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An application of cell theory to molecular models of n-alkane solids
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Solid phase properties for hard sphere chain molecular models of n-alkanes are calculated
using the cell theory, and a numerical method for implementation of cell theory for chain
molecules is described. Good agreement with Monte Carlo simulations for solid phase proper-
ties is obtained from the theory. By using cell theory for the solid phase and an equation of
state for the ¯ uid phase, solid± phase equilibrium can be calculated. The predictions are in
quite good agreement with Monte Carlo simulation results. Cell theory is used to assess the
impact of an approximate treatment used in earlier work for the e� ect of the temperature
dependence of the molecular ¯ exibility upon the solid phase properties of a hard chain model
with a realistic torsional potential.

1. Introduction

Computer simulation studies have been reported
dealing with the important problem of calculating
solid± ¯ uid phase equilibrium for chain molecules. Mala-
noski and Monson [1] and Polson and Frenkel [2] have
studied solid± ¯ uid equilibrium for chains of tangent
spheres. In the work of Malanoski and Monson [1]
freely jointed tangent hard sphere chains were consid-
ered. The goal was to investigate the feasibility of calcu-
lating the free energy in the solid phase. Polson and
Frenkel [2] considered the case of tangent Lennard-
Jones 12-6 spheres and investigated the e� ect of variable
chain sti� ness. They found that increasing the chain
sti� ness stabilized the solid phase.

The n-alkanes are an important prototypical system
for studying the e� ect of molecular shape and chain
length on solid± ¯ uid phase diagrams of chain molecules.
The solid phase equilibrium properties of n-alkanes
exhibit odd± even e� ects which are related to the way
in which the chains are packed in the solid phase [3].
Such e� ects cannot be described with models that do not
restrict the CCC bond angles. Malanoski and Monson
[4] have considered fused hard chain models which give
a geometrically realistic model of the n-alkanes. They
found that if the hard sphere chain results were used
as reference system data in a generalized van der
Waals or mean-® eld theory for the phase diagram, the

predictions for the chain length dependence of T t=T c
were in qualitatively good agreement with the experi-
mental results if , in addition to the chain structure, the
torsional potential was modelled realistically.

Calculations of solid± ¯ uid equilibrium via Monte
Carlo simulations are a major computational
undertaking and it is worthwhile investigating the
feasibility of predicting the solid± ¯ uid phase equilibrium
for chain molecules using simpler theoretical
approaches. One possibility is to use density functional
theory [5]. Another is to use cell theory [6] for the
solid phase and a theoretical equation of state for
the ¯ uid phase. This approach has been used
successfully to study a variety of model systems
including hard spheres [7], the Lennard-Jones
12-6 potential [8], hard dumbbells [9], and mixtures of
hard spheres [10, 11] and Lennard-Jones 12-6 spheres
[12]. Generally the quantitative agreement with available
Monte Carlo results for these systems is better than
for the density functional theory [9]. In cell theory the
partition function is factored into a product of cell
partition functions for single molecules moving in a
cage created by the neighbouring molecules ® xed at
their lattice positions. Such partition functions are
easy to calculate for spherical molecules and rigid
non-spherical molecules. For ¯ exible chains, however,
the calculations are somewhat more involved and
require substantially more computer time. Nevertheless,
such calculations are still much less computationally
intensive then using full N particle Monte Carlo
simulations to determine the solid phase free energy.
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2. Methodology

2.1. Molecular models
In this work we use the same molecular models as

those reported in [4]. We consider hard sphere chains
with the CCC bond angle set at the value for tetrahedral
coordination (109.47 8) and the bond length at 0:4¼
where ¼ is the hard sphere site diameter. In the work
of Malanoski and Monson [4] three treatments of the
torsional portential were considered. All the models
have a hard sphere repulsive interaction between pairs
of sites in a chain separated by three or more sites. For
example, in a six-site chain there is a hard sphere inter-
action between sites one and ® ve, sites one and six and
sites two and six. In their ® rst model (model I) there is
no additional intramolecular interaction beyond this
hard core exclusion. In the second model (model II)
there is an additional hard sphere interaction between
pairs of sites separated by three sites, yielding a hard
core torsional potential. In the third model (model III)
they considered a more realistic representation of the
torsional potential using two forms which have been
used previously in simulations of n-alkanes [13, 14]. In
this work we focus on the model II and model III tor-
sional potentials since it is these which give the more
realistic treatment of the ¯ exibility e� ects. For the
model III we use the Ryckaert± Bellemans torsional
potential.

2.2. Implementation of cell theory for chain molecules
In cell theory the partition function of the solid is

evaluated by assuming that each molecule of the solid
interacts with its nearest neighbours in their static lattice
positions [6, 9, 15]. For hard core potentials this approx-
imation works best for dense solid states. The partition
function for the entire solid can then be factorized into
single molecule partition functions. We have

QN ˆ qNZN
1 ; …1†

where N is the number of molecules and q is part of the
molecular partition function that is independent of the
density. In the case of a chain molecule, Z1 can be
written as

Z1 ˆ
…

¢ ¢ ¢
…

exp ‰¡­ u…r1 ; . . . rm†ŠF …r1 ; . . . rm†dr1 ¢ ¢ ¢ drm ;

…2†

where rj refers to the cartesian coordinates of the jth site
in the central molecule of the cell, m is the total number
of sites in the chain, rc is the bond length, ³c is the CCC
bond angle, and u…r1 ; . . . rm† is the potential energy
which consists of two contributions. The ® rst is the
potential energy of interaction of the molecule with its
neighbours. The second contribution is from the intra-

molecular potential energy. The function F…r1 ; . . . rm†
imposes constraints on the chain con® guration due to
® xed bond lengths and bond angles, and is given by

F …r1 ; . . . rm† ˆ Y
m

i 2̂

d…jri ¡ ri¡1j ¡ rc†

£ Y
m

j 3̂

d
…rj ¡ rj¡1† ¢ …rj¡2 ¡ rj¡1†
jrj ¡ rj¡1jjrj¡2 ¡ rj¡1j

¡ cos ³c

¡ ¢
:

…3†

We calculate Z1 numerically using Monte Carlo inte-
gration. In order to enforce the bond length and bond
angle constraints it is convenient to use a combination
of Cartesian and spherical polar coordinates. The coor-
dinates used are illustrated in ® gure 1. We use Cartesian
coordinates to specify the location of the ® rst atom in
the chain. For each subsequent atom l the coordinates
are expressed relative to those of the previous atom
l ¡ 1, using spherical polar coordinates, rl ;³l ;¿l. Z1
can be rewritten using this coordinate system as

Z1 ˆ
…

¢ ¢ ¢
…

exp ‰¡­ u…r1 ;r2 ;³2 ;¿z ; . . . rm ;³m ;¿m†Š

£ F…r1 ;r2 ;³2 ;¿2 ; . . . rm ;³m ;¿m†

£ dr1r2
2 sin ³2 dr2 d³2 d¿2 ¢ ¢ ¢ r2

m sin ³m drm d³m d¿m ;

…4†

where F…r1 ;r2 ;³2 ;¿2 ; . . . rm ;³m ;¿m† is given by

F…r1 ;r2 ;³2 ;¿2 ; . . . rm ;³m ;¿m† ˆ Ym

iˆ2

d…ri ¡ rc†
Ym

j 3̂

d…³j ¡ ³c†:

…5†
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Figure 1. Schematic representation of the coordinate system
used to represent a chain in our cell theory calculations.



Since each of the delta functions is now associated with
one variable, these variables can be integrated over im-
mediately. So we can rewrite equation (4) as

Z1 ˆ rm¡1
c …sin ³c†m¡2

…
¢ ¢ ¢

…
exp …¡­ u†dr1

£ sin ³2 d³2 d¿2 d¿3 ¢ ¢ ¢ d¿m: …6†

The quantities rm¡1
c and …sin ³c†m¡2 can be removed from

Z1 and grouped with q as they are not dependent on the
density. We then have

Z 0
1 ˆ

…
¢ ¢ ¢

…
exp …¡­ u†dr1 sin ³2 d³2 d¿2 d¿3 ¢ ¢ ¢ d¿m …7†

The single chain partition function can now be deter-
mined numerically using Monte Carlo integration via

Z 0
1 ˆ Vs

M

XM

iˆ1

exp …¡­ ui†; …8†

where M is the total number of randomly generated
sample con® gurations and Vs is the hypervolume from
which the coordinates are sampled. In evaluating Z 0

1 ,
only con® gurations that place the molecule close to its
lattice position will be signi® cant. We can introduce
importance sampling by limiting the range from which
each coordinate is sampled to values close to the lattice
value of that coordinate. Vs is then given by

Vs ˆ D x1 D y1 D z1 D cos ³2
Ym

iˆ2

D ¿i …9†

where, for example,

D ¿i ˆ ¿max
i ¡ ¿min

i : …10†

In order to determine Vs a Monte Carlo simulation is
run for a single chain in its cell, recording the minimum
and maximum values of the coordinates encountered [9].
These minimum and maximum values of the variables
can then be used to compute Vs. This importance sam-
pling technique works very well for shorter chains, but
for longer chains Vs determined in this way can be much
larger than the hypervolume of the cage formed by the
neighbouring molecules. When this happens the number
of samples that must be taken in the Monte Carlo inte-
gration becomes prohibitively large. We have been able
to obtain satisfactory accuracy from large Monte Carlo
samples for chains with up to eight atoms.

Before calculating the free energy it is convenient to
divide Z 0

1 by the intramolecular contribution in the ideal
gas limit. This contribution is given by

Z 0
intra ˆ

…
¢ ¢ ¢

…
exp …¡­ uintra† sin ³2 d³2 d¿2 d¿3 ¢ ¢ ¢ d¿m:

…11†

Alternatively, the corresponding contribution to the free
energy should be added to the con® gurational free
energy obtained from the equation of state of the ¯ uid
phase prior to performing a solid± ¯ uid phase equilib-
rium calculation.

The simulations to determine the maximum and mini-
mum values of the generalized coordinates were carried
out using a modi® cation of algorithm used for the mol-
ecular simulations of the previous work on models of n-
alkanes [4]. The simulations used were 10-50 £ 106 trials
depending on the chain length. The minimum and maxi-
mum values of the coordinate variables were increased
by a safety margin to ensure that the sample space con-
tained all of the chain con® gurations that generate no
overlaps with neighbouring chains. This value varied
from 0.05 to 0.03 of the values determined in the simula-
tion. To evaluate equation (8) the number of sample
con® gurations required to achieve su� cient accuracy
increased with chain length. For the butane models,
20 £ 106 sample con® gurations were su� cient. For the
octane models, 100-1000 £ 106 sample con® gurations
were required. This increase in the number of trials
required re¯ ects the decrease in the number of con® g-
urations that contribute signi® cantly to the integral for
longer chains using the sampling scheme described
above. It is possible that a more e� cient importance
sampling procedure could be developed, although we
have not investigated that possibility. Eight atoms
appears to represent an upper limit to the chain length
for which the present sampling method can be used.

The lattice structure for the cell theory calculations
was obtained from the close packed con® guration gen-
erated by the method described in [4]. This solid struc-
ture was isotropically expanded to the required density.
Relaxation of the solid structure from the close packed
geometry was not studied in these calculations.

It is useful to ® t Z 0
1 to a function so that the free

energy can be di� erentiated to give the pressure. For
this purpose we use the expression

Z 0
1 ˆ C¬D exp …a1¬ ‡ a2¬2 ‡ a3¬3†; …12†

where C ; a1 ; a2 ; and a3 are adjustable constants and ¬ is
given by

¬ ˆ «0 ¡ «

«0
; …13†

where « is the number density of molecules and «0 is its
value at close packing. In the rest of this paper « will
always refer to the number density of molecules. The
densities at close packing were determined by the algor-
ithm described in [4]. Equation (12) is a generalization of
the expression used by Alder et al. [16] to ® t the equation
of state of hard spheres from molecular dynamics simu-
lations at high pressure. For rigid molecules, the
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exponent D is the number of degrees of freedom of the
central molecule [17]. We calculated D as the number of
variables required to describe the position of the central
molecule which, for a chain of n atoms with ® xed bond
lengths and bond angles, is n ‡ 3. Making D an adjust-
able parameter did not improve the quality of the ® t.
Values of the coe� cients for the ® ts of our results for Z 0

1
are tabulated elsewhere [18].

2.3. Fluid equation of state
In order to calculate this solid± ¯ uid transition, a ¯ uid

phase equation of state is required. Vega and coworkers
[19] developed an extension of the equation of state for
freely jointed chains of tangent hard spheres obtained
from Wertheim’ s thermodynamic perturbation theory
[20, 21]. For chains of length m the tangent hard
sphere equation of state is given by

PV
NkT

ˆ m
…1 ‡ y ‡ y2 ¡ y3†

…1 ¡ y†3

¡ …m ¡ 1† …1 ‡ y ¡ y2=2†
…1 ¡ y†…1 ¡ y=2† ; …14†

where y is the packing or volume fraction. Vega et al.
[19] chose a value of m…T † so that the second virial
coe� cient obtained from equation (14) was the same
as that of the model n-alkane molecule in the rotational
isomeric states (RIS) approximation. More details of
this approach can be found in [4, 19].

In the case of model II the hard sphere torsional
potential leads to conformers which are quite similar
in shape. Thus it is possible for this model to approx-
imate the second virial coe� cient of the ¯ uid by using
the values for one conformer, the all-trans conforma-
tion. Using this approximation results in a theoretical
equation of state that agrees very well with Monte Carlo
simulation results.

3. Results and discussion
3.1. Equation of state and solid± ¯ uid equilibrium for

hard sphere chains
Figure 2 shows a comparison of the results from the

theoretical approach described in the previous section
with Monte Carlo simulations [4] for hard chain
models of n-butane and n-octane with the hard sphere
torsional potential. In the case of n-butane the solid
phase considered corresponds to the low temperature
experimental structure. These results are representative
of the kind of agreement we obtained for all chain
lengths considered (m ˆ 4, 5, 6, 7 and 8). The predic-
tions for solid± ¯ uid equilibrium for all systems studied
are compared with those from Monte Carlo simulation
in table 1.

Figure 3 presents the results for the Helmholtz free
energy versus density from cell theory and Monte Carlo
simulations [4] for the hard chain models of n-butane
and n-heptane with the hard sphere torsional potential
length. For the model of n-butane we see that the agree-
ment between cell theory and simulation remains good
throughout the density range, but in the case of the
model for n-heptane the agreement worsens at lower
densities. This larger error for the longer chain lengths
coincides with the slightly worse agreement for the
solid± ¯ uid phase equilibrium parameters seen in table
1 for the longer chains. The fact that the present cell
theory calculations do not allow for solid structure
relaxations away from the close packed geometry [9]
could contribute to this di� erence.

3.2. Generalized van der W aals theory
As in our previous work we can use the results for the

hard sphere chains in a generalized van der Waals
(GVDW) or mean-® eld theory to model the contribu-
tion from the dispersion forces to the phase diagram [22,
23]. We write the Helmholtz free energy per molecule as

A ˆ AHC ¡ a« …15†
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Figure 2. Pressure P¼3=kT versus density «d3 for the hard
chain models of n-butane and n-octane using the model
II torsional potential. The lines for the solid and ¯ uid
phases (Ð Ð , n-octane; - - -, n-butane) are from cell the-
ory and the equation of state. The points (°; n-octane;¯n-
butane) give the simulation results for the solid phase. In
the ¯ uid phase the simulation results are not plotted since
they are indistinguishable from the theoretical results on
the scale of the plots. Tie lines for solid± ¯ uid equilibrium
are also shown for each chain length (full line, theory;
dashed line, simulation).



where the subscript HC denotes properties of the hard
chain reference system and a measures the strength of
the attractive intermolecular forces. In [4] we used this
theory with Monte Carlo simulations for the reference
system to study the chain length dependence of the n-
alkane phase diagrams. For the model II reference
system the implementation of the theory is straightfor-
ward but for model III the reference system properties
are temperature dependent because of the torsional
potential. To reduce the number of simulations required
for the reference system we introduced an approximate
treatment of this temperature dependence, which we will

describe below. We can use cell theory to assess the
impact of this approximate treatment.

In ® gure 4, predictions for the reduced triple-point
temperature …T t=T c† versus chain length from the
GVDW theory are shown for the hard sphere torsional
potential when: (i) Monte Carlo simulations are used for
the hard chain reference system; and (ii) cell theory and
the ¯ uid phase equation of state are used for the hard
chain reference system. The results of this approach for
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Table 1. Solid± ¯ uid equilibrium data for hard chain models of n-alkanes with the model II torsional potential. Calculations using
cell theory for the solid phase and an equation of state for the ¯ uid phase are compared with Monte Carlo simulation results. In
de® ning dimensionless pressure and density here we use d, the diameter of the sphere with the same volume as the chain under
consideration in its all-trans conformation.

m «f d
3 a «sd

3 a Pd3 a

kT
……«s ¡ «f †=«f † a «f d

3 b «sd
3 b Pd3 b

kT
……«s ¡ «f †=«f † b

4c 1.169 1.274 47.8 0.090 1.120 1.147 36.3 0.024
4d 1.200 1.320 56.7 0.100 1.206 1.316 58.2 0.091
5 1.300 1.347 113. 0.036 1.278 1.380 111. 0.080
6 1.135 1.279 49.0 0.127 1.136 1.283 48.6 0.129
7 1.196 1.304 75.0 0.090 1.206 1.328 80.4 0.101
8 1.116 1.281 52.7 0.148 1.112 1.257 48.7 0.130

a Results from cell theory.
b Results from simulation.
c Results using the high temperature solid structure for n-butane.
d Results using the low temperature solid structure for n-butane.

Figure 3. Solid phase free energies A/NkT versus density «d3

for the hard chain models of n-butane and n-heptane
using the model II torsional potential (± ± ± , cell theory;
Ð Ð , simulation). The lower set of curves is for n-butane
and those that lie at higher free energy are for n-heptane.

Figure 4. Reduced triple-point temperature T t=T c versus
chain length (carbon number) for n-alkanes: °, experi-
ment; ,̄ GVDW theory for rigid molecules; ~, GVDW
theory using Monte Carlo simulations for the hard chain
reference system properties with the model II torsional
potential; and &, GVDW theory using theory for the
hard chain reference system properties with the model II
torsional potential.



methane, ethane and propane are from Paras et al. [23]
and Shen and Monson [24]. The experimental data [3]
are shown also. Given the results presented earlier for
the hard chain properties we should expect that the two
versions of the GVDW theory would be in good agree-
ment with each other, and this is what we see.

Of more interest is to use cell theory to study the
contribution to the phase diagram from the temperature
dependence of the molecular ¯ exibility e� ects when a
more realistic torsional potential is used. In this case
we consider the torsional potential of Ryckaert and
Bellemans [13]. In the work of Malanoski and Monson
[14] the solid phase free energy for model III was calcu-
lated by assuming that the con® gurational properties for
the hard chain system with this torsional potential and
the hard chain system with a hard sphere torsional
potential would be approximately equal. This approxi-
mation will be correct if the chain conformations in the
solid phase are close to the all-trans conformation, as
will be the case at high solid densities. We may expect
more signi® cant errors for lower solid densities at low
temperatures, where the realistic torsional potential will
make the chains more rigid than the hard sphere tor-
sional potential, and at high temperatures, where the
realistic torsional potential will make the chains less
rigid. For convenience we will refer to this approxima-
tion as the `all-trans’ approximation.

We now examine the accuracy of this approximation
within the context of cell theory. In cell theory it is poss-

ible to calculate the solid phase free energy, including
the torsional energy, over a range of temperatures simul-
taneously. In order to ® t the results over temperature
and density the parameters a1 , a2, a3 , and C in equation
(12) were ® tted with cubic polynomials in inverse tem-
perature. The values of the coe� cients for the various
chain lengths are tabulated elsewhere [18].

We compare the pressure versus density fom cell
theory with and without the all-trans approximation in
® gures 5 and 6. In each case the two sets of results do
not di� er very much. This is consistent with the ® ndings
in our previous work using molecular simulations [4],
where we showed that the model II and model III results
at the triple point temperature for n-heptane (182.5 K)
gave similar results. The di� erences in the predictions of
the two models increase slightly with chain length and,
for a given chain length, as the temperature is
decreased.

We now consider the free energies from cell theory
with and without the all-trans approximation. The
results are shown in ® gures 7 and 8, where we see behav-
iour that is expected. At higher densities the two sets of
results agree closely since each molecule is more tightly
restricted to con® gurations near the all-trans con® gura-
tions. At lower densities, this is no longer true and the
torsional potential begins to contribute signi® cantly to
the free energy. Under these conditions, the all-trans
approximation, which uses the hard sphere torsional
potential, underpredicts the free energy.
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Figure 5. Pressure Pd3=kT versus density «d3 for the hard
chain model of n-butane in the solid phase from cell
theory with the model II torstional potential (Ð Ð ) and
model III torsional potential at T ˆ 300 K (± ± ),
T ˆ 135 K (Ð Ð Ð ) and T= 100K…¡ ¡ ¡†:

Figure 6. Pressure Pd3=kT versus density «d3 for the hard
chain model of n-heptane in the solid phase from cell
theory with the model II torsional potential (Ð Ð ) and
model III torsional potential at T ˆ 300 K (± ± ),
T ˆ 182 K (Ð Ð ) and T ˆ 100 K (- - -).



When model III is used for the reference system the
phase diagram in mean-® eld theory depends on the ratio
¬ ˆ "¼3=a; where " is the characteristic energy of the
torsional potential (the Ryckaert± Bellemans can be
written in the form U…À† ˆ "f …À† where À is the tor-
sional angle) [4]. With " ® xed we adjust a iteratively
until the calculated critical temperature matches the
experimental value. In ® gure 9 we show the e� ect of
the all-trans approximation within the context of the
mean-® eld theory results for the reduced triple-point
temperature versus chain length. The reduced triple-
point temperature decreases when the all-trans approx-
imation is removed. The odd± even behaviour is still
present but the upward trend is less apparent and the
reduction in the triple-point temperature is much larger
for n-heptane and n-octane. On the basis of our analysis
of the solid phase free energy given above this should be
expected. The all-trans approximation underestimates
the free energy of the hard core reference system and
thus overestimates the stability of the solid phase.

4. Summary and conclusions

We have presented an implementation of cell theory
for hard sphere chain models of n-alkanes in the solid
phase. The approach gives quite an accurate description
of the solid phase properties and, when combined with
an equation of state for the ¯ uid phase, good predictions
of the solid± ¯ uid phase equilibrium.
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Figure 7. Free energy A/NkT versus density «d3 for the hard
chain model of n-butane in the solid phase from cell the-
ory with the model II torsional potential (Ð Ð ) and
model III torsional potential at T ˆ 300 K (± ± ),
T ˆ 135 K (Ð Ð ) and T ˆ 100 K (- - -).

Figure 8. Free energy A/NkT versus density «d3 for the hard
chain model of n-heptase in the solid phase from cell
theory with the model II torsional potential (Ð Ð ) and
model III torsional potential at T ˆ 300 K (± ± ),
T ˆ 182 K (Ð Ð ) and T ˆ 100 K (- - -).

Figure 9. Reduced triple-point temperature T t=T c versus
chain length (carbon number) for n-alkanes: °, experi-
ment, ,̄ GVDW theory for rigid molecules; ~, GVDW
theory using theory for the hard chain reference system
properties with the model III torsional potential and the
all-trans approximation; and &, GVDW theory using
theory for the hard chain reference system properties
with the model III torsional potential but without the
all-trans approximation.



We have used cell theory to test an approximate treat-
ment (the all-trans approximation) of the temperature
dependent e� ect of the torsional potential upon the
solid phase free energy. The all-trans approximation
underestimates the free energy of the solid phase at
low temperatures, and hence overestimates its stability.
In the context of the phase diagram for n-alkanes calcu-
lated in mean-® eld theory this leads to an overestima-
tion of the reduced triple-point temperature relative to
the case where the all-trans approximation is not used.

The phase diagram predictions (in the form of values
of T t=T c) for the n-alkanes presented here and in [4],
although qualitatively correct, are limited in accuracy
by the mean-® eld approximation for the e� ect of attrac-
tive forces between the chains. It may be worthwhile to
consider some improvements to the theory. One poss-
ibility which has been explored by MacDowell and Vega
[25] is to improve the calculation of the perturbation
term to the free energy for chain ¯ uids by using pair
correlation functions of the reference system in the low
density limit. Another is to incorporate a temperature
dependent hard sphere site diameter. We hope to
explore some of these possibilities in future work.

This work was supported by the US Department of
Energy, O� ce of Basic Energy Sciences (Contract No.
DE-FG02-90ER14150) and by a cooperative research
grant from NATO (CRG. 970275).
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