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We consider the virial coefficients of an idealized model polymer under good solvent conditions, the
so-called pearl-necklace model, consisting of a fully flexible chain ofm tangent hard spheres. We
employ an efficient algorithm recently proposed to determine the second, third, and fourth virial
coefficients of chains of up to 100 monomers. We also include some preliminary results for chains
of up to 200 monomers. These results, which include the first off-lattice calculations of third and
fourth virial coefficients of polymer models, are compared with predictions obtained from
Wertheim’s equation of state. It is shown that, despite the good agreement of Wertheim’s equation
of state for the compressibility factor, the predictions for the individual virial coefficients are far
from satisfactory. It it shown that for the values ofm considered in this work, the truncated virial
expansion correctly describes the equation of state up to packing fractions of 0.25. A new equation
of state which describes the low and high density regimes of the pearl-necklace model is proposed.
© 2000 American Institute of Physics.@S0021-9606~00!50946-5#

I. INTRODUCTION

In the last two decades, the interest in the study of flex-
ible molecules from the point of view of statistical thermo-
dynamics has increased considerably. One of the simplest
models of a flexible molecule is the pearl-necklace model, in
which the polymer is described bym tangent hard spheres
with bond length equal to the diameter of the spheres,s. As
there is no constraint of the bond angle, the molecule is very
flexible and may adopt many different configurations. A two-
dimensional sketch of the pearl-necklace model is presented
in Fig. 1~a!. As both the inter- and intramolecular interac-
tions between sites are considered to be of the hard-sphere
type, the model describes approximately the interactions be-
tween polymer molecules under good solvent conditions.

A somewhat related model is that formed bym tangent
hard spheres in a linear rigid configuration. The bond angle
is fixed to 180° and the molecule presents no flexibility. We
shall denote this model as the linear tangent hard-sphere
model ~LTHS!. A sketch of this model is presented in Fig.
1~b!. This model represents the opposite of the pearl neck-
lace model since it is fully rigid.

Given the simplicity of the pearl-necklace model, it has
played a central role in the study of flexible molecules and
for this reason it has been considered in several studies. It is
almost impossible to provide an exhaustive list of all the
articles devoted to this model, and for this reason we shall
provide just a few references. The goal of many of these
studies was the search for an equation of state. We should
mention the important simulations in this area performed by
Hall and co-workers and by Sandler and co-workers.1–3 Also
the fluid–solid equilibrium of this model has been deter-
mined via computer simulation for short chains.4 The search
for a theoretical equation of state for this model has also
been considered by a number of authors. In the late 1980s,
Wertheim5 and Chapmann, Jackson, and Gubbins6 proposed

a theoretical equation of state for this model. Two other the-
oretical equations of state should also be mentioned; the
Generalized–Flory dimer theory of Honnell and Hall7 and
the equation of state of Chiew.8 Also the structure of the
pearl-necklace model as given by the average site–site cor-
relation function has been studied in detail. Simulation stud-
ies of the site–site correlation function have appeared.9 In
addition to this, integral equations have also been proposed
to determine the site–site correlation function of the pearl-
necklace model. We should mention the theoretical studies
of Curro and Schweizer,10 Chiew,11 Chang and Sandler,12

and Lin et al.13

Somewhat surprisingly, the virial coefficients of the
pearl-necklace model have not been studied in such detail.
Only the second virial coefficient of the pearl-necklace
model has been determined numerically by Yethirajet al.14

and Wichert and Hall.15 Very little is known about the higher
virial coefficients of this model. The main goal of this study
is to provide data on the third and fourth virial coefficients.
This is interestingper seand also serves to test the perfor-
mance of the theoretical equations of state in the low density
regime.

The numerical determination of the third and fourth
virial coefficient of a flexible molecule, however, appears as
a nontrivial problem. We have recently presented an algo-
rithm to evaluate virial coefficients of any multicomponent
system.16 We treat the flexible molecule as a multicompo-
nent mixture, where each possible configuration of the poly-
mer represents a different component. In this work, we apply
this algorithm to the pearl-necklace model, obtaining for the
first time the third and fourth virial coefficients of a flexible
model in the continuum. To the best of our knowledge, the
only previous study related to this problem is that of Bruns,
where the third virial coefficient of a polymer molecule on a
lattice was determined numerically.17 The virial coefficients
obtained in this work will be compared with the theoretical
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predictions of the equation of state~EOS! proposed by Wer-
theim, which is known as the first order perturbation theory
~TPT1!. One of the goals of this work is to check whether
this successful equation of state is also successful in the pre-
diction of the virial coefficients of these systems. It will be
shown that TPT1 yields poor predictions for the virial coef-
ficients.

Another interesting question is the accuracy of the virial
expansion for describing the equation of state of a hard flex-
ible model. It is clear that a truncated virial expansion cannot
describe the equation of state of any hard model over all the
density range. However, it is difficult to know exactly at
which packing fraction will this oversimplified description
fail. We will analyze this issue. It will be found that the virial
expansion truncated at the fourth virial coefficient describes
reasonably well the equation of state of the pearl-necklace
model up to volume fractions of about 0.25, at least for the
chains considered in this work~i.e., those withm less than
100!. Finally, we shall propose a new equation of state which
will improve the performance of TPT1 at low densities.

The scheme of the article is as follows: in Sec. II the
method used to determine the virial coefficients will be
briefly described. In Sec. III, the virial coefficients as pre-
dicted by Wertheim TPT1 EOS will be presented. In Sec. IV
the results for the virial coefficients of the pearl-necklace
model will be presented, and in Sec. V the main conclusions
to this work will be given.

II. NUMERICAL DETERMINATION OF THE VIRIAL
COEFFICIENTS

The pressure of a homogeneous isotropic fluid can be
given in terms of a power series of the density by the fol-
lowing expression:

Z5
p

rkT
511B2~T!r1B3~T!r21B4~T!r31•••, ~1!

wherer is the number density~number of molecules per unit
volume! of the system and the coefficientsB2 , B3 , andB4

are the second, third, and fourth virial coefficients, respec-
tively.

As can be seen from the above equation, the virial coef-
ficients are generally temperature dependent. However, if all
interactions in the system are of hard type~i.e., the pair po-
tential is either zero or infinity!, as is the case in the pearl-
necklace model, the virial coefficients are no longer tempera-
ture dependent. In such cases, it is more convenient to

express the virial series@Eq. ~1!# in terms of the packing
fraction, which is a reduced density given in units of the
molecular volume:

Z511B2* y1B3* y21B4* y31•••, ~2!

where the reduced virial coefficients,Bn* , are defined as
Bn* 5Bn /Vm

n21 , while y5rVm is the packing fraction and
Vm is the molecular volume. In the case of the pearl-
necklace model made ofm tangent hard spheres,Vm

5mps3/6.
The link between the macroscopic expression given by

Eq. ~1! and the microscopic world was made in the 1930s,
when it was shown that the virial coefficients could be given
in terms of certain integrals involving the potential energy
between molecules. As the expressions in terms of these in-
tegrals may become rather lengthy, it has become customary
to represent them by graphs. In terms of these graphs, the
third and fourth virial coefficients of a rigid molecule are
given by18–20

~3!

~4!

In these graphs, solid lines represent Mayer functions,f
5exp(2bu)21, whereb51/(kT) andu is the pair potential
between pairs of molecules. On the other hand, black circles
represent integration with respect to the coordinates of the
corresponding molecule.

The extension of this notation to multicomponent sys-
tems or systems made of flexible molecules has been consid-
ered recently.16 Actually, it suffices to consider that, for each
of the black circles representing a given molecule, there is a
corresponding singlet correlation function which describes
the probability of occurrence of that molecule in the system.
In the case of a multicomponent mixture, this probability
will be simply given by the arbitrarily fixed molar fractions
of the mixture, while in the case of a flexible molecule, it
will be given by the corresponding Boltzmann weight of
each of the conformers.

We shall evaluate the virial coefficients by following the
method described in Ref. 16. We shall provide an outline of
the procedure here, though the reader is recommended to
read the reference for a much fuller description. In the first
stage, a conventional Monte Carlo procedure is performed in
order to obtain a sample of conformers chosen with a prob-
ability proportional to their Boltzmann weights. The chemi-
cal identity of each of the molecules required in the evalua-
tion of the graphs is then selected at random from the
sample. For this given set of conformers, each of the graphs
is evaluated using the procedure of Ree and Hoover,21 as
explained in Ref. 16. The final value for the virial coeffi-
cients of the chain molecules is then obtained as an average
of the virial coefficients over the possible sets of two, three,
or four conformers required in the corresponding graphs.

The conformers which form the sample were obtained
by means of a conventional single chain Monte Carlo simu-
lation, using the reptation algorithm.22 The simulations in-

FIG. 1. ~a! Sketch of an instantaneous configuration of the pearl-necklace
model.~b! The linear tangent hard-sphere~LTHS! model.
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volved about 80 million steps for equilibration, followed by
a further 160 million steps for the production of the sample.
Once the system was equilibrated, the instantaneous configu-
ration of the chains were stored in a file every 160 000 time
steps, producing a sample with a total of 1000 independent
instantaneous configurations. From this sample,Nchemical

5400 tetrads of conformers chosen at random were used to
evaluate the average virial coefficient of the chain molecules.
For each of the tetrads, the graphs were evaluated by aver-
aging over a total ofNorien580 000 orientations of the cor-
responding conformers in that tetrad. This procedure was
repeated four times, in order to get four uncorrelated average
values for the virial coefficients.

The numerical determination ofB3 and B4 for a short
chain withm57 takes only a few hours on a Pentium III 450
MHz personal computer. However, calculations form5100
would take around 200 days on a Pentium III 450 MHz
computer. Therefore, calculations for long-chain molecules
were performed on an Origin 2000 computer in the Univer-
sity Complutense Computer Center. Running on a single pro-
cessor, bench marks suggested that the same calculation
would last 100 days on this machine~i.e., the SGI R10000
processor doubles the speed of the Pentium machine!. We
therefore wrote a parallel version of our program and ex-
ecuted it on the Origin 2000, using 10 processors simulta-
neously. Results form5100 were then obtained in just 11
days! Therefore, with the currently available computers, cal-
culations of virial coefficients for long polymers~i.e., m
larger than 100! can be performed only on parallel machines.

III. THEORETICAL PREDICTIONS FOR THE VIRIAL
COEFFICIENTS

In this work we shall consider the predictions of the
virial coefficients as obtained from the thermodynamic per-
turbation theory of first order~TPT1!, first proposed by
Wertheim5 and Chapmann, Jackson, and Gubbins.6 The
TPT1 equation of state reads

ZTPT15m
11y1y22y3

~12y!3
2~m21!

11y2y2/2

~12y!~12y/2!
, ~5!

wherey is the volume fraction. As can be seen, this equation
of state predicts that for a certain volume fraction the com-
pressibility factor is a linear function ofm. The virial coef-
ficients arising from TPT1 were first obtained by
Boublik.23,24 They are given by the following expressions:

B2*
,TPT152.511.5m, ~6!

B3*
,TPT152.7517.25m, ~7!

B4*
,TPT152.875115.125m. ~8!

As can be seen, the virial coefficients arising from TPT1
are linear functions ofm. This is a consequence of the fact
that TPT1 predicts a linear dependence ofZ on m for a given
value ofy.

IV. RESULTS

A. Comparing exact virial coefficients with
predictions from TPT1

In Table I we collect the second, third, and fourth virial
coefficient of the pearl-necklace model form57, 10, 16, 32,
64, and 100. In order to clarify the role of flexibility, we have
also evaluated the virial coefficients of the LTHS model. In
Table II, the numerical results obtained in this work are pre-
sented. Virial coefficients of the LTHS model were calcu-
lated previously by Vegaet al.25 for short chains withm up
to 8, and here we extend the calculations to longer chains.

In Fig. 2, the second virial coefficients of the pearl-
necklace model as obtained numerically in this work are
compared with those predicted by TPT1. As can be seen, the
predictions of TPT1 are rather poor. According to TPT1,B2*
increases linearly withm. However, it is well-known26–29

that the reduced second virial coefficient of hard polymer
molecules with intramolecular and intermolecular hard inter-
actions ~i.e., good solvent conditions! scale as m3n21

.m0.8, wheren is the exponent describing the scaling of the
mean-square radius of gyration of the molecule~i.e., ^s2&
}m2n). Therefore, the second virial coefficient of the pearl-
necklace model increases more slowly than linearly and ac-
cordingly, TPT1 significantly overestimates the second virial
coefficient. This, in fact, has already been illustrated by
Yethiraj et al.14 Where available, the second virial coeffi-
cients obtained previously by Yethirajet al.14 have also been

TABLE I. Second, third, and fourth virial coefficients for the pearl-necklace
model as obtained in this work by the exact procedure described in Sec. II.
We use the parametersNorien580 000 andNchemical51600, except form
5150,200 where we usedNchemical5800 ~see Ref. 16 for the notation!.
Results labeled with an asterisk were obtained by using the approximated
method described in Sec. IV. The numbers in parentheses give the uncer-
tainty of the last digits. Values of the mean-square radius of gyration^s2&
are given in the last column.

m B2* B3* B4* ^s2&

7 10.18~5! 53.2~1! 139~1! 1.740
10 12.51~7! 77.4~6! 214~1! 2.857
16 16.74~8! 132~1! 381~4! 5.403
16* 16.71~8! 132~1! 361~6! 5.403
32 26.1~2! 302~3! 881~20! 13.424
64 42.1~1! 743~3! 1885~150! 32.419
64* 42.0~1! 744~3! 1356~140! 32.419
100 57.9~4! 1355~15! 2203~500! 56.568
150 76.92~6! 2357~30! 1563~800! 93.21
200 95.28 3552 22637 132.40

TABLE II. Second, third, and fourth virial coefficients for the LTHS model
as obtained in this work by the exact procedure described in Sec. II. The
numbers in parentheses give the uncertainty of the last digits.

m B2* B3* B4*

7 12.427~9! 58.43~7! 42~1!
10 16.61~2! 87.2~2! 262~4!
20 30.45~4! 195.1~5! 21284~15!
30 44.32~4! 317~2! 24051~49!
50 72.18~6! 585~4! 215 481~256!
100 141.3~5! 1338~22! 277 055~4039!

3J. Chem. Phys., Vol. 113, No. 22, 8 December 2000 Virial coefficients
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included in Fig. 2. As can be seen, the results of this work
for B2* are in good agreement with those of Yethirajet al.

In Fig. 2, the second virial coefficients of the LTHS
model are also presented. Symbols are results of this work,
while the straight line is the exact value, which has been
determined by Williamson and Jackson30 and Sullivan
et al.31 These authors have shown that for large molecules,
the second virial coefficient of the LTHS becomes a linear
function of m. As can be seen, the numerical results of this
work agree with the exact analytical value.

The results of Fig. 2 allow one to arrive at several con-
clusions. Rigid and flexible models differ significantly in the
second virial coefficient. According to TPT1, the virial coef-
ficients of any model made up of tangent hard spheres will
have the same equation of state and hence the same virial
coefficients. As it is shown in Fig. 2, this is not correct, since
virial coefficients are sensitive to differences in the structure
of the molecule. The slope ofB2* vs. m is 1.388 for the
LTHS, whereas TPT1 predicts this slope to be 1.5. There-
fore, TPT1 does not correctly predict the second virial coef-
ficient neither for rigid nor for flexible models of tangent
hard spheres.

In Fig. 3, results forB3* are presented. It can be seen that
flexible and rigid linear chains do not differ significantly in
the third virial coefficients. Thus, we can conclude that the
third virial coefficient is not sensitive to details in the mo-
lecular structure, in agreement with the predictions of TPT1.
However, TPT1 is not satisfactory from a quantitative point
of view. In fact, the third virial coefficient is underestimated
significantly when compared to the exact results.

In Fig. 4, results forB4* are presented. Again, at the
fourth virial coefficient level there are significant differences
between flexible and rigid models, though TPT1 is not accu-
rate at predicting the fourth virial coefficient, neither for the
flexible chains nor for the rigid ones. As can be seen in the
figure, the fourth virial coefficient of the LTHS becomes
negative form larger than 8. This might have been expected,

since rigid prolate molecules such as spherocylinders and
ellipsoids reach negative values ofB4* for length-to-breadth
ratios larger than 8, approximately. The LTHS is not an ex-
ception to this general rule. On the other hand, for the pearl-
necklace model, the fourth virial coefficient is positive for
values as large asm5100. However, it should be noted,
though not included in the figure, that there is some evidence
that B4* may actually reach a maximum value and then de-
crease for long polymer chains, possibly reaching negative
values. This evidence comes from the preliminary results
shown in Table I for virial coefficients of chains ofm
5150 and 200. We should mention that for these lengths,
however, our results are merely orientative, as they are af-
fected by extremely large error bars. Theaccuratecalcula-
tion of B4 for m5150,200 is, at this time, beyond the capa-
bility of currently available supercomputers.

From the results of Figs. 2–4 one may conclude that
TPT1 does a poor job in predicting the virial coefficient of
flexible or rigid tangent hard spheres models. This is not to

FIG. 2. Reduced second virial coefficientB2* for hard models made up ofm
tangent hard spheres. Numerical results of this work for the pearl-necklace
model ~open circles!, numerical results for the pearl necklace model from
Yethiraj ~Ref. 14! ~plus sign!, Wertheim TPT1 predictions~solid line!, nu-
merical results of this work for the LTHS model~open squares!, exact
predictions~Refs. 30, 31! for the LTHS ~dashed line!.

FIG. 3. Reduced third virial coefficientB3* of models formed bym tangent
hard spheres. Numerical results of this work for the pearl-necklace model
~open circles!, Wertheim’s TPT1 predictions~solid line!, numerical results
of this work for the LTHS model~open squares!.

FIG. 4. Reduced fourth virial coefficientB4* of models formed bym tangent
hard spheres. Numerical results of this work for the pearl-necklace model
~open circles!, Wertheim’s TPT1 predictions~solid line!, numerical results
of this work for the LTHS model~open squares!.

4 J. Chem. Phys., Vol. 113, No. 22, 8 December 2000 Vega et al.
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say that TPT1 is a bad EOS. In fact, for the pearl-necklace
model TPT1 overestimates the values ofB2* , but underesti-
mates the value ofB3* andB4* ~at least form,100). There-
fore, the good predictions of TPT1 at moderate densities
arise from a fortuitous cancellation of errors.

B. Scaling laws for the virial coefficients

Having presented the virial coefficients for the pearl-
necklace model, we shall now analyze their scaling laws.

According to the scaling hypothesis,26 the pressure of a
flexible chain molecule can be expressed as

Z5F~r/rc!, ~9!

whererc is defined as the concentration at which the poly-
mer coils start to overlap with each other~i.e., rc}1/̂ s2&3/2

}m23n). Therefore, according to the scaling hypothesis,

Z5F~rm3n!. ~10!

A Taylor expansion in powers of the density then shows that
the virial coefficients of a polymer should scale as

Bn}m3(n21)n. ~11!

For the second virial coefficient, the validity of Eq.~11! has
been tested in a number of studies, while for the third virial
coefficient, Eq.~11! has been analyzed for lattice chains with
up to m565.17 Unfortunately, the chains considered in this
work are not long enough to test Eq.~11! directly. However,
an indirect way of testing Eq.~11! is by realizing that it
implies

lim
m→`

B3

B2
2

5
B3*

~B2* !2
5g5constant, ~12!

for large values ofm.
In Fig. 5~a!, the ratio given by Eq.~12! is shown as a

function ofm, and in Fig. 5~b! as a function of 1/Am. Results
are shown for the pearl-necklace model and for the LTHS
model. For the pearl-necklace model, we have included data
of B3 for chains withm5150,200~see also Table I!. Recall,
however, that these data are somewhat less accurate than
those for chains with up to 100 monomer units. The reason is
that calculations form5150,200 are much more expensive
than those of shorter chains and therefore the graph of Eq.
~3! can be evaluated much less often.

Let us first discuss the behavior ofB3 /B2
2 for the pearl-

necklace model. The results presented in Fig. 5 strongly sug-
gest that, for this model, the ratioB3 /B2

2 reaches a constant
nonzero value for infinitely long chains, in agreement with
the predictions from Eq.~12!. This work suggests that the
value of this ratio, which is commonly denoted asg, seems
to be close to 0.35. On the other hand, Bruns17 has estimated
the value ofg to be of 0.30 for lattice polymer models. Other
values of g have been suggested.32 Flory33 advocated the
choice g50.25. Berry34 proposed the valueg50.33 and
renormalization group calculations obtainedg50.277 org
50.44.35,36 The value obtained in this work appears as rea-
sonable as compared to these previous estimates. In any case

the results of this work suggest that the scaling hypothesis as
represented by Eq.~11! seems to hold for the second and
third virial coefficients of flexible chains.

Let us now discuss the behavior of the ratioB3 /B2
2 for

the LTHS. Note that, apart from the results of the LTHS
model, we have also included the results for hard spherocyl-
inders~HSC! taken from Frenkel.37 In order to compare the
results from both models in a unified way, the value ofm for
the spherocylinder is chosen from that LTHS with equal
length-to-breadth ratio. Notice that, when plotted this way, it
is seen that the ratioB3 /B2

2 is almost the same for the LTHS
and HSC of the same elongation. It is thus seen that, for rigid
linear molecules, the detailed shape of the molecule does not
affect strongly this ratio, and only the length-to-breadth ratio
matters. Also note thatB3 /B2

2 is clearly seen to vanish as the
length of the chains increases. This is in agreement with
predictions by Onsager, who conjectured that this ratio
should become vanishingly small for linear rigid
molecules.38 This result has been confirmed for HSC,37 and
here we show that it is also obeyed for LTHS.

FIG. 5. Value of the ratioB3 /B2
2 for several hard models. Results for the

pearl-necklace model obtained in this work~filled circles!, results for the
LTHS obtained in this work~filled squares!, results for hard spherocylinders
taken from Ref. 37~open squares!. ~a! B3 /B2

2 plotted as a function ofm. ~b!
B3 /B2

2 plotted as a function of 1/Am.

5J. Chem. Phys., Vol. 113, No. 22, 8 December 2000 Virial coefficients
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To summarize, the behavior ofB3 /B2
2 in the limit of

infinitely long chains reflects the presence or absence of flex-
ibility in a model. It tends to a value of about 0.35 for flex-
ible chains~i.e., at least for the pearl-necklace model! and to
zero for linear rigid molecules. In other words, it can be said
that the ratioB3 /B2

2 in the limit of infinitely large size pre-
sents Onsager scaling for rigid molecules and de Gennes
scaling for flexible chains. On the other hand, TPT1 predicts
that this ratio goes to zero for infinitely large molecules,
which is the right behavior for rigid linear molecules but the
wrong behavior for flexible ones.

Let us now discuss the scaling law for the fourth virial
coefficient. One conclusion of the scaling hypothesis forB4

is that

lim
m→`

B4

B2
3

5
B4*

~B2* !3
5constant, ~13!

for long flexible chains.
In Fig. 6~a!, the ratio given by Eq.~13! is shown as a

function ofm, and in Fig. 6~b! as a function of 1/Am. Results
are shown for the pearl-necklace model and for the LTHS
model. For the pearl-necklace model we have included data
for B4 for chains withm5150 and 200~see also Table I!,
although we should bear in mind that for these lengths our
results just give the order-of-magnitude ofB4 . Let us first
discuss the behavior ofB4 /B2

3 for the pearl-necklace model.
The results presented in Fig. 6 strongly suggest that for this
model, the ratioB4 /B2

3 reaches a constant value in the limit
of long chains. It is hard to decide from our data whether this
constant is zero or a small nonzero value. In any case, one
may conclude that the limiting value ofB4 /B2

3 for infinitely
long flexible chains is quite small. Let us now discuss the
results for the LTHS. As can be seen, this ratio seems to go
to zero in the limit of infinitely long chains. In Fig. 6 we
have also included the results for hard spherocylinders taken
from Frenkel.37 Again, it is seen that the ratioB4 /B2

3 is al-
most the same for the LTHS and HSC of the same elonga-
tion. It is well-known that for HSC, the ratioB4 /B2

3 tends to
zero for very elongated molecules.38,37 Therefore, we can
conclude that for the LTHS this ratio also goes to zero. On-
sager scaling holds forB4 of rigid chains, and our results
suggest that this could also be the case for flexible chains. As
to TPT1, it predicts that this ratio goes to zero whenm goes
to infinity, both for the flexible and rigid models.

Let us finish this section by analyzing some of the con-
sequences of Eq.~10! ~i.e., the scaling hypotheses!. It is
well-known that under good solvent conditions,B2 scales as
m3n. It then follows from Eq.~10! thatZ must be a universal
function of rB2 . In Fig. 7, the value ofZ as obtained from
the virial expansion~truncated atB4) is plotted as a function
of rB2 . For each model, the highest considered density cor-
responds toy50.30. A similar plot has been recently pre-
sented by Lue.39 As can be seen, all the curves follow onto a
universal curve for densities smaller thanrB251. For higher

FIG. 6. Value of the ratioB4 /B2
3 for several hard models. Results for the

pearl-necklace model obtained in this work~filled circles!, results for the
LTHS obtained in this work~filled squares!, results for hard spherocylinders
taken from Ref. 37~open squares!. ~a! B4 /B2

3 plotted as a function ofm. ~b!
B4 /B2

3 plotted as a function of 1/Am.

FIG. 7. Verification of the scaling hypotheses@Eq. ~10! of main text#. The
logarithm of the compressibility factorZ is plotted as a function of the
logarithm of B2r. Values ofZ were obtained from the truncated~at B4)
virial expansion using the virial coefficients determined in this work. Results
from top to bottom correspond tom516, m532, m564, m5100, andm
5150. The maximum density plotted for each model corresponds toy
50.30.

6 J. Chem. Phys., Vol. 113, No. 22, 8 December 2000 Vega et al.
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densities, differences appear between the different models,
being that the value ofZ for a certain value ofrB2 is lower
for longer chains. Similar conclusions were obtained by
Lue.39

C. Correlation between virial coefficients and single
chain properties

The results presented in Table I correspond to the exact
numerical determination ofB2* , B3* , andB4* . Since it is the
first time that third and fourth virial coefficients have been
evaluated for flexible molecules, we would like to analyze
the accuracy of other possible approximate methods of
evaluating the virial coefficients which have been tested
recently.40 Let us start by showing the exact formulas for the
second and third virial coefficient of a multicomponent mix-
ture:

B25(
i

(
j

xixjBi j , ~14!

B35(
i

(
j

(
k

xixjxkBi jk , ~15!

wherexi is the molar fraction of componenti.
For the pearl-necklace model, we can think of each in-

stantaneous configuration of the isolated chain~free of in-
tramolecular overlap! as a different component. Let us now
make an approximation for the crossed virial coefficientsBi j

andBi jk . If we apply the following mixing rules,

Bi j 5~Bii 1Bj j !/2, ~16!

Bi jk5~Biii 1Bj j j 1Bkkk!/3, ~17!

to Eq. ~14! and Eq.~15!, they can be rewritten as

B25(
i

xiBii , ~18!

B35(
i

xiBiii , ~19!

with an analogous equation for the fourth virial coefficient.
Of course Eqs.~18!–~19! are not exact, since they are based
on the approximations given by Eqs.~16!–~17!. One inter-
esting feature of Eqs.~18!–~19!, however, is that they allow
one to estimate the average virial coefficients of the chain
molecules from the virial coefficients of individual configu-
rations. In this way, the algorithm of Sec. II may be used by
selecting a single conformer to compute each of the required
graphs.

In Table I, the virial coefficients form516 andm564
obtained in this way are presented~see the results labeled
with an asterisk!. By comparing the results of Table I ob-
tained with the approximate methodology, with the ones ob-
tained with the exact methodology, one concludes that the
approximate method provides accurate estimates ofB2 and
B3 but poor predictions forB4 . In fact, differences in the
fourth virial coefficient are of about 5% form516 and of
about 30% form564. Clearly, the approximate methodol-

ogy breaks down for the fourth virial coefficients, especially
as the chains become longer. One may suspect that the same
would occur for higher virial coefficients.

The approximate method has the advantage of allowing
a simpler discussion of the virial coefficients of chains. For
instance, one may analyze correlations between the indi-
vidual virial coefficients and single chain properties such as
the radius of gyration or even other individual virial coeffi-
cients. We shall now analyze the virial coefficients obtained
from the approximate methodology for the pearl-necklace
model with m564. In Fig. 8~a!, we present the correlation
between the second and third virial coefficient. Results are
presented for 800 instantaneous configurations of the pearl-
necklace model. As can be seen in Fig. 8~a!, B3* andB2* are
strongly correlated, with a correlation coefficient of about
0.88. The higher the excluded volume between two mol-
ecules~for hard models the second virial coefficient is one-
half of the excluded volume!,41 the higher the third virial
coefficient. In Fig. 8~b!, the correlation betweenB4* and the
radius of gyration,s2, is shown. Again, it can be seen that

FIG. 8. ~a! Correlation betweenB3 andB2 in the pearl-necklace model with
m564 obtained with the approximate methodology.~b! Correlation between
B4 and s2 for the pearl-necklace model withm564 obtained with the ap-
proximate methodology.
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these two properties are strongly correlated. In fact, the cor-
relation coefficient of Fig. 8~b! is 20.89. Also note that, for
large values ofs2, B4* becomes negative. This is in agree-
ment with the intuitive idea that configurations with larger
values ofs2 are somewhat stretched and somehow resemble
the shape of a prolate spherocylinder or ellipsoid, for which
B4 becomes negative.42,43Figure 8~b! serves also to illustrate
the difficulty in accurately evaluating the fourth virial coef-
ficient of long molecules. In fact, when computingB4* for
m564, we found values from around212 000 up to about
10 000 depending on the chosen configuration. Such a big
dispersion of the results is reflected in very large error bars,
as shown in Table I.

D. Equation of state

We shall now focus on the possibility of describing the
equation of state of the pearl-necklace model in the low den-
sity regime via a virial expansion truncated at the fourth
virial coefficient level. In Fig. 9, the EOS of the pearl-
necklace model withm51, 7, 32, 64, 100 as obtained from

computer simulations44,39 and from the truncated virial ex-
pansion is presented. It can be seen that the truncated virial
expansion is able to correctly describe the compressibility
factor of the pearl-necklace model for volume fractions up to
y50.25. For larger densities, the truncated virial expansion
significantly underestimates the compressibility factor. Obvi-
ously, for high densities the contributions from the fifth and
the rest of the coefficients of the virial expansion should be
included. In Fig. 9~d!, a comparison between simulation
results39 for the pearl-necklace model withm5100, the trun-
cated virial expansion, and Wertheim’s EOS is presented.
This figure shows clearly the failure of Wertheim’s EOS at
very low densities~i.e., for y,0.10). This failure is ex-
pected, since Wertheim’s EOS does not correctly predict the
virial coefficients as was shown in Figs. 2–4.

Zhou et al. have shown by analyzing their simulation
results for the pearl-necklace model that the compressibility
factor for a fixed value of the volume fraction~i.e., y) be-
comes a linear function ofm oncem is sufficiently big~typi-
cally larger than 7!.44 This seems to be a general trend in

FIG. 9. Compressibility factor of the pearl-necklace model as obtained from computer simulation~Refs. 39, 44! ~symbols! and from the truncated~at B4)
virial expansion of the pearl-necklace model~solid line!. ~a! Results form51 ~bottom! andm57 ~top!. ~b! Results form532, circles~from Zhouet al., Ref.
44!, squares~McBride, Ref. 49!. The results of the truncated virial expansion for the SW chain are also shown~dashed line!. ~c! Results form564. The results
of the truncated virial expansion for the SW chain are also shown~dashed line!. ~d! Results form5100. Symbols are simulations results from Lue~Ref. 39!.
Wertheim’s EOS prediction is shown as a dashed line.
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polymer molecules. Notice that this means that for a fixed
volume fraction, pressure becomes independent of chain
length. This linear dependence ofZ with m appears also in
almost all theoretical EOS such as Wertheim’s TPT1 or the
generalized Flory dimer theory. Let us analyze if the trun-
cated virial expansion can reproduce this behavior at low
pressures. In Fig. 10, the compressibility factor as obtained
from the truncated virial expansion is shown as a function of
m for two values ofy, namelyy50.20 andy50.25. As can
be seen, the truncated virial sum is able to reproduce the
linear behavior ofZ with m for these two volume fractions.
In fact, the correlation coefficient of the linear fit is of the
order of 0.9997 for both densities. It is somewhat surprising
that the virial sum is able to reproduce this linear behavior,
since the exact virial coefficients are not linear functions of
m ~see, Figs. 2–4!. Because of this, one may suspect that for
longer chains the truncated virial expansion will fail to re-
produce the linear behavior ofZ with m found in computer
simulations.

Although for the chain lengths considered in this work
the truncated virial expansion describes quite well the EOS
for values of y less than 0.30, there is still an issue that
should be mentioned. Form51, 7, and 16, the virial sum
underestimates the value ofZ for y50.30. However, this is
not the case form564, where the truncated virial sum over-
estimates the value ofZ ~see Fig. 9!. It is difficult to explain
why the virial sum provides a compressibility factor higher
than the experimental value obtained from MC. One possible
explanation is that the neglected virial coefficients~i.e., fifth,
sixth, and higher! are negative, so the compressibility factor
is overestimated by the virial sum. Although we cannot com-
pletely rule out this possibility, we do not think this is the
case~at least form564). In our view, the strange behavior
found form564, where the virial sum gives higher values of
Z than the MC simulations, is related to the conformational
changes that occur in a polymer melt as the density
increases.45 Note that we are evaluating the virial coefficients
by using configurations obtained at zero density. These con-

figurations, however, are not representative of the actual con-
figurations presented by a chain in the fluid state at nonzero
density. Actually, configurations obtained at zero density are
more expanded than in the melt~i.e., the square radius of
gyration is larger at zero density than at liquid-like
densities!.45 Only theories including self-consistency
~namely the possibility of including conformational changes
with density! can be successful in reproducing the low and
high density regime of polymer molecules. Notice that this is
a specific feature of hard flexible molecules. For hard rigid
models, the introduction of the exact values of the first virial
coefficients guarantees the agreement between the virial ex-
pansion and simulation at low densities. For hard flexible
molecules, however, this is not the case. Self-consistency
should be included in any theoretical treatment where the
singlet correlation function is density dependent. A similar
problem where this also occurs is in the case of nematogens.
The virial expansion does not guarantee an exact description
of the fluid once the nematic phase appears~i.e., when the
singlet correlation functions becomes anisotropic!.46–48

To summarize, Fig. 9 illustrates that the virial expansion
provides a reasonable approximation to the EOS of the pearl-
necklace model withm less than 100 andy less than 0.25,
but even though we have used the exact first four virial co-
efficients, the agreement with simulation is not perfect be-
cause we are not properly accounting for the possibility of
conformational changes in the fluid phase. It is somewhat
frustrating that the virial sum does not guarantee exact be-
havior in the EOS even for low densities~i.e., y less than
0.20!.

In order to asses the impact of conformational changes
on the virial coefficients and on the equation of state of a
hard flexible model, we have evaluated the virial coefficients
for a model related with the pearl-necklace model. In this
new model, the intermolecular interactions are of the hard-
sphere type~as in the pearl-necklace model!. However, in-
teraction between sites of the same chain will be given by the
square well potential withl51.5. We shall denote this new
model as the SW pearl-necklace or more briefly the SW
model.

In Table III, the virial coefficients of the SW pearl-
necklace model withm532 and 64 are given for a reduced
temperatureT* 5T/(e/k)53. For this temperature, the
chains adopt more compact configurations than in the pearl-
necklace model, so one can analyze the impact of the in-
tramolecular configurations on the virial expansion and the
EOS. As can be seen, the value of the second and third virial
coefficient is reduced with respect to the pearl-necklace
model. However, the fourth virial coefficient remains almost

FIG. 10. Compressibility factor of the pearl-necklace model as given by the
truncated virial expansion fory50.20 ~circles and solid line! and for y
50.25 ~squares and dashed line!. The lines serve as a guide to the eye and
were obtained by a least-squares fit.

TABLE III. Second, third, and fourth virial coefficients for the SW pearl-
necklace model described in the text. The reduced temperatureT*
5T/(e/k) is 3, andl51.5. The numbers in parentheses gives the uncer-
tainty of the last digits. Values of the mean-square radius of gyration^s2&
are given in the last column.

m B2* B3* B4* ^s2&

32 20.98~8! 213~2! 865~20! 9.473
64 30.24~9! 430~5! 2165~30! 20.508
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the same form532 and increases slightly form564 ~com-
pare the data of Tables I and III!. In Figs. 9~b!, 9~c!, the EOS
for the pearl-necklace model as obtained from simulation,
from the virial expansion, and from the virial expansion of
the SW model are shown. As can be seen, the shape of the
molecule affects the equation of state. In the pearl-necklace
model, the radius of gyration in the melt is somewhere be-
tween that of the pearl-necklace model at zero density and
that of the SW model at zero density. The results of Figs.
9~b!, 9~c! again give evidence that only self-consistent theo-
ries can successfully describe the EOS of a flexible molecule
in all the range of densities.

Finally, we would like to propose a new EOS for the
pearl-necklace model. TPT1 is a good EOS for the pearl-
necklace model at high densities. However, it overestimates
substantially the pressure at low densities. One may expect
that the introduction of the correct virial coefficient in TPT1
will result in an improved EOS. This kind of correction was
introduced by Yethirajet al.14 for the generalized Flory
dimer theory. One would expect that the same correction can
be applied for TPT1. A similar treatment combining low and
high density EOS has also been proposed recently by Lue.39

Therefore, we shall use TPT1 but imposing the correct con-

tribution arising from the second virial coefficient. This new
equation, which we will denote as virial-TPT1, reads as fol-
lows:

Z5ZTPT11~B2* 2B2*
,TPT1!y, ~20!

whereZTPT1 andB2*
,TPT1 are given by Eqs.~5!–~6!, respec-

tively, andB2* is the exact reduced second virial coefficient
as obtained numerically in this work. In Fig. 11, the results
of this EOS form57, 16, 32, and 64 are compared to simu-
lation results. As can be seen, virial-TPT1 significantly im-
proves the results of TPT1, not only at low but also at high
densities.

V. CONCLUSIONS

In this work, the second, third, and fourth virial coeffi-
cients of the pearl-necklace model with up to 100 monomer
units have been computed. To our knowledge, this is the first
time that the third and fourth virial coefficients of a polymer
in the continuum have been computed. Preliminary results
for m5150 andm5200 have also been given. We have
computed the virial coefficients for a linear rigid model to
asses the impact of flexibility on the virial coefficients. The

FIG. 11. Results of the EOS of the pearl-necklace model as obtained from simulation~symbols!, from TPT1~solid line!, and from virial-TPT1~dashed line!
for m57,16,32,64.~a! Results form57. ~b! Results form516. ~c! Results form532. ~d! Results form564.
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results provided in this article may be useful for researchers
looking for an EOS of the pearl-necklace model.

We can summarize the following conclusions from this
work.

~1! Virial coefficients of flexible and rigid molecules dif-
fer significantly. Only the third virial coefficient seems to be
insensitive to the existence or absence of flexibility. The sec-
ond and third virial coefficients of flexible and rigid models
increase with the chain length~although not linearly!. How-
ever, the fourth virial coefficient seems to reach a maximum
and then goes to negative values, for both rigid and flexible
chains.

~2! Wertheim’s EOS does not accurately predict the
virial coefficients neither for the pearl-necklace model nor
for the rigid linear chain. It overestimatesB2 and underesti-
matesB3 andB4 . At very low densities, whereB2 is domi-
nant, Wertheim’s EOS overestimates the pressure. However,
at medium densities, where the effects ofB3 and B4 are
significant, some cancellation of errors occurs and Wer-
theim’s EOS yields acceptable results.

~3! As expected, virial coefficients of the rigid linear
tangent hard sphere model present Onsager’s scaling. For the
pearl-necklace model, the second and third virial coefficient
present de Gennes’ scaling and the results of this work sug-
gest that the fourth virial coefficient presents Onsager scal-
ing.

~4! Using mixing rules for the crossed virial coefficients
is an approximate method of estimating the virial coefficients
of a polymer. This method yields good results for the second
and third virial coefficient but fails for the fourth.

~5! The approximate method allows us to establish cer-
tain correlations between geometrical magnitudes of the
pearl-necklace model. In particular, it is shown thatB3 and
B2 are strongly correlated, and alsoB4 and s2. Configura-
tions with large values ofs2 are somewhat stretched and
present negative values ofB4 .

~6! The virial expansion provides a reasonable EOS for
the pearl-necklace model for volume fractions up toy
50.25. However, for long chains the virial expansion over-
estimates the pressure even for densities less thany50.25.
The reason is that the virial expansion does not account for
the conformational changes that occur in the melt, even at
these low densities. Virial coefficients are calculated using
configurations of the model at zero density, which are not
representative of the configurations adopted by the chain in
the melt.

~7! Virial coefficients and the EOS are sensitive to con-
formational changes. When intramolecular interactions are
replaced by square-well interactions, the chain is somewhat
more folded. This affects the value of the virial coefficients
and the EOS. In fact, the compressibility factor of SW pearl-
necklace chains is lower than that of the pearl-necklace
model.

~8! The search for a successful EOS for the pearl-
necklace model in the low and high density limit requires the
introduction of self-consistency. One could probably obtain a
successful EOS for densities smaller thany50.25 by com-
bining the virial expansion with a theory which allow con-
formational changes with density.

~9! It is shown that TPT1 can be improved by simply
introducing the correct value of the second virial coefficient.
That improves significantly the results for low densities, and
slightly for high densities for chains from 7 up to 64 mono-
mer units.
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