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Several simulations of dipolar and quadrupolar linear Kihara ¯ uids using the Monte Carlo
method in the canonical ensemble have been performed. Pressure and internal energy have
been directly determined from simulations and Helmholtz free energy using thermodynamic
integration. Simulations were carried out for ¯ uids of ® xed elongation at two di� erent den-
sities and several values of temperature and dipolar or quadrupolar moment for each density.
Results are compared with the perturbation theory developed by BoublõÂ k for this same type of
¯ uid and good agreement between simulated and theoretical values was obtained especially for
quadrupole ¯ uids. Simulations are also used to obtain the liquid structure giving the ® rst few
coe� cients of the expansion of pair correlation functions in terms of spherical harmonics.
Estimations of the triple point temperature to critical temperature ratio are given for some
dipole and quadrupole linear ¯ uids. The stability range of the liquid phase of these substances
is shortly discussed and an analysis about the opposite roles of the dipole moment and the
molecular elongation on this stability is also given.

1. Introduction

The study of the liquid state and, in particular, mol-
ecular liquids has relevant scienti® c and technological
interest. The key to the large successes of study in this
® eld must be mainly attributed to the rapid powerful
computer developments to solve the complex mathemat-
ical tasks that this ® eld of study requires. In particular,
the integral equations have supplied results of great
accuracy in the case of monatomic liquids [1]. The tech-
nique on the other hand is very complicated in the case
of polyatomic liquids [2± 4] and the most used approx-
imation in this case has been the thermodynamic pertur-
bation theory (PT) in its di� erent variants [5± 7]. The
essential idea in these types of theories is that the struc-
ture of the system is given fundamentally by the inter-
molecular repulsive forces. In this case, an expansion
about a reference system that only contains these
forces permits one to ® nd, with relative precision and
ease, the properties of the system of interest [6]. How-
ever, perturbation theories fail when applied to systems

where the role of attractive forces is important as hap-
pens in systems with considerable dipolar or quadru-
polar interactions. There is, however, also in this ® eld
more or less successful attempts [8] and one of these
relatively recent attempts due to BoublõÂ k [9, 10] seems
particularly promising when applied to linear ¯ uids
interacting according to a Kihara intermolecular poten-
tial [11]. Unfortunately, the theory of BoublõÂ k has not
been proven directly up to now but through similar
models [12] and intermediate approximations [13] what
throws certain doubts on its range of validity. On the
other hand, another well known liquid study method is a
computer simulation [14] that permits one to compare
directly models with experimental results. In particular,
ourselves have accomplished extensive simulations using
the Kihara linear model with and without multipoles
[15± 17] and these have been shown to be very e� cient
when obtaining experimental properties from real
liquids, especially the liquid± vapour equilibrium [18].
Simulation is more expensive than theory in economic
terms [19]and furthermore permits a smaller data reduc-
tion but its other capacities permits one to check the-
ories in an unambiguous way. Taking this last aspect
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into account, the principal purpose of this work is to
prove whether the theory proposed by BoublõÂ k [9] is
actually valid and in what experimental range it may
be con® dently applied. For this goal, we have simulated
linear models in the canonical ensemble in the same
thermodynamic states and elongation used by BoublõÂ k
and we have accomplished a systematic comparison
between theory and simulation. Furthermore, we have
obtained the contribution to internal energy and to
Helmholtz free energy coming from the multipolar inter-
action and we have proven that these magnitudes follow
similar empirical laws to those found by Vega and Gub-
bins [20] for a similar model of di� erent elongation. We
have found that agreement is good overall, specially for
the internal energy at high densities and all the multipole
moments. Results for the compressibility factor also
agree well but simulations for high quadrupole moments
show a discontinuity at high densities and low tempera-
tures that is not predicted by PT. We have also tried to
search for the reasons of success of PT, obtaining in our
simulations the ® rst few spherical harmonics of the
expansion of the pair correlation function (PCF) and
some suggestions are given. Keeping this in mind, we
present the work as follows: section 2 is devoted to the
model description, the conditions of the simulation and
the related principal equations we make use of. Section 3
® rst presents the results of the simulation for quadru-
polar ¯ uids and then for dipolar ¯ uids comparing them
with the results obtained with the theory from BoublõÂ k.
A discussion follows where the validity of BoublõÂ k’s
theory is analysed and where values of the thermody-
namic properties for some other models are predicted on
the basis of a recent de® nition of the reduced multipole
densities [16, 17] for those where we have found that a
law of corresponding states is well ful® lled. A short
discussion about the stability range of dipole and quad-
rupole liquids in terms of the ratio of temperatures at
triple and critical points as a function of the multipole
moments is also given here. Finally, it is shown that
dipole moment and molecular elongation have opposite
in¯ uences on the dielectric constant and Kirkwood fac-
tors. A few additional remarks in the section 4 close the
paper.

2. Potential model and simulation condit ions

We consider here linear rods of length L mimicking
linear or pseudolinear molecules [18]. Rods interact fol-
lowing a Kihara potential which is written as:

u
K
12 4e s /q 12 s /q 6 , 1

where e and s are parameters with energy and length
dimensions, respectively, q r, x 1, x 2 is the shortest dis-
tance between the molecular cores modelling the mol-

ecular shape. q r, x 1, x 2 depends in a non-trivial way on
positions and mutual orientations of molecules but, for
the sake of simplicity, we denote it simply as q . The
molecular core is a rod in all cases considered here.
The reduced length of this rod is L L /s for the
models. Moreover, the pair interaction may contain
electrostatic terms corresponding to point dipoles or
quadrupoles, namely in a general way:
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where c i cos µi , s i sin µi , c i j cos µi µj and c g i j

cos g i j ei e j cos µi cos µj sin µi sin µj cos u i u j .
The molecular core and the reference framework used to
de® ne the pair potential are shown in ® gure 1. None of
the models considered here have a dipole and a quadru-
pole moment simultaneously. So, the crossed term u

¹Q in
equation (3) given by equation (5) always vanishes.

Monte Carlo simulations were carried out in the
canonical ensemble (N , V and T ® xed) using 256 parti-
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Figure 1. The molecular model considered in this work and
the reference framework de® ning the intermolecular
potential.



cles of reduced length L 0.5233. The Kihara poten-
tial was truncated to the shortest distance, q , between
molecules of 2.5s assuming an uniform ¯ uid beyond this
distance. Reaction ® eld boundary conditions were used
for the dipole interaction and a dielectric constant of
e RF was used. Dipole interaction was truncated
at a distance between the centres of mass, r , equal to
2.5s L . 3000± 5000 cycles were performed to reach
equilibrium and additionally 3000± 5000 more to
obtain the averages. A cycle consists of 256 molecular
con® gurations. The thermodynamic quantities directly
obtained were the total internal energy, U , the dipole
contribution to the total energy, U

¹ , and pressure, p .
Furthermore, coe� cients in the spherical harmonics
expansion of the pair correlation function, g 12 , were
obtained in the same runs and the dielectric constant, e ,
was estimated from the g110 and g111 coe� cients as:

e 1 2e 1
9e

y gK, 6

where gK is the Kirkwood factor related to these har-
monic coe� cients by:

gK 1
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and
y 4n p ¹
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is the so-called dipole force. The dipole Helmholtz free
energy, A

¹ , was calculated by thermodynamic integra-
tion using the Kirkwood coupling parameter method
and the square of the reduced dipole moment,
¹

2
¹

2 /e s 3 as an integration variable:
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Furthermore, we ® nd that the dipole contribution can
be well ® tted to the following equation:

U
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and thus, the dipole contribution to the free energy can
be explicitly written as:

A
¹ /N k BT a ¹

2 1
2b ¹

2 2. 11

Equations totally similar to (9), (10) and (11) can be
written for the quadrupole contribution to U and A by
substituting ¹

2 with Q
2, where Q

2
Q

2 /e s 5. The
non-polar contribution to the free energy was obtained
from the improved perturbation theory (IPT) of Vega
and Lago [21] which was found accurate enough.

3. Results

Monte Carlo (MC) results for internal energy and
compressibility factors of systems interacting through

Kihara plus quadrupole potentials are shown in table
1 and in ® gures 2 and 3. Agreement between simulations
and results from the BoublõÂ k theory [9] is good specially
at low quadrupole and high densities as expected from a
perturbation theory. Fitting parameters to the equations
(9) and (10) are shown in table 2. It is quite apparent
from table 1 that some compressibility factors are nega-
tive for high quadrupole and high densities and we dis-
cuss this behaviour below. These values were not used to
obtain the ® tting parameters.

The negative values for the compressibility factor con-
® rm previous observations suggesting the appearance of
a solid phase [22] or a highly ordered phase [23] for these
thermodynamic states. Our simulations always started
from an a -N2 solid lattice and in spite of performing
long runs in these cases the systems with the highest
quadrupoles still showed radial distribution functions
strongly recalling those of a solid as shown in ® gure 4.
However, these features do not appear at higher tem-
peratures at any quadrupole or density as shown in
® gure 5. To con® rm this point we calculated [16, 24]
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Figure 2. (a ) Internal energy as a function of quadrupole
moment for a reduced density n 0.273 at several tem-
peratures. Discrete symbols are the results of BoublõÂ k
perturbation theory and lines ® t to our MC results. (b )
As (a ) but for n 0.492.



critical temperatures for L 0.5233 and Q
2 0, 0.45,

0.9, 1.35 and 1.8. The resulting temperatures are 1.020,
1.060, 1.101, 1.141 and 1.182, respectively. Moreover,
we performed a series of independent MC simulations
in the Gibbs ensemble (GEMC) obtaining T c 1.031
for the non-polar systems in good agreement with our
estimations. Values of T t /T c, the ratio of the triple point
to critical temperatures, is about 0.7 for these elonga-

tions [22] in dumbbells. Kihara rods behave in a similar
way to dumbbells and, thus, T 0.58 should be well
below of the triple point temperature for all the quadru-
poles considered here even showing for the highest ones
a non-physical behaviour corresponding to negative z

values. However, T 0.81 should lie below the triple
point only for the highest quadrupole and, indeed, this is
the only system showing a negative z value. Solid den-
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Table 1. Comparison between thermodynamic properties of quadrupolar linear Kihara ¯ uids obtained by computer simulation
(MC) and the perturbation theory of BoublÂ ik (PT).

MC PT

Q 2 T n U /N k T Z U Q /N k T A Q /N k T A res /N k T U /N k T Z

0 - 2.413 0.537 0 0 - 1.12 - 2.30 0.44
0.45 - 2.454 0.488 - 0.04 - 0.03 - 1.15 - 2.34 0.42
0.90 1.16 0.273 - 2.574 0.408 - 0.17 - 0.10 - 1.22 - 2.45 0.34
1.35 - 2.763 0.358 - 0.37 - 0.20 - 1.32 - 2.62 0.23
1.80 - 3.055 0.198 - 0.64 - 0.34 - 1.46 - 2.86 0.07

0 - 1.493 1.317 0 0 - 0.24 - 1.42 1.22
0.45 - 1.503 1.297 - 0.02 - 0.01 - 0.25 - 1.44 1.21
0.90 1.74 0.273 - 1.563 1.217 - 0.08 - 0.05 - 0.29 - 1.49 1.17
1.35 - 1.643 1.177 - 0.18 - 0.10 - 0.34 - 1.58 1.11
1.80 - 1.753 1.127 - 0.30 - 0.16 - 0.40 - 1.70 1.02

0 - 1.043 1.666 0 0 0.16 - 1.00 1.58
0.45 - 1.053 1.626 - 0.01 - 0.01 0.15 - 1.01 1.57
0.90 2.32 0.273 - 1.083 1.616 - 0.05 - 0.03 0.13 - 1.04 1.55
1.35 - 1.143 1.586 - 0.11 - 0.06 0.10 - 1.10 1.51
1.80 - 1.213 1.636 - 0.18 - 0.10 0.06 - 1.17 1.46

0 - 9.647 0.8626 0 0 - 5.69 - 9.25 - 0.06
0.45 - 9.977 0.3838 - 0.35 - 0.30 - 5.99 - 9.55 - 0.43
0.90 0.58 0.492 - 10.7310 - 0.3629 - 1.21 - 0.86 - 6.55 - 10.34 - 1.43
1.35 - 13.1410 - 7.9729 - 3.21 - 1.69 - 7.38 - 11.51 - 2.93
1.80 - 14.698 - 10.5127 - 4.78 - 2.79 - 8.48 - 12.97 - 4.77

0 - 6.536 3.3725 0 0 - 2.76 - 6.33 2.40
0.45 - 6.726 3.1226 - 0.20 - 0.06 - 2.82 - 6.50 2.19
0.90 0.81 0.492 - 7.187 2.5923 - 0.71 - 0.31 - 3.07 - 6.96 1.62
1.35 - 7.868 1.7524 - 1.46 - 0.73 - 3.49 - 7.66 0.76
1.80 - 9.5418 - 2.8744 - 2.85 - 1.34 - 4.10 - 8.56 - 0.17

0 - 2.525 5.6918 0 0 0.78 - 2.49 5.08
0.45 - 2.566 5.6420 - 0.06 - 0.04 0.74 - 2.54 5.03
0.90 1.74 0.492 - 2.696 5.4819 - 0.20 - 0.13 0.65 - 2.66 4.87
1.35 - 2.906 5.2219 - 0.43 - 0.25 0.53 - 2.87 4.64
1.80 - 3.167 4.8919 - 0.71 - 0.41 0.37 - 3.14 4.32

0 - 1.675 5.9218 0 0 1.42 - 1.69 5.44
0.45 - 1.705 5.8518 - 0.04 - 0.03 1.39 - 1.72 5.41
0.90 2.32 0.492 - 1.795 5.7417 - 0.13 - 0.08 1.34 - 1.80 5.32
1.35 - 1.915 5.5918 - 0.26 - 0.16 1.26 - 1.92 5.18
1.80 - 2.076 5.4418 - 0.44 - 0.26 1.16 - 2.09 4.98



sities as a function of temperature are more di� cult to
estimate but should be about 2.5 times the critical den-
sities, which is about 0.19 for these models, namely
0.493 should correspond to a two phase state for

higher quadrupoles. All these results agree with former
observations[22, 23] showing additional evidence about
the phase diagram of linear quadrupole substances.

Some relevant conclusions may also be reached when
simulation and theory [9] are compared for dipolar
systems as shown in table 3 and ® gures 6 and 7. Fitting
parameters to the internal energy as a function of dipole
moments, a and b , are shown in table 4. In this case, a
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Figure 3. (a ) As ® gure 2 (a ) but for the compressibility factor.
(b ) As (a ) but for n 0.492.

Table 2. Fitting parameters of equations (10) and (11) of the
main text for the internal and Helmholtz energies of quad-
rupolar linear Kihara ¯ uids as obtained by computer
simulation (MC).

Q
2

T n a b

0
0.45
0.90 1.16 0.273 - 0.026 - 0.183
1.35
1.80

0
0.45
0.90 1.74 0.273 - 0.013 - 0.086
1.35
1.80

0
0.45
0.90 2.32 0.273 - 0.009 - 0.051
1.35
1.80

0
0.45
0.90 0.58 0.492 - 0.366 - 1.313
1.35
1.80

0
0.45
0.90 0.81 0.492 0.066 - 0.903
1.35
1.80

0
0.45
0.90 1.74 0.492 - 0.057 - 0.189
1.35
1.80

0
0.45
0.90 2.32 0.492 - 0.041 - 0.113
1.35
1.80

Figure 4. The radial distribution function of several quadru-
pole systems at T 0.58 and n 0.492.



previous comparison [12] with simulations was made on
a system interacting through a two centre Lennard-
Jones (2CLJ) and using the following semi-empirical
rules to scale the potential parameters [10]:

s K /s 2CLJ 1 0.07 L /s 2CLJ 0.965, 12

e
K /e 2CLJ 4 5 /2 L /s 2CLJ 2.654, 13

where superscripts K and 2CLJ refer to the parameters
for Kihara and two centre Lennard-Jones potentials,
respectively.

The conclusions of [12] essentially remain but are now
reinforced by our more straightforward comparison.
Moreover, critical temperatures may be estimated
[17, 24] as T c 1.020, 1.072, 1.125, 1.229 and 1.334
from the lowest to the highest dipole in the table 3.
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Table 3. Comparison between thermodynamic properties of dipolar linear Kihara ¯ uids obtained by computer simulation (MC)
and the perturbation theory of BoublõÂ k (PT).

MC PT

¹
2

T n U /N k T Z U
¹ /N k T A

¹ /N k T A
res /N k T U /N k T Z

0 - 2.413 0.537 0 0 - 1.12 - 2.30 0.44
0.84 - 2.544 0.438 - 0.12 - 0.14 - 1.26 - 2.42 0.38
1.68 1.16 0.273 - 2.804 0.338 - 0.39 - 0.32 - 1.44 - 2.73 0.25
3.35 - 3.613 0.098 - 1.17 - 0.80 - 1.92 - 3.65 - 0.08
5.03 - 4.668 - 0.218 - 2.18 - 1.45 - 2.57 - 4.78 - 0.36

0 - 1.493 1.317 0 0 - 0.24 - 1.42 1.22
0.84 - 1.533 1.257 - 0.06 - 0.07 - 0.31 - 1.48 1.19
1.68 1.74 0.273 - 1.684 1.197 - 0.20 - 0.16 - 0.40 - 1.63 1.11
3.35 - 2.104 0.977 - 0.62 - 0.41 - 0.65 - 2.13 0.89
5.03 - 2.636 0.758 - 1.17 - 0.76 - 1.00 - 2.79 0.63

0 - 1.043 1.666 0 0 0.16 - 1.00 1.58
0.84 - 1.083 1.626 - 0.04 - 0.04 0.12 - 1.03 1.56
1.68 2.32 0.273 - 1.163 1.596 - 0.12 - 0.09 0.07 - 1.13 1.51
3.35 - 1.424 1.457 - 0.39 - 0.25 - 0.09 - 1.44 1.35
5.03 - 1.775 1.296 - 0.76 - 0.47 - 0.31 - 1.88 1.15

0 - 5.605 0.4619 0 0 - 2.95
0.84 - 5.906 0.2118 - 0.40 - 0.37 - 3.32 - 5.73 0.00
1.68 0.81 0.419 - 6.496 0.0317 - 0.94 - 0.80 - 3.75 - 6.35 - 0.35
3.35 - 8.038 - 0.7618 - 2.42 - 1.87 - 4.22 - 7.84 - 1.02
5.03 - 9.849 - 1.5121 - 4.45 - 3.22 - 6.17 - 9.38 - 1.56

0 - 3.705 2.1516 0 0 - 1.12
0.84 - 3.875 2.1116 - 0.18 - 0.21 - 1.33 - 3.76 1.70
1.68 1.16 0.419 - 4.235 1.7817 - 0.54 - 0.46 - 1.58 - 4.15 1.46
3.35 - 5.176 1.3217 - 1.53 - 1.11 - 2.23 - 5.16 0.93
5.03 - 6.357 0.7417 - 2.76 - 1.94 - 3.06 - 6.29 0.43

0 - 2.255 3.2414 0 0 0.19
0.84 - 2.345 3.1814 - 0.09 - 0.14 0.08 - 2.28 2.88
1.68 1.74 0.419 - 2.535 3.0514 - 0.29 - 0.24 - 0.05 - 2.49 2.74
3.35 - 3.076 2.7315 - 0.85 - 0.60 - 0.41 - 3.12 2.37
5.03 - 3.757 2.3816 - 1.57 - 1.07 - 0.88 - 3.86 1.97

0 - 1.544 3.6613 0 0 0.77
0.84 - 1.594 3.6413 - 0.05 - 0.06 0.71 - 1.56 3.36
1.68 2.32 0.419 - 1.725 3.5614 - 0.19 - 0.13 0.64 - 1.70 3.27
3.35 - 2.085 3.3313 - 0.56 - 0.34 0.43 - 2.12 3.00
5.03 - 2.546 3.1214 - 1.05 - 0.64 0.13 - 2.65 2.69



We are not aware of any estimation of T t or T t /T c for
dipole Kihara or dipole dumbbells but our values with
negative z suggest that 0.94 > T t /T c > 0.66 for
¹

2 3.35 and T t /T c < 0.87 for ¹
2 5.03. Therefore,

the liquid phase is strongly destabilized for high dipolar
systems with respect to non-polar systems [22].

Furthermore, results for the ® rst few spherical har-
monics showing the ¯ uid structure are given in ® gure 8
for the radial distribution function, denoted as g r or
g000 , and in ® gure 9 for the more physically meaningful
combinations of the g110 and g111 harmonic coe� cients:

h
110

r g110 r 2g111 r , 14

h
112

r g110 r g111 r . 15

The success of the BoublõÂ k theory specially for quad-
rupole molecules is striking and probably comes from
the fact that it predicts well the ® rst even coe� cients of
PCF and we are currently exploring this possibility [25].
These coe� cients are the only non-vanishing terms for

quadrupole systems. Predictions for odd coe� cients
seem to be worse. In any case, results for dipole systems
are not so fair but the estimations are not so sensitive to
slight di� erences in the model as exists between Kihara
and 2CLJ. A ® nal but important remark should also be
stated: the simulated systems here, used to compare to
BoublõÂ k’s results, correspond to supercritical states in a

Dipolar and quadrupolar linear Kihara ¯ uids 129

Figure 5. (a ) The radial distribution function of several
quadrupole systems at T 1.74 and n 0.273. (b ) As
for (a ) but n 0.492.

Table 4. Fitting parameters, a and b , in equations (10) and
(11) of the main text for the internal and Helmholtz ener-
gies of dipolar linear Kihara ¯ uids as obtained by com-
puter simulation (MC). y is the dipole force de® ned by
equation (9).

¹
2

T n a b y

0 0
0.84 0.276
1.68 1.16 0.273 - 0.141 - 0.059 0.552
3.35 1.101
5.03 1.653

0 0
0.84 0.184
1.68 1.74 0.273 - 0.068 - 0.033 0.368
3.35 0.734
5.03 1.102

0 0
0.84 0.138
1.68 2.32 0.273 - 0.037 - 0.023 0.276
3.35 0.550
5.03 0.826

0 0
0.84 0.607
1.68 0.81 0.419 - 0.397 - 0.097 1.213
3.35 2.420
5.03 3.633

0 0
0.84 0.424
1.68 1.16 0.419 - 0.219 - 0.067 0.847
3.35 1.690
5.03 2.537

0 0
0.84 0.282
1.68 1.74 0.419 - 0.111 - 0.040 0.565
3.35 1.126
5.03 1.691

0 0
0.84 0.212
1.68 2.32 0.419 - 0.064 - 0.029 0.424
3.35 0.845
5.03 1.268



number of cases for dipole systems and it is expected
that perturbation theories do not work well for these
states.

Finally, we also show in table 5 results for the dielec-
tric constant e as obtained from equation (7) for the
highest dipole considered here, ¹

2 5.03. These
values should only be considered as a rough estimation
to the true value of e but the main lines of variation with

density and temperature seem to be clear and so, an
estimation of the static dielectric constant can be
obtained from the empirical equation:

e 5 14.1 exp T 0.88 /0.3861 . 16

It is remarkable that the direct dependence of the dielec-
tric constant on density is very weak and it is within the
simulation error for the values reported here. The dielec-
tric constant may also be obtained for a Stockmayer
¯ uid from a ® tting [26] to the dipole force, y , de® ned
by equation (9). Values obtained from this ® tting for the
dipole forces considered here are also given in table 5.
This comparison consistently shows smaller values of
dielectric constant for our anisotropic model at mod-
erate and high dipole forces. It is easy to check using
the equation (6) that gK > 1 for all the systems
appearing in table 5 indicating a trend of the dipoles
to align themselves parallelly but always gK is less for
the anisotropic system indicating that elongation and
dipole play an opposite role here. Hansen and McDo-
nald [27] have already pointed out that molecular non-
sphericity should have this e� ect for real molecules
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Figure 6. (a ) As ® gure 2 (a ) but for dipole systems. (b ) As
® gure 2 (b ) but for dipole systems at n 0.419.

Figure 7. (a ) As ® gure 3 (a ) but for dipole systems. (b ) As
® gure 2 (b ) but for dipole systems at n 0.419.

Table 5. Dielectric constant, e , of a Kihara linear ¯ uid of
L 0.5233 and of a Stockmayer ¯ uid, e ST, at the same
dipole force [26], y .

n T y e e ST

0.273 1.16 1.653 11 15.9
0.273 1.74 1.102 6 8.5
0.273 2.32 0.826 5 5.8
0.419 0.81 3.633 22 110
0.419 1.16 2.537 13 39
0.419 2.32 1.268 6 10.4



because dipole hard spheres [1, 28], as well as Stock-
mayer models [29, 30], give unrealistic high values of e

for moderate and high dipole moments.

4. Final remarks

The results presented here can cautiously be extended
to models of di� erent reduced length and also to include
multipole moments, de® ning the reduced quantities in
the way shown in [15± 17]. We still are far away from a
complete phase diagram for linear molecules with an
embedded dipole or quadrupole but all the evidence
points to the T t /T c ratio as being about 0.7 for values
of L 0.5, in agreement with experimental results for
elongated molecules with high quadrupoles such as bro-
mine, CO2 and acetylene [8]. Strong quadrupole forces
reduce the liquid range as pointed out by Vega et al. [22]
and details to calculate T t /T c are given there. The dipole
increases the critical temperature and also seems to
increase the triple point and the total e� ect on T t /T c

is even more apparent than for quadrupole. This is per-
haps the reason that weakly dipole liquids such as CO
show a T t /T c ratio as high as 0.5 instead of 0.3 as

weakly quadrupole substances. This variation is sensi-
tive to the dipole moment value and liquids composed of
highly dipolar linear molecules seem to become non-
existent, namely with an estimated T t /T c > 1.
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