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Critical properties of mixtures of alkanes from perturbation theory
L. G. MacDowell and C. Vega
Departamento de Quı´mica Fı́sica, Facultad de Ciencias Quı´micas, Universidad Complutense,
28040 Madrid, Spain
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The critical properties of binary mixtures of linear and branched alkanes have been evaluated using
perturbation theory. An accurate equation of state for the reference system is combined with a mean
field treatment of the perturbation term, along with a reasonable potential model. No adjustable
parameters were used either for the pure compounds or for the binary mixtures. The aim of this work
is to show which features of the critical properties of alkane mixtures can be obtained from a fully
molecular based theory. It is shown that the main trends of the critical properties of alkane binary
mixtures can be described qualitatively by the theory. ©1999 American Institute of Physics.
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I. INTRODUCTION

The critical properties of pure alkanes and alkane m
tures are of interest from the practical and from the theo
ical point of view. From the practical point of view, intere
arises from the fact that alkanes are one of the main prod
of the oil industry. From a merely theoretical point of view
alkanes constitute a challenge for statistical thermodynam
theories, since, unlike simple rigid molecules, they have
ternal degrees of freedom which provide the molecule wit
new feature: flexibility. In the last 20 years, the interest
molecules having internal flexibility has been increas
steadily. Simulation of flexible off-lattice molecules we
pioneered by Ryckaert and Bellemans,1 followed and ex-
panded by Hall and co-workers,2,3 received new oxygen with
the development of the configurational bias method4,5 and
finally reached maturity with the extension of the Gib
ensemble6 method to long chains.7–9 The structure of flexible
molecules as described by the site–site correlation func
was pioneered by Chandleret al.10 with the development of
the site–site Ornstein–Zernike equation~RISM!, which was
extended to polymers~after some further approximations! by
Curro and Schweizer in the Polymer Reference Interac
site model~PRISM!.11,12 The equation of state of hard flex
ible molecules has been an area of renewed interest sinc
important work of Wertheim13 and Chapmanet al.14 Taking
the hard sphere fluid as a reference system and using W
theim’s theory of association, these authors were able to
velop an equation of state for chains of hard tangent sphe
This equation of state has been extended successfull
other hard flexible models by Boubliket al.15 and to hard
alkane models~branched and linear! by ourselves.16,17

As we will focus our attention on alkane mixtures
what follows, it may prove interesting to give our perspe
tive of the current situation concerning molecular studies
alkanes:

~1! Though there is still some room for improvement, go
potential models have been developed within the un
3180021-9606/99/111(7)/3183/9/$15.00
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atom approach, thus allowing for a simple but accur
description of the fluid phase. See for instance Re
8,18–22.

~2! Good EOS are now available for hard alka
models.16,23,17

~3! The structure of hard alkane models can be obtained
principle from integral equation theories formulated on
site–site basis.10–12

~4! Vapor–liquid equilibrium can be obtained from com
puter simulations by using the Gibbs ensemb
method.7,8

Points 1–3 suggest that perturbation theories can now
developed for alkanes~linear and branched! and results can
be compared to experiment and to numerical simulati
~point 4!. Certainly, if one performs a good job for poin
1–3 one could expect good agreement with experime
However, point 3 is probably the most difficult, since it r
quires good results for the site–site correlation functions
linear and branched alkanes for each thermodynamic sta

The goal of this work is to analyze if a simple perturb
tion theory can describe at least qualitatively the critical lin
of binary alkane mixtures. We shall combine a reasona
choice for the potential parameters of the model and a g
EOS for the hard reference alkane model, with a very sim
approximation for the structure of the reference fluid.
other words, we shall use the best methods we can for s
1 and 2, whereas for step 3 we shall use the simplest ra
than the best. We are not looking for the quantitative
semi-quantitative agreement with experiment that one co
expect from a more rigorous theory~although hopefully the
time for that does not appear now to be too far away!. We are
rather looking for a simple theory with a molecular basis a
no adjustable parameters, able to describe the qualitative
tures of the critical lines of alkane mixtures. A more practic
approach has been widely used, where a sound statis
mechanical theory for an idealized and simple flexible mo
such as the tangent sphere model is used to correlate ex
3 © 1999 American Institute of Physics
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mental data. The self-associating fluid theory~SAFT! for
tangent spheres has been successfully used in
manner.24–28 This kind of work is quite interesting, since
shows that the methods of statistical mechanics can be
by chemical engineers to correlate experimental data an
predict properties not available from experiment. Howeve
can not be considered as a strictly molecular approach, s
the mapping of the tangent sphere model to the true mo
one aims to describe requiresa priori experimental informa-
tion of the system. The application of theories such as SA
for realistic models with overlapping spheres and well d
fined bond and torsion angles is possible in principle, bu
requires three and four body cavity functions, something t
is far beyond present knowledge. We certainly believe t
these two types of studies are complementary and bot
them are needed.

In previous work we have proposed a simple pertur
tion theory for linear and branched alkanes.29,30 This theory
was able to explain on a simple basis some of the experim
tal features of the vapor–liquid equilibrium of alkanes. J
to mention two examples, the origin of the maximum in t
critical density31,32and the effect of branching on the critic
properties of different isomers have been described. In
work we extend this theory to alkane mixtures. Two partic
lar aspects of alkane mixtures which are of interest are
critical lines and the excess properties. In this paper we fo
on the critical lines and we leave the issue of the exc
properties to the following paper.33 The goal of this paper is
to analyze if a simple perturbation theory can describe qu
tatively the trends of the critical lines of binary mixtures
alkanes.

The scheme of the paper is as follows. In Sec. II
potential used in this work to model alkanes is presen
Section III describes the perturbation theory for mixtures
alkanes. The results of the theory are presented in Sec
while a brief summary of our conclusions is given in Sec.

II. POTENTIAL MODEL FOR ALKANES

The alkane~linear or branched! is modeled by means o
the united atom approach, whereby each CHn group is de-
scribed by an interaction site located on the position of
carbon atom. The carbon-carbon bond distance is takenl
51.53, Å, while theC–C–Cbond angleu is set to the tet-
rahedral value, i.e.,u5109.5°. The torsional degrees of fre
dom are treated within the rotational isomeric state appro
mation~RIS!, the details of which are explained elsewhere34

The site–site interaction~intra or intermolecular! is de-
scribed by the Lennard-Jones~LJ! potential. The intra-
molecular energy is divided into short and long range c
tributions. The short range contribution accounts for
interaction between carbon atoms three bonds apart,
scribed by the Ryckaert–Bellemans torsional potenti1

whereas the long range contribution accounts for the inte
tion between carbon atoms separated by four or more bo
~see Ref. 30 for further details!. The intra-molecular energy
for a certain conformation is thus given by:
is
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U intra5U intra
short1U intra

long

5ngE11(
k

(
l

8

4«klS S skl

r kl
D 12

2S skl

r kl
D 6D , ~1!

whereE1 is a temperature dependent torsional energy wh
ensures that the RIS approximation gives the same con
mational populations as the chosen continuous torsio
potential23 while the prime indicates that the double sum
constrained to those pairs of carbon atoms four or m
bonds apart. The intermolecular energy between two m
ecules is given by:

U inter5 (
k51

n1

(
l 51

n2

4«klS S skl

r kl
D 12

2S skl

r kl
D 6D , ~2!

where the summation is now over then1 interaction sites of
molecule 1 and then2 interaction sites of molecule 2. Th
same set of Lennard-Jones parameters are used for i
molecular and intermolecular interactions. The values of
Lennard-Jones interactions between chemically differ
groups are obtained from the Lorentz–Berthelot rule~LB!.35

Our choice for the parameterss and « corresponds to tha
used in our previous work on the critical properties of
kanes~parameter set II of Ref. 30!, i.e.: s/Å54.10, 3.95,
3.87, 3.73 and«/kB593 K, 67 K, 37 K, 12 K for the CH3,
CH2, CH and C groups, respectively. With these parame
we were able to describe qualitatively the critical propert
of pure alkanes~linear and branched!.

III. PERTURBATION THEORY FOR ALKANE
MIXTURES

The total energy of the system will be divided into
reference and a perturbation part:

U5U intra1U inter5U intra1~U01lU1!. ~3!

The valuel50 defines the reference system, while setti
l51 we recover the original system. Each site–site LJ int
molecular interaction,u, is divided into a reference and
perturbation part following the Weeks–Chandler–Anders
criterion ~WCA!,36 so that the reference potentialu0 is given
by:

u0~r kl!54«kl~~skl /r kl!
122~skl /r kl!

6!1«kl ,

r kl,21/6skl

u0~r kl!50, r kl.21/6skl . ~4!

The perturbation part of the potential,u1 , is obtained from
the conditionu5u01u1. Note that theintra-molecular in-
teractions of our reference system are of LJ type, whereas
the intermolecular interactions are of the WCA type. Th
division of the potential guarantees that in the low dens
limit, the reference system has the same conformatio
population as the full system.

The Helmholtz free energy,A, is given by an ideal, an
intra-molecular and an intermolecular contribution:

A5Aideal1Aintra~Q,W!1Ainter~Q,W!, ~5!
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whereQ5(q1 ,q2 ,..,qM1
) is a vector whose components a

the molar fractions of theM1 possible conformers of mol
ecule 1 andW5(w1 ,w2 ,..,wM2

) is a vector whose compo
nents are the molar fractions of theM2 possible conformers
of molecule 2. Recall that within the RIS approximation, t
number of possible conformers may be large but always
nite. Let us now describe briefly each term. The ideal term
given by:

Aideal/N5kBT~x1 ln~r1L1
3!1x2 ln~r2L2

3!21!, ~6!

wherer1 andr2 are the number densities,L1 andL2 are the
thermal wavelengths andx1 andx2 are the molar fractions o
components 1 and 2, respectively;N is the total number of
molecules in the system andkB is the Boltzmann constant.

The intra-molecular term is given within the RIS a
proximation by:16,30

Aintra/N5kBTx1F(
i 51

M1

qi ln~qi !1(
i 51

M1

qing,iE1

1(
i 51

M1

qiU intra,i~LJ!G
1kBTx2F(

i 51

M2

wi ln~wi !1(
i 51

M2

wing,iE1

1(
i 51

M2

wiU intra,i~LJ!G , ~7!

whereng,i is the number of gauche bonds of conformeri and
U intra,i(LJ) is the intra-molecular LJ energy of conformeri.

First order perturbation theory will be applied so that t
excess free energy of the system interacting through
original potential is expanded about that of the reference
tem up to first order. In this way, the intermolecular cont
bution is split into a reference and a perturbation part:

Ainter~x1 ,x2 ;Q,W!5A0~x1 ,x2 ;Q,W!1A1~x1 ,x2 ;Q,W!,
~8!

whereA0(x1 ,x2 ;Q,W) is the intermolecular free energy o
the reference system mixture with composition defined
the molar fractionsx1 andx2 and with a distribution of the
conformational population defined byQ for component 1
and by W for component 2.A1 is the intermolecular free
energy due to the perturbation potential which is given
the following equation:

A1

N
5

r

2 F(
i 51

2

(
j 51

2

xixj (
k51

ni

(
l 51

nj

«klskl
3

3E u1* ~r kl* !g0,kl
i j ~r kl* ;r,x1 ,x2 ;Q,W!4pr kl*

2 drkl* G ,

~9!

where r is the total number density an
g0,kl

i j (r ;r,xi ,xj ;Q,W) is the site–site correlation functio
between sitek of moleculei and sitel of moleculej of the
reference system. Note that for a given temperature,
function depends explicitly on the composition of the syst
-
is

e
s-

y

y

is

throughr, x1 andx2 and parametrically through the confo
mational populations, given byQ, W. The asterisks denote
reduced units, i.e.,r kl* 5r kl /skl andu1,kl* 5u1 /ekl .

Substitution of Eqs.~6!–~9! into Eq. ~5! yields an ex-
pression for the free energy. For a certain thermodyna
state, defined by its temperature, total density and molar f
tion, the free energy of the system depends on the confor
tional population~i.e., Q,W! of components 1 and 2. Th
reader familiar with density functional theory~DFT!37,38

would have probably realized that our treatment can be
fined as a DFT for flexible molecules.39 In fact, we are writ-
ing the free energy as a functional~a function in the RIS
approximation! of the conformational population~which
takes the role of the singlet correlation function!. As in DFT,
where the free energy functional is minimized with respec
the singlet correlation function, we should minimize the to
free energy with respect to the conformational population
each thermodynamic state. In most of the cases, such a m
mization is an overwhelming task and further approxim
tions are required. We shall therefore assume that for a g
temperature, the conformational population at zero densit
valid for all densities and compositions. Whereas this
proximation is unjustified in the more general case of
arbitrarily long polymer chain, where dramatic conform
tional changes are expected on going from the gas to
liquid phases, it has been shown that for the rather stiff a
short alkane chains that are considered in this work the c
formational changes are rather small.40 When changes in
conformational population with density are neglected,
intra-molecular term given by Eq.~7! depends only on tem
perature and composition. Consequently, it does not af
the vapor–liquid equilibrium~it does not contribute to the
pressure and the contribution to the chemical potential
constant which is identical in the liquid and the vap
phases!. Within this approximation, the intra-molecular ter
may be neglected in the vapor–liquid equilibrium calcu
tions.

Now, we shall describe the approximations used to
the structure and thermodynamics of the reference sys
We shall identify the properties of the WCA reference sy
tem to those of a hard body system. A hard sphere will
assigned to each interaction site. The diameter of this h
interaction site will be given by the Barker–Henders
prescription41 as implemented in Ref. 30. Having assigned
effective hard body to the reference system, the thermo
namics is then calculated by means of the modified W
theim equation, which has been shown to give excellent
sults for hardn-alkanes.16,23,42 According to this equation,
the free energy is given by:23

A0

NkBT
5~2amixture21!lnS 2~12y!3

~22y! D2~2amixture22!

3
11y20.5y2

~12y!~120.5y!
. ~10!

The magnitudesamixture andy are defined as:16

amixture5x1ā11x2ā2 , ~11!

y5rVmixture5r~x1V̄11x2V̄2!, ~12!
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whereamixture is the nonsphericity parameter of the mixtur
given in terms of the nonsphericity parameters of com
nents 1 and 2~i.e., ā1 and ā2). The packing fraction,y, is
given as the product ofr and the average molecular volum
expressed as the molar fraction average of the molecular
umes of components 1 and 2~i.e., V̄1 and V̄2). The bar in
Eqs.~11!–~12! recalls that the nonsphericity and volume o
given component is the average of these magnitudes ove
conformational population of the molecule. For instance
ā1 it holds:

ā15(
i 51

M1

qia i ~13!

with similar equations forā2 , V̄1 and V̄2. Note that, due to
our choice of the conformer populations, Eq.~10! gives an
approximation to the configurational free energy of a syst
with WCA repulsive intermolecular interactions which
forced to have the conformational population of an ideal
of molecules with the LJ intra-molecular potential.

The values ofa i needed in Eq.~13! are chosen to repro
duce the second virial coefficient of the hard model assig
to conformeri. Convex body geometry~CBG! methodology
as described in Refs. 17 and 29 is used to estimate the se
virial coefficient of each conformer. Further details conce
ing the evaluation ofa i are given elsewhere.17 The method-
ology of Dodd and Theodorou43 is used to determine th
volume of conformeri.

Now we shall describe our implementation of the pert
bation termA1. Obviously, the evaluation of this term i
difficult, since it requires for each temperature, density a
composition the evaluation of all the site–site correlat
functions of the reference system. In principle, by solving
integral equation such as RISM for each thermodyna
state one could get this information.10 Certainly, this is the
way to be followed if one is looking for quantitative result
However, in this paper we are rather looking for a qualitat
description of the problem and a simplified treatment of
perturbation term is enough. We shall therefore use a m
field approximation. In a mean field theory, the contributi
of the attractive forces to the free energy is linear in
number density. From Eq.~9!, it can be seen that this i
achieved when the radial distribution function is density
dependent:

g0,kl
i j ~r ;r,xi ,xj ;Q,W!5 f 0,kl

i j ~r ;xi ,xj !. ~14!

When such an approximation is invoked forg0,kl , the inte-
grals of Eq.~9! become constants~for a given temperature
and composition! and the theory is said to be of ‘‘mea
field’’ type. The type of mean field theory now depends
the choice of the functionf 0,kl

i j . Let us mention two possi
bilities which we have used in previous work. The first o
leads to a mean field theory which will be denoted as m
field 1 ~MF1!:

f 0,kl
i j 5H~r 2skl!. ~15!

In this approximation, all site–site correlation functio
are approximated as Heaviside step functions. This appr
mation is ‘‘democratic’’ in the sense that it assigns the sa
,
-
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site–site correlation function to all type of sites and m
ecules. It was shown in Ref. 29 that the MF1 approximat
is able to reproduce qualitatively the experimental maxima
the critical properties ofn-alkanes. However, it was foun
later that this approximation fails completely in describi
the effect of branching on the critical properties of alkanes30

Therefore, Eq.~15! does not seem to be appropriate f
studying critical properties of branched alkane mixtur
This is not to say that Eq.~15! is useless. It will be shown in
the next paper that MF1 does a very good job in predict
excess properties ofn-alkane mixtures at high densities
However, for the purpose of studying critical properties, t
following approximation~denoted as MF2! seems to be more
appropriate:

f 0,kl
i j 5g0,kl

i j ~r ;r50!. ~16!

The approximation given by Eq.~16! can be summarized
in words saying that we approximate the site–site correla
function between sitek of moleculei and sitel of moleculej
at any density and composition by its respective low den
limits. This approximation has been used recently in Ref.
to correctly describe the critical properties of linear a
branched alkanes. Equation~16! is not ‘‘democratic’’ in the
sense that it assigns different correlation functions to diff
ent sites of the same molecule and to the same type of
~i.e., CH3 or CH2) of different molecules. Equation~16! is
exact in the zero density limit and introduces correctly t
molecular geometry. Unless otherwise stated, all the res
of this work were obtained with the MF2 approximation.
this way,A1 becomes a trivial linear function of the densit
as is usual in mean field theories:

A1

N
52raMF , ~17!

aMF5x1
2a1112x1x2a121x2

2a22, ~18!

where aMF is the mean field constant of the mixture e
pressed in terms of the mean field constants,ai j given by:

ai j 52
1

2 (
k51

ni

(
l 51

nj

«klskl
3 E u1* ~r kl* !g0,kl8 i j ~r kl* ;r50!2

34pr kl*
2 drkl* . ~19!

The prime ong0,kl8 i j reminds of the fact that we are approx
mating the structure of the reference system by that of a h
body system. The zero density site–site correlation functi
g0,kl8 i j of the hard body were evaluated as described in App
dix C of Ref. 17,~method 2!. Since the dependence ofg0,kl8 i j

on temperature is weak, it was evaluated for a single te
perature~close to the critical temperature! for each alkane
and this value was used for all the temperatures~i.e., the
mean field constantsa11 anda22 were made temperature in
dependent!.

Finally, let us mention how the critical properties of th
mixture can be obtained. From the perturbation theory
scribed above, an analytical expression of the Helmholtz f
energy as a function of temperature, reduced number den
r* 5rsCH2

3 and composition is available, i.e.,A(T,r* ,x1).

All what is needed is the knowledge of the mean field co
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TABLE I. van der Waals constantsa11 , a12 anda22 ~in units ofkB Å3! as obtained from the MF2 approxima
tion at T5298.15 K and test of the van der Waals mixing rule.

Component 1 Component 2 a11 a22 a12 (a11a22)
1/2

n-hexane n-heptane 543 906. 677 713. 607 183. 607 134
n-hexane n-octane 543 906. 819 230. 670 060. 667 521
n-hexane n-decane 543 906. 1 133 893. 792 894. 785 322
n-hexane n-dodecane 543 906. 1 473 070. 909 179. 895 104
n-hexane n-tetradecane 543 906. 1 842 212. 1 024 816. 1 000 99
n-hexane n-hexadecane 543 906. 2 242 724. 1 132 489. 1 104 46
2,2-dimethylbutane n-hexane 495 704. 543 906. 520 012. 519 246
2,3-dimethylbutane n-hexane 506 325. 543 906. 525 653. 524 779
2-methylpentane n-hexane 523 505. 543 906. 534 174. 533 608
3-methylpentane n-hexane 519 919. 543 906. 532 188. 531 777
pentane cyclohexane 423 434. 478 069. 449 615. 449 92
cyclohexane 2,2-dimethylbutane 478 069. 495 704. 486 493. 486 80
cyclohexane 2,3-dimethylbutane 478 069. 506 325. 491 935. 491 99
cyclohexane 3-methylpentane 478 069. 519 919. 498 827. 498 55
cyclohexane n-hexane 478 069. 543 906. 510 966. 509 926
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stantsa11, a12, a22 which are assumed to be temperatu
independent and of the molecular volumes and the nons
ricity parameters of components 1 and 2 which are temp
ture dependent. The critical line of a binary mixture can
then obtained from this analytical expression of the He
holtz free energy by solving for each composition~i.e., x1)
the following system of equations:35,44

Av,vAx1 ,x1
2~Av,x1

!250, ~20!

Ax1 ,x1 ,x1
Av,v

2 2Av,v,vAx1 ,x1
Ax1 ,v23Av,x1 ,x1

Av,vAv,x1

13Av,v,x1
Av,x1

2 50, ~21!

wherev is the molar volume andA(y1 , . . . ,yn) stands for then
partial derivative of A with respect to the variable
y1 ,...,yn . For each composition, the systems formed by E
~20!–~21! is solved with respect tor* and T, so that the
critical density and temperature are obtained. The crit
pressure is then obtained from the equation of state, thro
the well known relation:

Z5
p

rkBT
5rS ]

]r

A

NkBTD
T,x1

. ~22!

The derivatives needed in Eqs.~20!–~21! were obtained by
using the program of symbolic algebra MATHEMATICA.45

IV. RESULTS

In this section, the main results of this work are sho
and discussed.

Let us start by considering the mean field constantsa11,
a22, and a12 of several binary mixtures. Theseai j were
evaluated at a temperature of 298.15 K, from the exact
ues of theg0,kl8 i j in the zero density limit. In Table I, result
are presented for several binary mixtures. As can be seen
exact value of the cross mean field constant,a12, can be
estimated quite accurately from the geometric average of
mean field constantsa11 anda22 of the pure components. A
it is well known, in empirical EOS the geometric average
often used as an estimate ofa12.44 Here, we simply notice
e-
a-
e
-

s.

l
gh

l-

the

e

that this empirical rule is justified on a molecular level f
alkane mixtures, at least when the structure is taken from
zero density limit. Given the good results obtained by t
geometric average, in what followsa12 will be approximated
by the geometric average ofa11 anda22.

Let us now present the results for the critical lines
several alkane mixtures. Each figure shows a set of crit
lines of mixtures of a given alkane with several others. U
less otherwise stated, the graph in the left shows the exp
mental data,46 while the one in the right shows the predi
tions from the theory. The scale is chosen such that
temperature and pressure are reduced by the correspon
experimental or theoretical values of the common alkane

Let us start considering systems of a shortn-alkane
1longern-alkanes. This is done in Fig. 1, where we prese
results for the systems propane1n-butane, n-pentane,
n-hexane andn-octane. Note that, although quantitativ
agreement is not obtained, as expected from the use of
simple mean field approximation, the theory qualitatively d
scribes the behavior of the set of critical lines. The existe
of a maximum in the critical pressure which increases
magnitude as the difference in size between the alkanes
creases is predicted correctly, although the magnitude of
maximum is underestimated.

Let us now consider the critical lines of a longn-alkane
with mixtures of shorter linear alkanes. This is done in F

FIG. 1. Critical lines of propane1n-alkane mixtures. Left, experimenta
data; right, results from theory.~a! butane;~b! pentane;~c! hexane;~d!
octane. Temperature and pressure reduced by the critical temperatur
pressure of propane, respectively.
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2, where we show the critical lines ofn-heptane1 ethane,
propane,n-butane andn-hexane. Again, the theory describ
qualitatively the features of the critical lines, correctly pr
dicting the existence of a maximum in the critical press
for all but the n-heptane1n-hexane mixture. Once more
however, the magnitude of the maximum is underestima
by the theory.

Now let us show results for mixtures of a linear alka
with branched alkanes. This is done in Fig. 3 for mixtures
propane1 hexane isomers. In this case, the critical pressu
and temperatures of the pure hexane isomers are so si
that to observe the differences it has been necessary to
centrate in a small region of thepT surface. As the experi
mental data are scarce, the lines which connect them ap
discontinuous. These lines are only a guide to the eye
must not be considered as a correlation of the critical d
between available experimental points. Note that the the
is not only able to describe the appearance of a maximum
all the mixtures, but also the relative ordering of the
maxima for the five mixtures considered. This is remarkab
since the critical properties of hexane isomers are very s
lar and the differences in the critical lines arise as a con
quence of chemical details which the theory is qualitativ
able to grasp. The theory does fail in one instance, howe
as it predicts a slightly smaller critical temperature for pu
2-methylpentane than for pure 2,2-dimethylbutane. As a
sult of this, a crossover of the corresponding critical lin

FIG. 2. Critical lines ofn-heptane1n-alkane mixtures. Left, experimenta
data; right, results from theory.~a! ethane;~b! propane;~c! n-butane;~d!
n-hexane. Temperature and pressure reduced by the critical temperatur
pressure ofn-heptane, respectively.

FIG. 3. Critical lines of mixtures of propane1hexane isomers. Left, ex
perimental data~the lines joining the data are a guide to the ey!;
Right, results from theory. The mixtures, from top to bottom, belong
propane1 n-hexane~full line!, 3-methylpentane~dot-dashed line!, 2,3-
dimethylbutane~short-dashed line!, 2-methylpentane~long-dashed line! and
2,2-dimethylbutane~dotted line! mixtures. Temperature and pressure r
duced by the critical temperature and pressure of propane, respect
Note that the theory incorrectly predicts a crossing over of the critical li
of 2-methylpentane and 2,2-dimethylbutane.
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occurs~not observed in the figure!. It is thus seen that the
theory can be applied quite successfully ton-alkane mixtures
but also to mixtures ofn-alkane1branched alkanes. Let u
now show an example of mixtures of two branched alkan
This is done in Fig. 4, where results are presented for m
tures containing 2,2-dimethylbutane12,2-dimethylpentane
and 2,2-dimethylheptane~lines a and b! and 2-methylpentane
12-methylhexane and 2-methyloctane~lines c and d!. In this
case, the maximum in the critical pressures of lines b an
are not predicted~see below for an explanation!, but several
other features of the graphs are correctly described, e.g.
crossing between lines a and c, between lines a and d
between lines b and d .

The results presented so far illustrate that the theory
describe qualitatively the critical lines of several alkane m
tures. Notice again that, given the potential model, there
no adjustable parameters whatsoever as the theory has a
molecular origin.

Let us now analyze what happens for heaviern-alkane
mixtures. In Fig. 5, the critical lines of mixtures ofn-hexane
1 n-heptane, n-octane, n-decane andn-tetradecane are
shown. The figure on the top shows the results of the the
whereas the one below shows the experimental results.
seen that, although the results for mixtures ofn-hexane with
n-heptane andn-octane are acceptable, the theory is far fro
predicting the pronounced maxima in the critical lines of t
n-hexane1 n-decane andn-tetradecane mixtures. Furthe
more, the prediction for the critical temperature of the lo
n-alkanes relative to that ofn-hexane is increasingly under
estimated. Apparently, the theory deteriorates as the we
of the alkanes considered is increased. Note that, as has
shown elsewhere,30 the theory predicts~absolute! critical
temperatures which are always lower than the experime
ones. However, the ratio of the critical temperature of
long n-alkanes relative to that ofn-hexane could be predicte
correctly if both were underestimated by the same fact.
Actually, for n-tetradecane this ratio is experimentally foun
to be 1.35, while the theory predicts a ratio of 1.25, which
significantly lower. As it will be shown, this disagreeme
can be traced to an increasing underestimation of the co
lations as the chain length increases.

Let us first defineI kl(r) as the integral appearing in th
first order perturbation term of Eq.~9!, i.e.:

and

ly.
s

FIG. 4. Critical lines of mixtures of branched alkanes. Left, experimen
data; Right, results from theory.~a! 2,2-dimethylbutane 12,2-
dimethylpentane;~b! 222-dimethylbutane12,2-dimethylheptane; and~c!
2-methylpentane12-methylhexane;~d! 2-methylpentane12-methyloctane.
Pressure and temperature reduced by the critical pressure and tempera
2,2-dimethylbutane.
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I kl~r!5E u1* ~r kl* !g0,kl8 ~r kl* ;r!4pr kl*
2 drkl* . ~23!

From its definition it is clear thatI kl(r) is negative. More-
over, it is found that it is a decreasing function of the dens
~except at very high densities where this trend is inverte!.
Let us now express the first order perturbation term of a p
substance in terms ofI kl(r):

A1 /N5
r

2 (
k51

n

(
l 51

n

«klskl
3 I kl~r!. ~24!

Whereas this relation is exact, the MF2 implementation
our theory requiresI kl(r) to be a constant equal to its valu
at zero density:

I kl
MF2~r!.I kl~r50!. ~25!

In order to know to what extent this is a good appro
mation for the calculation of critical properties, we wou
like to know how much doesI kl(rc) differ relative to its
value at zero density. Although the rigorous evaluation
this ratio for our model alkanes is far beyond the scope
this work, we can get further insight into the problem
considering the simple pearl necklace model. Recen
Chiew47,48 proposed an integral equation which allows f
the computation ofgkl . Moreover, the resulting averag
site–site correlation function,49,50 gaverage, has been solved

FIG. 5. Critical lines ofn-hexane1n-alkane mixtures. Top, results from
theory; center, experimental data; bottom, results from the theory with
van der Waals constants scaled so as to reproduce the experimental c
temperature of the pure components.~a! n-heptane; ~b! n-octane; ~c!
n-decane;~d! n-tetradecane. Temperature and pressure reduced by the
cal temperature and pressure ofn-hexane, respectively.
y

re

f

f
f

y,

analytically in Laplace’s space.51 Therefore, an expressio
for gaverageas a function of density and number of monome
can be obtained by performing an inverse Laplace transfo
This allows as to calculate the averageI kl factor for the pearl
necklace model as:

I average~r!5E u1* ~r * !gaverage~r,n!4pr * 2 dr* . ~26!

In Fig. 6, the value ofI averageas a function of density for 1, 2
4, 8, and 16 spheres is shown. From this figure, the follow
conclusions can be drawn:

~1! I kl is a decreasing function of the density~except at very
high densities where this trend is inverted!.

~2! The absolute value ofI averageat zero density decrease
with the length of the chain. This is due to the fact th
the correlation hole52 which dominates the low densit
behavior ofI averageincreases with the length of the chai

~3! For sufficiently long chains~i.e., n.8) and high densi-
ties ~i.e., y.0.4) I kl depends very weakly on chai
length and density.

Now, in order to analyze how the predictions of the MF
theory deteriorate with density and chain length, we plot
Fig. 7 the following function:

F~r!5I average~r!/I average~r50!. ~27!

The critical densities of the pearl necklace model as obtai
from Gibbs ensemble simulations9,53–55 have been also in-
cluded. From this figure, it is clearly seen that the me
dispersive energy at the critical density, relative to that
zero density, increases with the chain length, even though
volume fraction at the critical point decreases slightly. A
cordingly, the quality of the MF2 approximation deteriorat
with chain length. Although strictly speaking these consid
ations concern the pearl necklace model, we believe t
apply qualitatively to any chain molecule and thus expla
the failure of our theory in predicting the critical lines o
n-hexane1n-decane andn-tetradecane mixtures.

e
ical

iti-

FIG. 6. I average(r) for the pearl necklace model. The average site–site c
relation function was obtained from Chiew’s integral equation. Results
shown as a function of the volume fractiony for several chain lengthsn
51,2,4,8,16.
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That the mean field theory can be brought into clo
agreement with experiment is shown in the bottom part
Fig. 5. In this figure, the van der Waals constants of the p
compounds were chosen to match the experimental cri
temperatures. In doing so, we are somehow correcting for
underestimation of the dispersive energy. As can be seen
agreement with experiment is now better and the curva
of the critical lines is increased.

Let us finish with another application of the perturbati
theory proposed in this work. We shall analyze the probl
of the distribution of a solute~ann-alkane! at infinite dilution
between the vapor and liquid phases of a solvent~a lighter
n-alkane! in the neighborhood of the critical point of th
solvent. This problem has been studied experiment
recently.56 The partition coefficient,K, which gives the ratio
of the molar fraction of the heavy alkane in the vaporxv and
in the liquid phasexl can be approximated~see Refs. 56, 57
for details! as:

RT ln~K0!5 limx˜0RT lnS xv

xl
D52

r l12rc1

rc1
2 S ]p

]x D
r,T

c

, ~28!

wherer l1 andrc1 denote the orthobaric and critical densiti
of the pure solvent and the derivative is evaluated at
critical point of the solvent.56,57 Note that all the properties
appearing in Eq.~28! can be readily evaluated from the pe
turbation theory of this work. However, the partial derivati
appearing in this equation can only be calculated from
periment by means of indirect methods.56 In Fig. 8, the par-
tition coefficient for binary mixtures ofn-hexane~solvent! 1
n-decane,n-dodecane andn-tetradecane~solutes! are shown
as obtained from experiment~left figure!56 and from theory
~right figure!. In the implementation of the theory we use
the van der Waals constants which match the critical te
peratures of the pure compounds~the same that were used
the bottom of Fig. 5!. As it can be seen, the theory predic
correctly the enrichment of the liquid phase in the solute
one moves away from the critical point of the solvent. Als
it is shown that the theory predicts a bigger enrichment of
liquid phase for the heaviest solute~n-tetradecane! than for
the lightest one~n-decane!. The results of this figure show

FIG. 7. Value ofFaverage@see Eq.~27! of the main text# for the pearl neck-
lace model. Results are shown as a function of the volume fraction,y for
several chain lengthsn51,2,4,8,16.
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how the simple perturbation theory of this work can be u
ful in getting a qualitative understanding of some proce
involved in supercritical extraction.

V. CONCLUSIONS

In this paper, the perturbation theory of linear a
branched alkanes proposed previously30 has been extende
to mixtures. The theory has a full molecular origin and
adjustable parameters. Critical lines ofn-alkane mixtures
have been computed from the theory and compared to
experimental results. Since the theory is of mean field ty
quantitative agreement with experiment cannot be expec
Even so, main trends found in the critical lines of alka
mixtures are correctly described. The performance of
theory deteriorates when increasing the molecular weigh
the alkane. An explanation for that is proposed on the ba
of the behavior of the pearl necklace model, for which the
are approximate analytical expressions for the average s
site correlation function. Finally, it is shown that the theo
is also useful in getting a qualitative idea of the distributi
of an n-alkane solute in ann-alkane solvent in the proximi-
ties of the critical point of the latter. This shows that pertu
bation theory can be useful in understanding some phen
ena associated with supercritical extraction. In the followi
paper, the possibilities of using a perturbation theory to p
dict excess properties ofn-alkane mixtures is analyzed.
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