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The phase diagram of a system of hard spheres with short-range tetrahedral association has been
determined by computer simulation and theory. The fluid phase and two solid phases were
considered. One of these solid phases is a low-density solid closely related in structure to ice Ic and
the other is a high-density solid closely related in structure to ice VII. At high temperatures freezing
occurs into the high-density solid whereas at low temperatures freezing occurs into the low-density
solid. At an intermediate temperature a triple point is found where the fluid coexists with the two
solids simultaneously. Although the low-density solid melts to a high-density fluid, this transition is
found to be metastable with respect to the transformation into a high-density solid. This is evidence
that short-range tetrahedral attractive forces are not in and of themselves sufficient to explain the
anomalous melting of water. Our results indicate that vapor—liquid equilibrium for the model is
preempted by solidification. Monte Carlo simulation results for the fluid phase are described
successfully by Wertheim'’s theory whereas those of the solid phases are described qualitatively by
the cell theory. ©1998 American Institute of Physids$S0021-960628)52346-X]

I. INTRODUCTION water®1¢ Speedy’ has studied the dense phases of a simple
tetravalent network forming model system using molecular
Although the solid—fluid equilibrium of model potentials dynamics. This model exhibits several interesting features
for simple molecules such as the hard sphere and Lennarghcluding a transition from an icelike phase a more dense
Jones potentials was studied over thirty years'dgds only  amorphous structure. This behavior resembles the melting of
relatively recently that the solid—fluid equilibrium of non- jce Ih under pressure. A key feature of Speedy’s model is the
spherical molecular models has received comprehensive gsresence of repulsions between pairs of nonbonded mol-
tention. Frenkel and Muldérdetermined the phase diagram ecules in the network. These repulsions are sufficiently long
of hard ellipsoids as a part of a study focused primarily onranged to act between next nearest neighbors. Speedy argues
the nematic to isotropic phase transition. In this decade thenat this is the key ingredient in the model which allows it to
solid—fluid equilibrium of hard spherocylinders have beenmimic the high-density behavior of water. A less attractive
determined by Jacksoet al* and by Bolhuis and Frenkél. feature of the model is that the connectivity of the network is
For hard dumbbells the fluid—solid equilibrium has been depermanent. This feature is presumably acceptable for the
termined by Singérand by ourselve§.® Other studies of properties of the solid but seems less appropriate for the
solid—fluid equilibrium for nonspherical molecules have in-jiquid where fluctuations in the network connectivity are
cluded quadrupolar hard dumbbelfsa nonlinear triatomic  more important. Indeed there is evidence that the crystal to

hard-sphere model of propafionic systems? and freely amorphous phase transition in Speedy’s model terminates at
jointed chains of tangent hard sphetéSome ideas on the g critical point'’

role played by shape, polarity, chain flexibility, and ionic | this paper we describe studies of solid—fluid equilib-
forces in the fluid—solid equilibrium are emerging from theseyjym in a molecular model introduced by Kolafa and
studies. Nezbedd® The model exhibits short-ranged repulsion and

The studies above do not address the issue of how solidshort-ranged directional forces which are saturated when the
fluid equilibrium is influenced by short-range directional mpjecules are tetrahedrally coordinated. Thus the model is
forces present in hydrogen bonded systems such as watgapaple of describing the effects of association. Moreover
The study of the liquid—solid transition for simple models of yetwork formation is reversible so that changes in connectiv-
water have received attention recently. The formation ofy associated with first-order phase transitions can be mod-

crystals from the IlUid phase has been considered by Svishseq. The model has been used successfully to describe some
chev and Kusalik" Also Baez and Clancy have determined sy ctural features of liquid water and the phase diagram of

by simulation the fluid—solid transition for a simple model of binary mixtures including water as one of the
components®-22
dElectronic mail: monson@ecs.umass.edu The primary tool we use to study the model is Monte
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Carlo simulation. However, we also examine the applicabil-  ug(r)=—¢ r<io
ity of two theoretical approaches. For the fluid phase we
investigate the accuracy of Wertheim’s thermodynamic per- =0 r>ho. )

turbation theory:?*23~For the solid phase we shall use |n this work two values ok will be used. In particular we
cell theory?® It has been found recently that the cell theory shall use\* =N\ o=0.15, the value chosen by Nezbeda
provides a fair description of the solid phase of a variety ofet . in their studies, and alsb* =0.10. One advantage of
systems including hard spheres, hard-sphere mix&irés, using values ok* less than 0.15 is that each interaction site
Lennard-Jones, hard dumbbélfs, quadrupolar hard can form bonds with only one other interaction sio@e site
dumbbells}® and ionic systems’ bonding two other sites is not possiplnd there is only one
In our work we have considered three phases: A fluidhond between a pair of molecules. Following Kolafa and
phase and two solid phases. One solid phase has tetrahedfgdzbeda we refer to this model as the primitive model of
coordination of the molecules and resembles the ice Ic phasgater (PMW). Kolafa and Nezbed& determined the second
The other solid phase has a higher density and resembles thgjal coefficient of the PMW model analytically, and the
ice VII structure. These two choices do not exhaust the posBoyle temperaturéwhere the second virial coefficient van-
sibilities for solid structures in this system but are represenisheg can be easily computed. For the model witt
tative of the |0W-den5ity and hlgh-denSIty solid phases: 0.15, TE:0134 whereas for the model Wil?h*ZO.lO,
formed by water. At high temperature the model exhibitsT* —=0.101 where the reduced temperatiite has been de-

equilibrium between the fluid and the high-density solidfined asT* =T/(e/k) where k is the Boltzmann constant.
phase. At lower temperatures equilibrium between the fluid

and the low-density solid is observed and between the low-
and high-density solids. Equilibrium between the low-B. Solid structures

density.solid and a ﬂuid of higher densitgorresponding Fc.) For the solids two different cubic structures were con-
gxpansmn on freezinghas beep calculated but the equilib- sidered: An ice Ic like structure and an ice VIl like structure.
rium phases are metastable with respect to coexistence of tl?—%r convenience we will refer to these as the low-density

fluid and high-density solid phases. This would indicate that, . , (LDS) and high-density solidHDS), respectively.
short-ranged directional forces are not in themselves suffiroqe two structures are illustrated in Fig. 1. In the low-

cient to explain the anomalies in the solid—fluid equilibrium density solid there are 8 molecules per unit ¢dlinside the

of water. The vapor—llq_wd coemstenc:_a region for the mOdelunit cell, one on each vertex, each shared with 7 neighboring
has been calculated using the Wertheim thermodynamic PE(init cells, and one on each face, each shared with one neigh-

turbation theory. The results indicate that vapor—liquid coexy,, g it celj as in a diamond lattice. The orientation of
istence is preempted by solid—fluid coexistence in a mannéf,, 1o1acyle within the unit cell is such that each molecule
similar to that previously observed for systems of hardcan form square well bonds with each of its four nearest

sphere; gvith spherically  symmetric  short rangeEdneighbors. The close packed densitpaximum density
attractions’ without hard sphere overlap$or this structure is given by

g Thbe (:Ethne |Of trlus pa%erl fhastoII;)w(s:. Iln Sec. Illt_we pE,=pepo=3%%8=0.6495 where is the number density.
escribe the molecular model, the Vonte Larlo SimulalionSype | B strycture corresponds to that of ice®1é? We

th? S phases considered a_nd the metho_dol_ogy for Calc"ébuld also consider a hexagonal structure similar to the hex-
lating solid phase free energies. Our applications of Wer-

heim’s th q . bati h d th ”agonal structure of water, usually denoted as ice Ih. How-
theim's thermodynamic _perturbation theory and the ce .ever, since both structures exhibit saturation with respect to
theory are described in Sec. lll. Our results are presented i

. . Hetwork bond formation and have the same close packed
Sec. IV and the our conclusions in Sec. V. density we expect little difference between their thermody-
Il. MOLECULAR MODELS AND SIMULATION DETAILS namic properties>*® Previous studies of hard sphettand
hard dumbbells have shown that for such systems, solid
structures with the same close packed density have quite

The model used in this work was proposed by Kolafasimilar thermodynamic properties.

and Nezbed4 as a reference system for perturbation theory  In the HDS structure there are two molecules per unit
studies of water and other hydrogen bonded systems. Thizell (one in the center of the cubic unit cell and one at each
model consists of a hard sphere of diameterwith four  vertex, each shared with 7 neighboring unit gelfsgain the
additional interaction sites. These four interaction sites ar@rientation of the molecules is such that each molecule can
disposed in a tetrahedral geometry. Two of thaenoted form square well bonds with four of the eight nearest neigh-
for convenience as hydrogen sit@se located on the surface bors. The reduced close packed density of the structure is of
of the hard spherdi.e., the distance to the center of the p§p= 3%214=1.2989. This structure is similar to that ice
sphere is 0.50). The other two sitegdenoted for conve- VII.3%3°
nience as electron siteare located at a distanaefrom the As we mentioned in the Introduction there are several
center of the sphere. In this work we use 0.45s. There is  other solid structures which could have been considered in
no interaction between either two hydrogen sites or two electhis work including those resembling ice lll, ice V, and ice
tron sites. However, the interaction between an electron sit¥l. On the other hand, the two structures we have chosen are
of molecule 1 and an hydrogen site of molecule 2 is given byrepresentative of low-density and high density-solids with
a square well, i.e. hydrogen bonding formation. On this basis we believe that

A. Molecular model
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FIG. 2. Reference vecto andb, used in the free energy calculations.

erages. A cycle involves an attempt at moving each of the
molecules of the systerftranslation and rotatignand an
attempt to change the volume of the system. The acceptance
ratio was kept in the range of 40 percent for the particle
moves and of 30 percent for changes in volume. We checked
the program in three different ways. First for high tempera-
tures we reproduced the known hard-sphere results. Second
we checked that the pressure obtained from the virial theo-
rem(see Ref. 18 for the implementation of the virial theorem
to the PMW modelwas consistent with the input pressure of
our isobaric Monte Carlo simulations. Finally, we compared
our results for the pressure and internal energy of the fluid
with those published previously by Kolafa and Nezb&da
and the results agree within the estimated uncertainties.

D. Solid phase free energy calculations

To calculate solid phase free energies we implemented
the Frenkel-Lad¥ methodology. Further details of this

(b)
methodology as applied to nonspherical molecules can be

FIG. 1. Solid structures used in this work for the PMW modael:LDS; (b) found in Ref. 3 and in our previous wo?l)?'loThe Einstein
HDS. For the LDS the eight molecules in a single unit cell are shown. For ' ’

the HDS eight molecules from four unit cells are shown. crystal field that was used in the simulations is given by
N

Hﬁe.d/<kT>:i§1 Nea(Ri—Ri0)2+ N SIP ¢y

significant conclusions about the appearance of low-density
solids in the phase diagrams of associating systems can be
obtained from this work. + A2

For a given value ol * there is a minimum density at
which the two solid structures lose all bonds the perfect whereR; andR; o represent the location of the center of mass
lattice). This density is given by of molecule i for the current configuration and for the initial

% perfect lattice configuration, respectively. The anglgsand

Piimit = Pep/ (11" ~0.05°. @ i, are defined as follows. Led;, and by be two perpen-

By using Eq.(2) with \* =0.15 we obtain for the low- dicular unit vectors assigned to each molecule in the perfect
density solidpj;,,;=0.4880 and for the HD®};,;;=0.976. lattice (the vectorsa andb are shown in Fig. R & andb
represent these vectors in the current configuratigyy. is
the angle formed by the vectos and &, and ¢, ; is the
angle formed by the vectols andb; 5. The units ofAg ; and

We have performed NpT Monte Car{viC) simulations A, are chosen so that the right hand side of E3). is
of the PMW in the fluid and solid phases. Since we aredimensionless. The form of the external field used here guar-
considering crystals of cubic symmetry we have used isotroantees that the energy is invariant under a symmetry opera-
pic volume scaling. We used 216 molecules for the LDS andion of the molecule. For instance a rotation of 180 degrees
128 molecules for the HDS. For the fluid phase we used bothbout theb, axis exchanges the locations of the two hydro-
128 and 216 molecules. We typically performed 40 000gen sites(and those of the two electron sites als@his
cycles for equilibration and 40 000 cycles for obtaining av-rotation leaves the anglg, unchanged but changes the angle

: ()

'r/fbi)z

T

C. Monte Carlo simulations
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¥, by 7 radians. The presence of the term?sjg guarantees NE,max

the invariance of the Einstein crystal energy under this sym- AAZ/(NKT)=1/N fo <Z’1 [[(Ri_ Rio)/o]?

metry operation of the molecule. In general, for rotations

about a twofold axis of the molecule there should be a term ,r/,b’i)z’ > N ®
aa

in the field of the form sif( ) to guarantee the invariance of +sin? Pait
was used for hard dumbbeélland for a nonlinear hard tri- where the angled brackets stand for canonical average over

the energy under a 180 degree rotation. The same procedure

atomic model of propan®. the interacting Einstein crystal.
The orientational contribution to the free energy of the  The difference between the free energies of interacting
reference noninteracting Einstein crystal is given by and noninteracting Einstein crystals is obtained from
AEVOf_if . Jsir? [ AA;/(NKT)=— 1IN In{ exg — 3, uPMW(i j)/(KT)
NKT _ 872 exp{—Ngd SN o+ (¢ /m)%]} 1 = ) ’
. C)
X sin adad¢dy, (4)

where the brackets denote canonical ensemble average over
where a, ¢, and y are the three Euler angles defining the configurations of the noninteracting Einstein crystal. The
orientation of the molecule and the subscriphas been AA,; term is comparable in magnitude to the internal energy
dropped since the integral is the same for all molecules. Wef the solid. The final expression for the free energy of the
follow Gray and Gubbir¥ in our definition of the Euler PMW model is given by
angles. By choosing tha, vector as the z axigso that the
Euler anglea is identical tos,) then the integral in Eq(4) A=AgtAA TAA+AA;, (10

can be further simplified to give whereA¢ is the free energy of an ideal Einstein crystah,

is the difference between the free energy of an ideal Einstein

Ag o INKT= 1/(8772)f exp{—Ng A Sin? a+ (¢, /m)?]} crystal and that of the Einstein crystal with PMW interac-
tions,AA; is the difference in free energy between the PMW
Xsin adad¢dy. (5) solid and an Einstein crystal with PMW interactions and

AA; is the difference between a system with an uncon-

The angley, is in general a function of all three Euler strained center of mass and one with a fixed center of mass.
angles, and the integral of E¢5) must be performed nu- Expressions for the translational contributionAg and for
merically. However, for large values af: , the only signifi-  the AA; can be found elsewhefée?
cant contribution to the integral arises whenis close to Once the free energy has been determined for a given
zero. Whena is close to zero the angl#, can be identified density and temperature the free energy at other densities or
with the Euler angley at least up tom. Note that by con- temperatures can be obtained by thermodynamic integration
struction the Euler angleg ranges from zero to2 whereas  (using the P,V,T equation of state for changes in density and
we have defined, only from zero tow. Therefore, for large  the internal energy for changes in temperatuvée checked
values of\g ,, the integrand does not depend érand #,  our free energy calculations by evaluating the free energies

can be identified withy so that Eq.(5) yields of the CsCl like solid at two different densitigge., p*
=1.171 andp* =1.240. Thermodynamic integration yields
Ag o INKT= 1/(27T)J' ext] — \g, Sir? a] AA=1.107, whereas the difference in thg free energy as
’ 0 ‘ evaluated from our free energy calculations yield#\

=1.115. The difference is consistent with the statistical error
X sin adafﬂ exd — Neo( v/ m)?]dy, (6) in the equation of state and free energy calculations.

0 There is one final issue concerning the solid phase free
energies for the PMW model. In the two solid structures
considered so far the centers of mass and orientations of the

1 molecules in the equilibrium solid are fixed. In the perfect
AE,or/NkT:J’ ex —Ag (1 x?)]dx solid structure each molecule has four square well bonds.
0 However, there is the possibility of having a solid, with the

or simply

1 same distribution of centers of mass, but with orientational
XJ’ ex —Ngx'?]dx’, (7)  disorder while keeping four hydrogen bonds per molecule.

0 There is an additional contribution to the free energy of the
solid due to this orientational disorder. This is the well-
known problem of the residual entropy of ice. Pauling esti-
mated this residual entropy to 1€’

wherex=cosa andx’ = v/ 7. We checked that Eq$5) and
(7) gave identical results for large valuesXf ,. This sim-
plification was used by Shen and Mon$bim their work on
a triatomic hard-sphere model of propane with large values
of the force constant. The difference between the free energy
of the PMW solid and that of the interacting Einstein crystal

is denoted ad\A, and is given by A more accurate estimate obtained by Ndyls

Adisorded NKT= = Syisorded (NK) = = In( g) =—0.405.
(1)
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Agisorded NKT= —0.410. (12)  where the constants; and c, depend on\*. (For \*

. - _ . =0.15: ¢;=2.375x107° and ¢,=2.820<10°%. For \*
These estimates are sufficiently close that the choice of either 0.10: ¢,=2.051x 108 and c,=1.196x 10" ".) The final

one does not affect the calculation of the phase diagrar@xpression for Z is then
within the uncertainties of our calculations. Our strategy is to
estimate the free energy of the solid with orientational order, 96(exp(1/T*)—1)

and then to add the contribution given by E@l) to esti- 2=2Zns— (1+c¢)?
mate the free energy of the solid with orientational disorder. 5 )
A similar approach was used previously for hard dumbbells XC1Y(1+y—O.5y ) —2Cy“(1+2y) (21)
with L* =1, where the possibility of configurational degen- (1-y)* '
eracy in the solid also exists.
B. Cell theory

Here we shall describe briefly our implementation of the
Ill. THEORIES FOR FLUID AND SOLID PHASE cell theory for the PMW model. We refer the reader to our
PROPERTIES previous work for further detai®**We shall start from the

perfect lattice. One moleculgabeled arbitrarily as molecule

1) will be chosen as the central molecule. The interaction
The implementation of Wertheim’s thermodynamic per-energy of molecule 1 with the rest of the molecules of the

turbation theory for the PMW model has been described byolid (all molecules but 1 stay in their equilibrium lattice

Nezbedaet al**®and we shall provide here only the main position is given by

results. The free energy, internal energy and compressibility

A. Thermodynamic perturbation theory

factor of the PMW model are given according to Wertheim’s U(1)=U°+Au(D), (22)
theory by whereU? is the lattice energy of molecule 1 in its equilib-
A A 2c rium configuration and\U(1) is the change in the interac-
=_Hs ., —41In(1+c), (13)  tion energy of molecule 1 when it moves from the equilib-
NKT NkT = 1+c rium configuration. According to the cell theory the
u 2c configurational free energy of the solid is given by
Ne 1+c’ (14 c 0 Q1
A/ (NKT)=U"/(2kT)—In i (23
p 1+2c
Z= ,Tr:ZHS_ ZyW(dc/dy), (15) whereq; is the cell configurational partition functioiree
o volume and is given by
wherec is given by
0.5 — 2 _
c=0.'5( 1+192( ex;{_ri*)—l)y\]} _1)' 1 =187 )f exp(—AU(1)/(kT))dR;dw, (24
whereR; and w, define the position and orientation of mol-
andJ is given by ecule 1, respectively. EquatidB4) is evaluated numerically
N by Monte Carlo integratioR>°
J= Jl S(R)gus(RIR?dR, 17

wheregys is the radial distribution function of hard spheres, IV. RESULTS

and SR) is the probability for a particular hydrogen bond e begin by presenting the results obtained for the fluid
between two molecules when the distance between the centghase. Two temperatures were considered nanigly

of mass is R. This probability has been reported elsewhere-g.25 andT* =0.15. For the higher temperature we gener-
[in fact it is § of Eq. (5) of Ref. 18. We have defined the ally started from a low-pressure state and then compressed

volume fraction y as the system by progressively increasing the pressure. We
- checked that the same densities were obtained by expanding
y=pga3. (18 from a high-pressure fluid state. For the lower temperature

we started from the states generatedlat=0.25 and then
To compute J, an expression fgys is needed. We fol- performed five long runs slowly decreasing the temperature
low Iglesias and Nezbeé&hand shall use the expression down to T* =0.15. The runs used in this cooling sequence
were three times longer than those used on isotherms in or-
1-0.5 9y(1+y)

(R)= (R—1). (190  der to facilitate equilibration as the temperature was de-

Ons (1-y)* 2(1-y)° creased. In Fig. 3 the simulation results for the equation of

Replacing this expression fagys into Eq. (15) it can be state(EOS and internal energy are compared with the re-
shown that J can be expressed as sults from the Wertheim theory for the cas&=0.15. The

agreement between theory and simulation is very good as
was also shown previously by Nezbeenal®?° For tem-
peratures lower thaf* = 0.15 simulations of the fluid phase

_ Cu(1-y/2)—coy(1+y)
(1-y)® ’

(20
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FIG. 4. Coexistence densities for vapor—liquid equilibrium in the PMW
model as obtained from the Wertheim theory. Solid lin&=0.15, dashed
line A*=0.10.

We turn now to the simulation results for the low-
density solid structure. FoF* =0.25 the low-density solid
06 s | phase is not mechanically stable and it melts spontaneously.
o Selected results for the low-density solid are shown in Table
N | for the temperaturd* =0.12. From the values of the con-
N ] figurational energy it is evident that there is almost complete
SN square well bond saturation at all the densities, indicating

. that bond breaking is a rare event. Although not reported in

0.0 02 04, 06 08 10
(b) p

U/(Ne)

FIG. 3. Simulation and theoretical results for the equation of state andTABLE I. Results of the MC simulations of the solid phase for the PMW

T * — * —
internal energy of the PMW model with* =0.15. MC results of this work madel with A*=0.15 andh _0'10'_ Resu_lts for th_e LDS and HDS are
for T* = 0.25 (filled circles, for T* =0.15 (open circley and from Ref. 18 reported. Although we performed simulations at different temperatures we

for T*=0.15 (open triangles Results from Wertheim theory fof* report here results for one temperature only. The number of molecules used

=0.25 (solid line) and T* =0.15 (dashed ling (8) Equation of state(p) " the simulations is denoted &&

Internal energy.

Solid N A T p* p* U/(Ne)

LDS 216 0.15 0.12 14 0.635 —1.993

LDS 216 0.15 0.12 12 0.625 —1.998

become much more difficult due to the long relaxation times Lbps 216 0.15 0.12 10 0.621 —1.999
of the system. Given the quality of the agreement shown in LDS 216 0.15 0.12 8 0.616 —1.996
Fig. 3 we have used the Wertheim theory to calculate the 1PS 216 015 0.12 6 0611 —1.998
fluid properties used in our phase equilibrium calculations. 216 0.15 0.12 2 0.600  —1.998
_ ) X LDS 216 0.15 0.12 05 0.596 —1.994

According to the Wertheim theory there is a vapor— pps 128 0.15 0.12 35 1.226 —2.000
liquid equilibrium for the PMW modef® In Fig. 4 the HDS 128 015 012 25 1.207 —2.000
vapor—liquid coexistence curves predicted by the theory are HDS 128 0.15 0.12 20 1198 —2.000
shown forA* =0.15 and\* =0.10. The critical temperatures HPS 128 015 012 10 1178 —2.000
predicted for the two models ard*=0.103 and T* HDS Eg 8'12 8'12 2 1'122 :iggg
=0.083, respectively. The critical temperature decreaseSpyps 128 045 012 05 1158 —1.999
with A* since the volume where attractive forces act shrinks Lbs 64 0.10 0.10 15 0.633 —1.999
with the range of the potential. The effect is similar to that LDS 64 0.10 0.10 10 0.629 —1.999
found previously for potentials with attractive forces of LPS 64 010 010 8 0.627  —1.999
spherical symmetry® For models with short-range attractive tgg gj g'ig 8'18 g g'ggg :i'ggg
forces it has been found that there is no vapor-liquid equi- | pg 64 010 010 05 0622 —1.999
librium. In fact Frenkelet al. showed that the vapor—liquid  HDs 54 0.10 0.10 35 1.244 —1.999
equilibrium is located inside the vapor—solid coexistence HDS 54 0.10 0.10 25 1239 —1.999
curve®® A natural question to ask is whether the the vapor— HDS 4 010 010 15 1234 -1.999
liquid equilibrium presented in Fig. 4 for the PMW is pre- HDS 24 0.10 0.10 10 1230 —1.999
, . ~ HDS 54 0.10 0.10 5 1.228 —1.999

empted by a Vapor—SO“d transition. We shall return to this HDS 54 0.10 0.10 05 1.225 —1.999

point later.
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20 - - - density solid is plotted as a function of the density for the
temperature§* =0.12 andT* =0.075. For the system size
we have studied the solid is mechanically stable down to
5l N zero pressure. The variation of the pressure with density is
LDS Y e) almost linear for these temperatures. Moreop£F is prac-
tically independent of the temperature for a given reduced
density, differences lying within the simulation error. We
shall use this result in our calculations of the phase diagram
7o) rather than repeat simulations of the same solid structure for
many different temperaturé8.It is interesting to note that
51 1 the density at zero pressure for the LDS occurs at 91.63% of
& its close packed density. For the HDS it occurs at 89% of its
oA close packed density. We have studied the variation with
o . . temperature of the zero pressure density for the LDS. For the
.58 059 0.60 0.6] 0.62 0.63 0.64 temperature range studiedT{=0.005-0.12) the zero-
P pressure density was found to be practically independent of
30 - - - temperature, differences being within the numerical uncer-
tainty. Therefore, the PMW model is not able to reproduce
a the negative values of the thermal expansivity at atmospheric
pressure found experimentally for ice for temperatures less
than 50 K331t is not clear whether this is due to the sim-
plicity of the model or to the presence of quantum effects in
real water for these low temperatures.
P 08 For the low-density solid we have evaluated the free
a energy at a reference density and temperature. Results of the
@ 1 free energy calculations are presented in Table Il. In Fig. 6
@ we show the phase diagram obtained for=0.12 when
@ considering only the fluid and the low-density solid phase.
@ The sequence of phase transitions is fluid to low-density
B solid to fluid, i.e., we have re-entrant behavior. It is tempting
14 116 118 120 122 to identify this feature with the behavior of water where the
(b) P ice Ih phase can coexist with a more dense liquid. In fact
FIG. 5. Pressure vs density as obtained from MC for the PMW solid withWhen compressing the IOW'denSity solid to high pressures
A*=0.15. (a) Results for the LDS withT* =0.12 (open circles and T* the spontaneous melting to a high-density liquid was ob-
=0.075(open triangleks The simulation results of the LDS can be described served for T* =0.12. This is similar to the low-density
by the equatiorp” = —228.115-383.293". (b) Results for the HDS at  gq|id—high-density fluid melting observed by Spe¥dpr a
T*=0.12 (open circley and T* =0.075 (open triangles The simulation .
results for the HDS can be described by the equafidn=—556.54 permanently co_nnected network model. NOtlce_’ however,
+489.563* . that the bonds in the present model are reversible and the
degree of bonding in the high-density fluid is less than in the
solid. However, in order to gain a wider perspective on the
Table | we also performed simulations for the LDS with phase diagram we need also to consider the HDS phase.
T*=0.075. Also in this case we found square well bond In Table | we have also presented selected simulation
saturation at all the densities. In determining the temperatureesults for the HDS. Results for the free energy are shown in
dependence of the free energy for our calculations of th@able Il. As can be seen in Table | the configurational energy
phase diagram we use the approximatidf{Ne)=—2. In  per molecule in HDS is also close W/ (Ne)= —2, indicat-
Fig. 5@a) the reduced pressuge =p/(kT/a®) for the low- ing square well bond saturation. In Fig(bb the reduced

oe

(@)

HDS n

TABLE Il. Free energy calculations for the LDS and HDS structures with=0.15 and\* =0.10. Pauling’s
contribution to the free energyAisorge) has been included in the results reported in the last column. All free
energies are given in NKT units. The number of value pftonsidered to perform the integration of E§)

is denoted ad, . The maximum value of the field used in the free energy calculations is denoigd,as.

Solid  A* N ™ o* Nema Ny AA, AA, Avet

E

LDS 0.15 216 0.12 0.60 8000 10 —11.4328 —16.6493 —2.4636
HDS 0.15 128 0.12 1171 8000 10 —10.63617 —16.6627 —1.7177
HDS 0.15 128 0.12 1.240 20 000 20 —12.30213 —16.6198 —0.6021
LDS 0.10 64 0.10 0.623 20 000 15 -10.8103 —19.9573 —2.5459
HDS 0.10 54 0.10 1.226 20000 15 —9.7576 —19.9844  —1.5428
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FIG. 6. Pressure vs density and phase transitions for the PMW model witl 5 ' ' ' '
\*=0.15 andT™* =0.12. Only the fluidas described by Wertheim’s theory
and the LDS were considered. The tie lines correspond to the phase trans
tions found for this sytem when only these two phases are considered. al 1

pressure is plotted as a function of the reduced density fo
two temperatures. Again we have found that in our simula- p'
tions the solid is mechanically stable down to zero pressure
We do not observe melting even at very low pressures an
with long runs. In Fig. &) it can be seen that the pressure is
linear and density and moreover thed does not depend on
temperature. In Fig. 7 the phase transitions for the PMW
with A* =0.15 andT* =0.12 is presented. The sequence of
phase transitions when increasing pressure is fluid to low
density solid to HDS. The melting of the low-density solid to ()
a high-density fluid indicated in Fig. 6 is preempted by the
Iow-density solid to HDS transition. F_IG. 8. Phase diagrqm _for th(_e_ PMW mod_el with =0.15. (a) ‘I"* —p* _
In Fig. 8a) our estimate of the temperature-density %297 T varor iaud equlbru precicid by e Werhern tear s
phase diagram for the PMW witk* =0.15 is presented. At solid transition have been slightly incremented with respect to the actual
values for visual clarity(b) p* —T* diagram showing the region of stability
of each phase. The triple point where the three solid lines meet correspond
to T*=0.1295 andp* =0.90. The dashed line indicates a phase transition
between the metastable fluid and the metastable LDS. The filled circle in-

/
LIL'S ,’ HD$ dicates the state where the transition between the metastable phases occurs
/ withouth density change.

LDS

I ) L
0.11 0.13 0.15 0.17

high temperatures we have a fluid to HDS transition. There is
a triple point at abouT™ =0.129. At lower temperatures we
/ have first a fluid to low-density solid transition. On com-
] pressing the low-density solid we have a further transition
/ from the low-density solid to the high-density solid. Clearly
/ the vapor-liquid equilibrium we have calculated from the

1r /

LDS+HDS 4

e
~
-
-

Fluid___—Fweiss

0 . \
0.00 0.25 0.50

1.25

Wertheim theory occurs in a region where the fluid is not

thermodynamically stable. Before condensation to liquid can
occur the low-density fluid freezes into the low-density solid.

The situation resembles that found for systems with spheri-
cally symmetric attractive forces of very short ran@eg.,

FIG. 7. Pressure vs density and phase transitions for the PMW model witthe square well potential with small values of the well
\*=0.15 andT* =0.12. In this case, the fluid, the LDS and the HDS were wjdth).3°

considered. The tie lines represented by solid lines correspond to phase
transitions that actually occur for this system. The tie lines represented by,

In Fig. 8b) the phase diagram is shown inpd —T*

dashed lines correspond to phase transitions that occur between metastaBii@gram. At the maximum in temperature of the fluid-LDS

phases.

coexistence line the density change between both phases
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vanishes. This occurs at a poiffilled circle) where neither 0.25
of these phases is stable with respect to the HDS. From thi:
figure it is clear that in order to have re-entrant behavior for
states where the LDS phase is thermodynamically stable th
coexistence line for the fluid and HDS should be pushed to
higher pressures. This would require a change in the mode
that would render the high-density solid less stable.

We have also considered the phase diagram of the mode
with A* =0.10. Our motivation is to analyze if a reduction in
the range of the potential brings reentrance in the phase dic
gram. Since our aim is exploratory rather than quantitative in
this case we have used smaller system sizes. For the lo\
density solid 64 molecules were used in the simulations
whereas for the HDS we used 54 molecules. Wertheim
theory was used to describe the fluid for the PMW with 005,
=0.10. In Tables | and Il MC results for the PMW with (a)
A*=0.10 are shown. The phase diagram is presented in Figs 8
9(a) and in 9b). The phase diagram resembles closely that
determined foi* =0.15. ~

In all the calculations presented so far we have included N
the orientational disorder contribution as given by Bd) in I N
the free energy of the solid. It is interesting to see the effect N
of removing of this term on the phase diagram. In Fig. 10 the \
phase diagram obtained in this way is presented for the sys P 4. 2
tem with A\* =0.15. We see that the fluid is stable up to \
slightly higher densities and that freezing occurs at higher
densities of the fluidand, therefore, at higher pressures

0.20 -

-,

0.15
HDS

0.10 -

Fluid

The densities of the solid at coexistence are modified only

slightly. The triple point temperature decreases when the ori-

entational disorder contribution is not includéthe triple LDS

point temperature iT*=0.123 to be compared witfi™* 0 : - :
=0.129 with the orientational disorder contributjoMotice (b) 009 on T o1 018

that the triple point is also the limit of stability of the LDS
(the LDS is not stable for higher temperatyreShus the F'C: 9. Phase diagram for the PMW model witff =0.10. (& T* —p*

. . . . . diagram. The vapor-liquid equilibrium predicted by the Wertheim theory is
presence of the orientational disorder in the solid makes thgpresented by the dashed line. The densities of the LDS in the LDS—HDS
LDS stable up to higher temperatures. However, it is imporsolid transition have been slightly incremented with respect to the actual
tant to stress that the appearance of the LDS in the phag@lues for visual cIarit)_/(b) p*fT* diagram showing 'the_ region of stability
dizgram is notdue {0 the orentationa cisorder coniribution! 2 71452 16 1PI PO e e ice i s pect conesn
Since this contribution is also present in the HDS and takegeqyeen the metastable fluid and the metastable LDS. The filled circle in-
the same value, it does not alter the relative stabilities of thelicates the state where the transition between the metastable phases occurs
LDS and the HDS. Nevertheless, the stability of both phaseyithout density change.
with respect to the fluid does depend on this contribution and
this affects the location of the fluid—LDS—HDS triple point
temperature. the only density dependence of the free energy is given by

Finally, we present results obtained from the cell theorythe free volume. The existence of the solid at zero pressure
for the PMW model witha\* =0.15. In Table Il the free requires according to the cell the theory the existence of a
energies obtained from the free energy calculations of thisninimum in the free volume. This is indeeed the case. For
work are compared with the free energies obtained from théhe PMW the free volume is essentially the volume for bond-
cell theory. The agreement is reasonably good. In Fig. 11 theng of a central molecule with four of its neighbors. At high
EOS for the solid phases as obtained from MC simulation islensities the decrease of the density provokes an increase in
compared with the EOS as obtained from the cell theory. Thé¢he free volume. This is so because the region for bonding
agreement between theory and simulation is reasonably goatound each bonding sitean imaginary sphere of radius
given the simplicity of the cell theory. The cell theory seems\*/2) lies partially within the neighbor hard sphere cores.
to work better for the high-density solid than for the LDS. Decreasing the density takes part of this region out of the
The way in which the zero pressure is achieved by the celheighbor hard sphere cores. Therefore, the free volume in-
theory deserves some comment. In fact according tdZ3).  creases as the density decreases. At low densities, the region
the free energy is given by the lattice energy and the fredor bonding around each bonding site does not penetrate any
volume(i.e.,q;). Since the lattice energy does not depend orof the nearest neighbors hard spheres in the perfect lattice.
density for densities higher than those given by &jthen  Decreasing the density in this case, decreases the free vol-
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P
T e o) s a0 FIG. 11 prssre s densy o he P vA=0.15 ancr* .12 o
a- obtained from simulatioisymbolg and from the cell theorylines). Results

cluded (solid lineg or when is not includeddashed lines Thick lines " ) [ A
fluid—LDS transition. Thin lines fluid—HDS transition. The triangle repre- ;%rutgrils'2%‘"2{?3;;{%‘9;?2 zgltlf: line on the lgfand for the HDS(illed
sents the temperature of the triple point when the orientational disorder
contribution is includedfilled triangle or when it is not includedopen
triangle). The vapor—liquid coexistence cur¥small dash ling obtained

from the Wertheim theory is also shown. generated by compression, especially at the lower tempera-

ture. This hysteresis is caused by the strong square well bond
network formed at high density. Once a network is estab-
ume, since the central molecule has less volume for bondinlished, fluctuations in the connectivity are rare events. Notice
simultaneously to four of the neighbors. Not surprisingly thethat at the lower temperature expansion from the dense fluid
density at zero pressure for all the models and solid strucstate leads to states of large negative pressure. In this respect
tures, corresponds approximately to the arithmetic average ahe system seems to be exhibiting the elasticity effects seen
the close packed density and the nonbonding derisisy in polymer network$! Negative pressures are only seen in
given by Eq.(2)]. For instance for the HDS solid of the the Wertheim theory at significantly lower temperat{re-
model with\* =0.15 the density at zero pressure from MC sults forT* =0.06 are also shown in Fig. 1&s part of the
simulations is of about 1.16. The average of the close-packegan der Waals loops which accompany analytical expres-
density and the nonbonding dendigee Eq(2)] yields 1.14  sions for the free energy of a fluid with attractive forces.
in reasonable agreement. Attempts to simulate vapor—liquid equilibrium by using the

It is worthwhile to make a few additional comments
about the low-temperature fluid behavior in this model. As
mentioned earlier Wertheim'’s theory predicts a vapor—liquid
coexistence region for the model at states where such behay
ior is preempted by the solid—fluid transitions. Figures 12
and 13 show the EOS obtained from the Wertheim theory
compared with Monte Carlo simulations @t =0.12 and 100 |
T*=0.10. We see that the agreement between theory an
simulation is good at low densities to moderate densities andy,,"
in particular, for the states where our phase equilibrium cal-
culations show the fluid to be stable with respect to solid
phases. On the other hand, the agreement deteriorates at hic ~ 5°
densities. Unlike the case at higher temperatures discusse
earlier these low-temperature simulation results exhibit hys-
teresis between isotherms generated by expansion and tho:

0.0

TABLE Ill. Free energy as determined from the Monte Carlo simulations

and from cell theory.
FIG. 12. Pressure vs density for the PMW model with=0.15 atT*

Solid A* ™ p* Avet/ (NKT) Ace/ (NKT) =0.12. Open circles: MC results obtained by compressing a low-density
state. Open squares: MC results obtained by expansion. Solid line: Results
LDS 0.15 0.12 0.60 —2.4636 —2.1133 from Wertheim EOS. The simulations were performed with 128 molecules,
HDS 0.15 0.12 1171 -1.7177 —2.0104 and run over 25.6 million configurations with half of these used for equili-
HDS 0.15 0.12 1.240 —0.6021 —0.2780 bration. The high-density fluid obtained from compression was the initial

state for the expansion.
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' ' (5) The existence of orientational disorder in the solid is not
needed for the presence of the LDS in the phase dia-
gram. Neither is it a determining factor for the existence
of melting to a high-density fluid. However, the orienta-
tional disorder increases the temperature range where the
solid phases are stable with respect to the fluid.

(6) The PMW does not exhibit a true vapor-liquid equilib-
rium. The condensation of the low-density fluicapon
to a high-density fluidliquid) is preempted by solidifi-
cation. This is similar to what has been found for sys-
tems with spherically symmetric short range

o interactions”’

(7) Wertheim’s thermodynamic perturbation theory is quite

-100' o - s s successful in describing the fluid phase of the PMW un-

p der the conditions where it is stable with respect to so-

lidification. For the solid phase the cell theory gives a

fair description of the equation of state and free energies.

200 | a b

FIG. 13. Pressure vs density for the PMW model with=0.15 atT*
=0.10. Open circles: MC results obtained by compressing a low-density
state. Open squares: MC results obtained by expansion. Solid line: Results
from Wertheim EOS forT* =0.10. Dashed line: Results from Wertheim
EOS forT* =0.06. The simulations were performed with 64 molecules, and
run over 7.68 million configurations with half of these used for equilibra-
tion. The high-density fluid obtained from compression was the initial stateACKNO\NLEDGMENTS
for the expansion. .
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