 50.15. We see that the fluid is stable up
slightly higher densities and that freezing occurs at hig
densities of the fluid~and, therefore, at higher pressure!.
The densities of the solid at coexistence are modified o
slightly. The triple point temperature decreases when the
entational disorder contribution is not included~the triple
point temperature isT* 50.123 to be compared withT*
50.129 with the orientational disorder contribution!. Notice
that the triple point is also the limit of stability of the LD
~the LDS is not stable for higher temperatures!. Thus the
presence of the orientational disorder in the solid makes
LDS stable up to higher temperatures. However, it is imp
tant to stress that the appearance of the LDS in the ph
diagram is not due to the orientational disorder contributi
Since this contribution is also present in the HDS and ta
the same value, it does not alter the relative stabilities of
LDS and the HDS. Nevertheless, the stability of both pha
with respect to the fluid does depend on this contribution
this affects the location of the fluid–LDS–HDS triple poi
temperature.

Finally, we present results obtained from the cell theo
for the PMW model withl* 50.15. In Table III the free
energies obtained from the free energy calculations of
work are compared with the free energies obtained from
cell theory. The agreement is reasonably good. In Fig. 11
EOS for the solid phases as obtained from MC simulation
compared with the EOS as obtained from the cell theory. T
agreement between theory and simulation is reasonably g
given the simplicity of the cell theory. The cell theory seem
to work better for the high-density solid than for the LD
The way in which the zero pressure is achieved by the
theory deserves some comment. In fact according to Eq.~23!
the free energy is given by the lattice energy and the f
volume~i.e.,q1!. Since the lattice energy does not depend
density for densities higher than those given by Eq.~2! then
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the only density dependence of the free energy is given
the free volume. The existence of the solid at zero press
requires according to the cell the theory the existence o
minimum in the free volume. This is indeeed the case.
the PMW the free volume is essentially the volume for bon
ing of a central molecule with four of its neighbors. At hig
densities the decrease of the density provokes an increa
the free volume. This is so because the region for bond
around each bonding site~an imaginary sphere of radiu
l* /2! lies partially within the neighbor hard sphere core
Decreasing the density takes part of this region out of
neighbor hard sphere cores. Therefore, the free volume
creases as the density decreases. At low densities, the re
for bonding around each bonding site does not penetrate
of the nearest neighbors hard spheres in the perfect lat
Decreasing the density in this case, decreases the free

FIG. 9. Phase diagram for the PMW model withl* 50.10. ~a! T* 2r*
diagram. The vapor–liquid equilibrium predicted by the Wertheim theory
represented by the dashed line. The densities of the LDS in the LDS–H
solid transition have been slightly incremented with respect to the ac
values for visual clarity.~b! p* 2T* diagram showing the region of stability
of each phase. The triple point where the three solid lines meet corres
to T* 50.1125 andp* 51.20. The dashed line indicates a phase transit
between the metastable fluid and the metastable LDS. The filled circle
dicates the state where the transition between the metastable phases
without density change.
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ume, since the central molecule has less volume for bond
simultaneously to four of the neighbors. Not surprisingly t
density at zero pressure for all the models and solid st
tures, corresponds approximately to the arithmetic averag
the close packed density and the nonbonding density@as
given by Eq. ~2!#. For instance for the HDS solid of th
model withl* 50.15 the density at zero pressure from M
simulations is of about 1.16. The average of the close-pac
density and the nonbonding density@see Eq.~2!# yields 1.14
in reasonable agreement.

It is worthwhile to make a few additional commen
about the low-temperature fluid behavior in this model.
mentioned earlier Wertheim’s theory predicts a vapor–liq
coexistence region for the model at states where such be
ior is preempted by the solid–fluid transitions. Figures
and 13 show the EOS obtained from the Wertheim the
compared with Monte Carlo simulations atT* 50.12 and
T* 50.10. We see that the agreement between theory
simulation is good at low densities to moderate densities a
in particular, for the states where our phase equilibrium c
culations show the fluid to be stable with respect to so
phases. On the other hand, the agreement deteriorates a
densities. Unlike the case at higher temperatures discu
earlier these low-temperature simulation results exhibit h
teresis between isotherms generated by expansion and

FIG. 10. Fluid densities at freezing for the PMW model withl* 50.15
when the orientational disorder contribution@Eq. ~11!# of the solid is in-
cluded ~solid lines! or when is not included~dashed lines!. Thick lines
fluid–LDS transition. Thin lines fluid–HDS transition. The triangle repr
sents the temperature of the triple point when the orientational diso
contribution is included~filled triangle! or when it is not included~open
triangle!. The vapor–liquid coexistence curve~small dash line! obtained
from the Wertheim theory is also shown.

TABLE III. Free energy as determined from the Monte Carlo simulatio
and from cell theory.

Solid l* T* r* Aref /(NkT) Acell /(NkT)

LDS 0.15 0.12 0.60 22.4636 22.1133
HDS 0.15 0.12 1.171 21.7177 22.0104
HDS 0.15 0.12 1.240 20.6021 20.2780
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generated by compression, especially at the lower temp
ture. This hysteresis is caused by the strong square well b
network formed at high density. Once a network is est
lished, fluctuations in the connectivity are rare events. No
that at the lower temperature expansion from the dense fl
state leads to states of large negative pressure. In this res
the system seems to be exhibiting the elasticity effects s
in polymer networks.41 Negative pressures are only seen
the Wertheim theory at significantly lower temperature~re-
sults forT* 50.06 are also shown in Fig. 13! as part of the
van der Waals loops which accompany analytical expr
sions for the free energy of a fluid with attractive force
Attempts to simulate vapor–liquid equilibrium by using th

er

FIG. 11. Pressure vs density for the PMW withl* 50.15 andT* 50.12 as
obtained from simulation~symbols! and from the cell theory~lines!. Results
for the LDS~filled circles and solid line on the left! and for the HDS~filled
squares and solid line in the right!.

FIG. 12. Pressure vs density for the PMW model withl* 50.15 at T*
50.12. Open circles: MC results obtained by compressing a low-den
state. Open squares: MC results obtained by expansion. Solid line: Re
from Wertheim EOS. The simulations were performed with 128 molecu
and run over 25.6 million configurations with half of these used for equ
bration. The high-density fluid obtained from compression was the in
state for the expansion.
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Gibbs ensemble42 were unsuccessful. We are led to the co
clusion that these low-temperature metastable fluid states
vitreous in character and that vapor–liquid coexistence m
not be observable even as a metastable equilibrium.

V. CONCLUSIONS

We have presented a study of the solid–fluid equilibriu
in the PMW using Monte Carlo simulation and theory. Se
eral conclusions can be drawn from our results:

~1! The short-range directional forces in this model intr
duce a LDS phase~similar to ice Ic! into the phase dia-
gram.

~2! When considering only the fluid and the LDS phases
found re-entrant behavior. Melting from the LDS to
higher density fluid occurs. We believe that this behav
is similar to that of low coordination solid phases such
those of water.

~3! When the HDS is considered then it is observed that
LDS to high-density fluid transition is preempted by
transition to the HDS. Tetrahedral short-range coordi
tion is sufficient to stabilize a low-density solid, but th
is not enough to lead to melting from this solid to
higher density liquid. This suggests that the tradition
view of the ‘‘anomalous’’ melting of ice to a high
density fluid as being due to the ‘‘open structure’’ of ic
should be revised.

~4! From the present study it appears that in order for
entrant melting to occur, solid phases with high dens
and tetrahedral coordination~e.g., our HDS phase! must
be made less stable. It seems likely that introducin
nonspherical core or introducing saturation within t
model ~with strong repulsion with nonbonded neare
neighbors! as has been done by Speedy17 will act to de-
stabilize the HDS phase.

FIG. 13. Pressure vs density for the PMW model withl* 50.15 at T*
50.10. Open circles: MC results obtained by compressing a low-den
state. Open squares: MC results obtained by expansion. Solid line: Re
from Wertheim EOS forT* 50.10. Dashed line: Results from Wertheim
EOS forT* 50.06. The simulations were performed with 64 molecules, a
run over 7.68 million configurations with half of these used for equilib
tion. The high-density fluid obtained from compression was the initial s
for the expansion.
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~5! The existence of orientational disorder in the solid is n
needed for the presence of the LDS in the phase
gram. Neither is it a determining factor for the existen
of melting to a high-density fluid. However, the orient
tional disorder increases the temperature range where
solid phases are stable with respect to the fluid.

~6! The PMW does not exhibit a true vapor–liquid equili
rium. The condensation of the low-density fluid~vapor!
to a high-density fluid~liquid! is preempted by solidifi-
cation. This is similar to what has been found for sy
tems with spherically symmetric short rang
interactions.39

~7! Wertheim’s thermodynamic perturbation theory is qu
successful in describing the fluid phase of the PMW u
der the conditions where it is stable with respect to
lidification. For the solid phase the cell theory gives
fair description of the equation of state and free energ
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