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The virial coefficients of the pearl-necklace model
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We consider the virial coefficients of an idealized model polymer under good solvent conditions, the
so-called pearl-necklace model, consisting of a fully flexible chaima®&ngent hard spheres. We
employ an efficient algorithm recently proposed to determine the second, third, and fourth virial
coefficients of chains of up to 100 monomers. We also include some preliminary results for chains
of up to 200 monomers. These results, which include the first off-lattice calculations of third and
fourth virial coefficients of polymer models, are compared with predictions obtained from
Wertheim’s equation of state. It is shown that, despite the good agreement of Wertheim’s equation
of state for the compressibility factor, the predictions for the individual virial coefficients are far
from satisfactory. It it shown that for the values mfconsidered in this work, the truncated virial
expansion correctly describes the equation of state up to packing fractions of 0.25. A new equation
of state which describes the low and high density regimes of the pearl-necklace model is proposed.
© 2000 American Institute of Physids$S0021-9606)0)50946-5

I. INTRODUCTION a theoretical equation of state for this model. Two other the-
oretical equations of state should also be mentioned; the

In the last two decades, the interest in the study of flexGeneralized—Flory dimer theory of Honnell and Hadind
ible molecules from the point of view of statistical thermo- the equation of state of ChiefvAlso the structure of the
dynamics has increased considerably. One of the simplegearl-necklace model as given by the average site—site cor-
models of a flexible molecule is the pearl-necklace model, irrelation function has been studied in detail. Simulation stud-
which the polymer is described by tangent hard spheres ies of the site—site correlation function have appedréd.
with bond length equal to the diameter of the sphesesds  addition to this, integral equations have also been proposed
there is no constraint of the bond angle, the molecule is veryo determine the site—site correlation function of the pearl-
flexible and may adopt many different configurations. A two-necklace model. We should mention the theoretical studies
dimensional sketch of the pearl-necklace model is presentest Curro and Schweizéf, Chiew!! Chang and Sandléf,
in Fig. 1(a). As both the inter- and intramolecular interac- and Linet all®
tions between sites are considered to be of the hard-sphere Somewhat surprisingly, the virial coefficients of the
type, the model describes approximately the interactions bepearl-necklace model have not been studied in such detail.
tween polymer molecules under good solvent conditions. Only the second virial coefficient of the pearl-necklace

A somewhat related model is that formed imytangent  model has been determined numerically by Yethagal*
hard spheres in a linear rigid configuration. The bond anglend Wichert and Haft® Very little is known about the higher
is fixed to 180° and the molecule presents no flexibility. Wevirial coefficients of this model. The main goal of this study
shall denote this model as the linear tangent hard-spheiig to provide data on the third and fourth virial coefficients.
model (LTHS). A sketch of this model is presented in Fig. This is interestingper seand also serves to test the perfor-
1(b). This model represents the opposite of the pearl neckmance of the theoretical equations of state in the low density
lace model since it is fully rigid. regime.

Given the simplicity of the pearl-necklace model, it has ~ The numerical determination of the third and fourth
played a central role in the study of flexible molecules andvirial coefficient of a flexible molecule, however, appears as
for this reason it has been considered in several studies. It & nontrivial problem. We have recently presented an algo-
almost impossible to provide an exhaustive list of all therithm to evaluate virial coefficients of any multicomponent
articles devoted to this model, and for this reason we shalystem:® We treat the flexible molecule as a multicompo-
provide just a few references. The goal of many of thesaent mixture, where each possible configuration of the poly-
studies was the search for an equation of state. We shouldler represents a different component. In this work, we apply
mention the important simulations in this area performed bythis algorithm to the pearl-necklace model, obtaining for the
Hall and co-workers and by Sandler and co-workefsAlso  first time the third and fourth virial coefficients of a flexible
the fluid—solid equilibrium of this model has been deter-model in the continuum. To the best of our knowledge, the
mined via computer simulation for short chafEhe search only previous study related to this problem is that of Bruns,
for a theoretical equation of state for this model has alsavhere the third virial coefficient of a polymer molecule on a
been considered by a number of authors. In the late 1980%attice was determined numericafif The virial coefficients
Werthein? and Chapmann, Jackson, and Gubbm®posed obtained in this work will be compared with the theoretical
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express the virial seriegEg. (1)] in terms of the packing
fraction, which is a reduced density given in units of the

Z=1+B}y+Biy?+Bjy3+-, #)

@ o) where the _reduceq virial cogfficientﬁ’;ﬁ , are defi.ned as
B*=B,/Vh !, while y=pV,, is the packing fraction and
FIG. 1. (a) Sketch of an instantaneous configuration of the pearl-necklaceV,, iS the molecular volume. In the case of the pearl-
model.(b) The linear tangent hard-sphefieTHS) model. necklace model made ofMm tangent hard spheresy,,
=mma’l6.
The link between the macroscopic expression given by

-~ ; Eg. (1) and the microscopic world was made in the 1930s,
redictions of the equation of staEOS proposed by Wer-
predicl quat S prop y when it was shown that the virial coefficients could be given

theim, which is known as the first order perturbation theory: L . . )
(TPT1). One of the goals of this work is to check whether IN terms of certain integrals involving the potential energy

this successful equation of state is also successful in the pr?—em’?en molt()ecules. As r:he Iexprﬁssp?]s mbterms of these in-
diction of the virial coefficients of these systems. It will be tegrals may become rather lengthy, it has become customary

shown that TPT1 yields poor predictions for the virial coef- to represent them. .by graph;. In terms Qf_these graphs, the
ficients. third and fourth virial coefficients of a rigid molecule are

; 8-20
Another interesting question is the accuracy of the virial9'ven byL
expansion for describing the equation of state of a hard flex- 1 -
ible model. It is clear that a truncated virial expansion cannot Bi= 3V

describe the equation of state of any hard model over all the
density range. However, it is difficult to know exactly at
which packing fraction will this oversimplified description
fail. We will analyze this issue. It will be found that the virial

RN
expansion truncated at the fourth virial coefficient describes

reasonably well the equation of state of the pearl-necklacg, these graphs, solid lines represent Mayer functidns,
model up to volume fractions of about 0.25, at least for the— exp(— gu)—1, whereg=1/(kT) andu is the pair potential
chains considered in this worfe., those withm less than — petween pairs of molecules. On the other hand, black circles
100. Finally, we shall propose a new equation of state whiclyepresent integration with respect to the coordinates of the
will improve the performance of TPT1 at low densities.  ¢orresponding molecule.

The scheme of the article is as follows: in Sec. Il the  The extension of this notation to multicomponent sys-
method used to determine the virial coefficients will betems or systems made of flexible molecules has been consid-
briefly described. In Sec. I, the virial coefficients as pre-gred recently® Actually, it suffices to consider that, for each
dicted by Wertheim TPT1 EOS will be presented. In Sec. IVof the black circles representing a given molecule, there is a
the results for the virial coefficients of the pearl-necklacecorresponding singlet correlation function which describes
model will be presented, and in Sec. V the main conclusionghe probability of occurrence of that molecule in the system.
to this work will be given. In the case of a multicomponent mixture, this probability

will be simply given by the arbitrarily fixed molar fractions

of the mixture, while in the case of a flexible molecule, it

Il. NUMERICAL DETERMINATION OF THE VIRIAL will be given by the corresponding Boltzmann weight of
COEFFICIENTS each of the conformers.

We shall evaluate the virial coefficients by following the

The pressure of a homogeneous isotropic fluid can bénethod described in Ref. 16. We shall provide an outline of
given in terms of a power series of the density by the fol-the procedure here, though the reader is recommended to

1
B4:_W . (4)

lowing expression: read the reference for a much fuller description. In the first
P stage, a conventional Monte Carlo procedure is performed in
Z= e 1+B,(T)p+Ba(T)p?+By(T)p3+---, (1)  order to obtain a sample of conformers chosen with a prob-

P

ability proportional to their Boltzmann weights. The chemi-
wherep is the number densittnumber of molecules per unit cal identity of each of the molecules required in the evalua-
volume of the system and the coefficierBs, B;, andB,  tion of the graphs is then selected at random from the
are the second, third, and fourth virial coefficients, respecsample. For this given set of conformers, each of the graphs
tively. is evaluated using the procedure of Ree and Hotverss

As can be seen from the above equation, the virial coefexplained in Ref. 16. The final value for the virial coeffi-
ficients are generally temperature dependent. However, if affients of the chain molecules is then obtained as an average
interactions in the system are of hard ty(e., the pair po- of the virial coefficients over the possible sets of two, three,
tential is either zero or infinity as is the case in the pearl- or four conformers required in the corresponding graphs.
necklace model, the virial coefficients are no longer tempera-  The conformers which form the sample were obtained
ture dependent. In such cases, it is more convenient tby means of a conventional single chain Monte Carlo simu-
lation, using the reptation algorithfA.The simulations in-
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volved about 80 million steps for equilibration, followed by TABLE I. Second, third, and fourth virial coefficients for the pearl-necklace
a further 160 million steps for the production of the Sa_mp|e_model as obtained in this work by the exact procedure described in Sec. Il.
Once the system was equilibrated, the instantaneous configtic ¢ e parametefoe,=80 000 andNenemica=1600, except fom

nce ystem was equill d, the | US CONMGU~ 56 500 where we useN oo~ 800 (see Ref. 16 for the notation
ration of the chains were stored in a file every 160 000 timeresults labeled with an asterisk were obtained by using the approximated
steps, producing a sample with a total of 1000 independertethod described in Sec. IV. The numbers in parentheses give the uncer-
instantaneous configurations. From this sammRpemical tainty of the last digits. Values of the mean-square radius of gyrdsdn

— 400 tetrads of conformers chosen at random were used f§¢ 9'ven i the fast column.

evaluate the average virial coefficient of the chain molecules. B B% B: (s?)

For each of the tetrads, the graphs were evaluated by aver

aging over a total ofNg;e.,=80 000 orientations of the cor- 10 12?5; ?gig éij&; ;‘;gg
responding conformers in that tetrad. This procedure was 7 16.748) 1321) 381(4) 5403
repeated four times, in order to get four uncorrelated average 16 16.718) 1321) 361(6) 5.403
values for the virial coefficients. 32 26.12) 3023) 881(20) 13.424
The numerical determination &, and B, for a short 64 42.11) 7433) 1885150 32.419
chain withm=7 takes only a few hours on a 'Pentium 111 450 igo ‘;273413 13;‘;4{3 ;gggégg gg:gég
MHz personal computer. However, calculations fio+= 100 150 76.926) 235730 1563800 93.21
would take around 200 days on a Pentium Ill 450 MHz 200 95.28 3552 —2637 132.40
computer. Therefore, calculations for long-chain molecules
were performed on an Origin 2000 computer in the Univer-
sity Complutense Computer Center. Running on a single Prog, RESULTS

cessor, bench marks suggested that the same calculation
would last 100 days on this machitiiee., the SGI R10000 A. Comparing exact virial coefficients with
processor doubles the speed of the Pentium maghive  Predictions from TPT1

therefore wrote a parallel version of our program and ex- |, Taple | we collect the second, third, and fourth virial
ecuted it on the Origin 2000, using 10 processors simultaggefficient of the pearl-necklace model for=7, 10, 16, 32,
neously. Results fom=100 were then obtained in just 11 g4 and 100. In order to clarify the role of flexibility, we have
days! Therefore, with the currently available computers, calyso evaluated the virial coefficients of the LTHS model. In
culations of virial coefficients for long polymerS.e., m  Tapje I, the numerical results obtained in this work are pre-
larger than 10pcan be performed only on parallel machines.sented. Virial coefficients of the LTHS model were calcu-

lated previously by Vegat al?® for short chains wittm up

to 8, and here we extend the calculations to longer chains.
IIl. THEORETICAL PREDICTIONS FOR THE VIRIAL In Fig. 2, the second virial coefficients of the pearl-
COEFFICIENTS necklace model as obtained numerically in this work are

compared with those predicted by TPT1. As can be seen, the

In this work we shall consider the predictions of the predictions of TPT1 are rather poor. According to TP]B;,

virial coefficients as obtained from the thermodynamic perincreases linearly withm. However, it is well-knowf?~2°
turbation theory of first orde(TPT1), first proposed by that the reduced second virial coefficient of hard polymer
Werthein? and Chapmann, Jackson, and GubbirBhe  molecules with intramolecular and intermolecular hard inter-

TPT1 equation of state reads actions (i.e., good solvent conditiopsscale asm® !
=m°® wherev is the exponent describing the scaling of the

s 1+y+y2—y3_ 1 1+y—y?/2 g ~ Mmean-square radius of gyration of the molec(ile., (s?)
TeTi=M (1-y)3 (m )(1—y)(1—y/2) . «m?"). Therefore, the second virial coefficient of the pearl-

necklace model increases more slowly than linearly and ac-
wherey is the volume fraction. As can be seen, this equatiorfordingly, TPT1 significantly overestimates the second virial
of state predicts that for a certain volume fraction the com<oefficient. This, in fact, has already been illustrated by
pressibility factor is a linear function af. The virial coef- ~ Yethiraj et al’* Where available, the second virial coeffi-
ficients arising from TPT1 were first obtained by cCients obtained previously by Yethiref al* have also been
Boublik.2324 They are given by the following expressions:

« TPTL TABLE Il. Second, third, and fourth virial coefficients for the LTHS model
By =2.5+1.5m, (6) as obtained in this work by the exact procedure described in Sec. Il. The
numbers in parentheses give the uncertainty of the last digits.
B3 TPT1=2.75+7.25m, 7
m B3} B} B
B} TPT1=2.875+ 15.125n. ® 7 12.4219) 58.437) 421
10 16.612) 87.22) —62(4)
As can be seen, the virial coefficients arising from TPT1 20 30.484) 195.15) —128419
are linear functions ofm. This is a consequence of the fact 28 ;‘g'igg g;éi; 71;1%51%96;
that TPT1 predicts a linear dependenc&ain mfor a given 100 141'.35) 133822 —77 0554039

value ofy.
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FIG. 2. Reduced second virial coefficie for hard models made up o~ FIG. 3. Reduced third virial coefficiet3 of models formed byn tangent
tangent hard spheres. Numerical results of this work for the pearl-necklacBard spheres. Numerical results of this work for the pearl-necklace model
model (open circle, numerical results for the pearl necklace model from (open circley Wertheim's TPT1 predictiongsolid line), numerical results
Yethiraj (Ref. 14 (plus sign, Wertheim TPT1 predictionsolid ling), nu-  Of this work for the LTHS mode(open squargs
merical results of this work for the LTHS modébpen squargs exact
predictions(Refs. 30, 31 for the LTHS (dashed ling
since rigid prolate molecules such as spherocylinders and
ellipsoids reach negative values B} for length-to-breadth

included in Fig. 2. As can be seen, the results of this workratios larger than 8, approximately. The LTHS is not an ex-
for B are in good agreement with those of Yethiedjal. ception to this general rule. On the other hand, for the pearl-

In Fig. 2, the second virial coefficients of the LTHS necklace model, the fourth virial coefficient is positive for
model are also presented. Symbols are results of this worljalues as large am=100. However, it should be noted,
while the straight line is the exact value, which has beerthough not included in the figure, that there is some evidence
determined by Williamson and JacksBnand Sullivan thatB} may actually reach a maximum value and then de-
et al®! These authors have shown that for large moleculesgrease for long polymer chains, possibly reaching negative
the second virial coefficient of the LTHS becomes a linearvalues. This evidence comes from the preliminary results
function of m. As can be seen, the numerical results of thisshown in Table | for virial coefficients of chains oh
work agree with the exact analytical value. =150 and 200. We should mention that for these lengths,

The results of Fig. 2 allow one to arrive at several con-however, our results are merely orientative, as they are af-
clusions. Rigid and flexible models differ significantly in the fected by extremely large error bars. Thecuratecalcula-
second virial coefficient. According to TPT1, the virial coef- tion of B, for m=150,200 is, at this time, beyond the capa-
ficients of any model made up of tangent hard spheres wilbility of currently available supercomputers.
have the same equation of state and hence the same virial From the results of Figs. 2—4 one may conclude that
coefficients. As it is shown in Fig. 2, this is not correct, sinceTPT1 does a poor job in predicting the virial coefficient of
virial coefficients are sensitive to differences in the structurdlexible or rigid tangent hard spheres models. This is not to
of the molecule. The slope d8} vs. mis 1.388 for the
LTHS, whereas TPT1 predicts this slope to be 1.5. There-
fore, TPT1 does not correctly predict the second virial coef-
ficient neither for rigid nor for flexible models of tangent 2000 | o

hard spheres.
In Fig. 3, results foB} are presented. It can be seen that 1000 /
flexible and rigid linear chains do not differ significantly in o = ]

the third virial coefficients. Thus, we can conclude that the
third virial coefficient is not sensitive to details in the mo- "o -1 o
lecular structure, in agreement with the predictions of TPT1.
However, TPT1 is not satisfactory from a quantitative point
of view. In fact, the third virial coefficient is underestimated -3000 |
significantly when compared to the exact results.

3000 T T T T

-2000 -

In Fig. 4, results forB are presented. Again, at the ~4000 | 0
fourth virial coefficient level there are significant differences 5000 ‘ . ‘ . . . . ‘ |
between flexible and rigid models, though TPT1 is not accu- 0 10 20 3 40 f,‘,’ P T TN

rate at predicting the fourth virial coefficient, neither for the N -

flexible chains nor for the rigid ones. As can be seen in th IG. 4. Reduced fourt_h virial coefflueli_l4 of models formed byn tangent

. .. .. ard spheres. Numerical results of this work for the pearl-necklace model
flgure., the fourth virial Coefﬂc"ent_ of the LTHS becomes (open circley Wertheim's TPT1 predictionsolid line), numerical results
negative formlarger than 8. This might have been expected of this work for the LTHS mode{open squarés



J. Chem. Phys., Vol. 113, No. 22, 8 December 2000 Virial coefficients 5

say that TPT1 is a bad EOS. In fact, for the pearl-necklace (@
model TPT1 overestimates the valuesB3f, but underesti-
mates the value d} andBj (at least form<100). There-

fore, the good predictions of TPT1 at moderate densities

arise from a fortuitous cancellation of errors. 045
04 +

0.6
055
0.5 |

035 F

. . . s [ m
B. Scaling laws for the virial coefficients g, 08
025 v
Having presented the virial coefficients for the pearl- ozl .
necklace model, we shall now analyze their scaling laws. ' \l
According to the scaling hypothesi$the pressure of a 015y ey
flexible chain molecule can be expressed as 011 -
0.05
Z=F(plpc), 9 o . ‘ ‘
0 50 100 150 200
wherep. is defined as the concentration at which the poly- m
mer coils start to overlap with each oth@e., p o 1/(s?)%2 &
«m~3"). Therefore, according to the scaling hypothesis, ‘ o
0.5 [
Z=F(pm®). (10) oas | . o
A Taylor expansion in powers of the density then shows that 04| o ® ¢ . .
the virial coefficients of a polymer should scale as 035 I
BnocmS(nfl)V_ (11) Nm" 0.3 ml ]
o L
For the second virial coefficient, the validity of Ed.1) has o 0% .
been tested in a number of studies, while for the third virial o2y
coefficient, Eq(11) has been analyzed for lattice chains with 015 | "
up to m=65.1" Unfortunately, the chains considered in this o1 | .
work are not long enough to test Ed.1) directly. However, 05 | C 2
an indirect way of testing Eq11) is by realizing that it ' 5
implies 00 005 01 o015 02 025 03 035 04 045 05
0.5
lim —= =g=constant, (12

FIG. 5. Value of the ratid; /B3 for several hard models. Results for the
pearl-necklace model obtained in this wdifilled circles, results for the
LTHS obtained in this workfilled squarey results for hard spherocylinders
taken from Ref. 3{open squargs(a) 53/53 plotted as a function af. (b)

B3 /B3 plotted as a function of 1/m.

m-»B35 (B%)?

for large values ofm.

In Fig. 5(@), the ratio given by Eq(12) is shown as a
function ofm, and in Fig. 8b) as a function of m. Results
are shown for the pearl-necklace model and for the LTHS
model. For the pearl-necklace model, we have included dattne results of this work suggest that the scaling hypothesis as
of B5 for chains withm=150,200(see also Table)l Recall, represented by Eq11) seems to hold for the second and
however, that these data are somewhat less accurate thtmrd virial coefficients of flexible chains.
those for chains with up to 100 monomer units. The reasonis  Let us now discuss the behavior of the raig/B3 for
that calculations fom=150,200 are much more expensive the LTHS. Note that, apart from the results of the LTHS
than those of shorter chains and therefore the graph of Egnodel, we have also included the results for hard spherocyl-
(3) can be evaluated much less often. inders(HSC) taken from Frenketi’ In order to compare the

Let us first discuss the behavior B /B3 for the pearl-  results from both models in a unified way, the valugrofor
necklace model. The results presented in Fig. 5 strongly sughe spherocylinder is chosen from that LTHS with equal
gest that, for this model, the ratl;/B2 reaches a constant length-to-breadth ratio. Notice that, when plotted this way, it
nonzero value for infinitely long chains, in agreement withis seen that the ratiB, /B3 is almost the same for the LTHS
the predictions from Eq(12). This work suggests that the and HSC of the same elongation. It is thus seen that, for rigid
value of this ratio, which is commonly denoted gisseems linear molecules, the detailed shape of the molecule does not
to be close to 0.35. On the other hand, Brirmas estimated  affect strongly this ratio, and only the length-to-breadth ratio
the value ofg to be of 0.30 for lattice polymer models. Other matters. Also note tthslBg is clearly seen to vanish as the
values ofg have been suggestétlFlory®® advocated the length of the chains increases. This is in agreement with
choice g=0.25. Berry* proposed the valug=0.33 and predictions by Onsager, who conjectured that this ratio
renormalization group calculations obtaingek0.277 org should become vanishingly small for linear rigid
=0.443%%¢ The value obtained in this work appears as reamolecules® This result has been confirmed for HS€Cand
sonable as compared to these previous estimates. In any cdsere we show that it is also obeyed for LTHS.
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(b) FIG. 7. Verification of the scaling hypothesgsg. (10) of main texi. The

0.2 ‘ . r ‘ ‘ ‘ ‘ ‘ \ logarithm of the compressibility factar is plotted as a function of the
logarithm of B,p. Values ofZ were obtained from the truncatdét B,)
virial expansion using the virial coefficients determined in this work. Results
0.15 - ] from top to bottom correspond tm= 16, m=32, m=64, m=100, andm
=150. The maximum density plotted for each model correspondg to
=0.30.

01 r

0.05

B,/B,’

function ofm, and in Fig. @b) as a function of 1/m. Results

are shown for the pearl-necklace model and for the LTHS
model. For the pearl-necklace model we have included data
for B, for chains withm=150 and 200see also Table)|
although we should bear in mind that for these lengths our
results just give the order-of-magnitude Bj. Let us first
discuss the behavior (34/82 for the pearl-necklace model.
The results presented in Fig. 6 strongly suggest that for this
model, the ratidB,/B3 reaches a constant value in the limit
FIG. 6. Value of the ratid, /B3 for several hard models. Results for the of long ch'alns. Itis hard to decide from our data whether this
pearl-necklace model obtained in this wafilled circles, results for the ~ constant is zero or a small nonzero value. In any case, one
LTHS obtained in this workfilled square} results for hard spherocylinders  may conclude that the limiting value @‘4/82 for infinitely

taken from Ref. 37open squargs(a B,/ B plotted as afunction ah. () |ong flexible chains is quite small. Let us now discuss the
B, /B plotted as a function of Y. results for the LTHS. As can be seen, this ratio seems to go
to zero in the limit of infinitely long chains. In Fig. 6 we
have also included the results for hard spherocylinders taken
Jrom Frenkel’” Again, it is seen that the ratiB, /B3 is al-
most the same for the LTHS and HSC of the same elonga-
tion. It is well-known that for HSC, the ratiB, /B3 tends to
gero for very elongated moleculés®’ Therefore, we can

-0.05 -

-0.1

0 005 01 015 02 025 03 035 04 045 05

0.5

1/m

To summarize, the behavior @&;/B3 in the limit of
infinitely long chains reflects the presence or absence of fle
ibility in a model. It tends to a value of about 0.35 for flex-
ible chains(i.e., at least for the pearl-necklace modahd to

zero for linear rigid molecules. In other words, it can be sai _ X
that the ratioBs/B2 in the limit of infinitely large size pre- conclude that for the LTHS this ratio also goes to zero. On-

sents Onsager scaling for rigid molecules and de Genneder scaling holds foB, of rigid chains, and our results

scaling for flexible chains. On the other hand, TPT1 predict§uggeSt that this' could a's‘? be t.he case for flexible chains. As
that this ratio goes to zero for infinitely large molecules,t0 TPTL, it predicts that this ratio goes to zero witegoes

which is the right behavior for rigid linear molecules but the to infinity, b,Ot_h for 'the ﬂe?(ible and “gi‘? models.
wrong behavior for flexible ones. Let us finish this section by analyzing some of the con-

Let us now discuss the scaling law for the fourth virial S€duences of Eq10) (i.e., the scaling hypothesesit is
coefficient. One conclusion of the scaling hypothesisBgr  Well-known that under good solvent conditior, scales as

is that m3. It then follows from Eq(10) thatZ must be a universal
function of pB,. In Fig. 7, the value o as obtained from
. By Bj the virial expansioritruncated aB,) is plotted as a function
lim e (B%)? = constant, (13 of pB,. For each model, the highest considered density cor-
meet2 2 responds toy=0.30. A similar plot has been recently pre-
for long flexible chains. sented by Lué® As can be seen, all the curves follow onto a

In Fig. 6(a), the ratio given by Eq(13) is shown as a universal curve for densities smaller thaB,= 1. For higher
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densities, differences appear between the different models@
being that the value of for a certain value 0pB, is lower
for longer chains. Similar conclusions were obtained by
1200 r .

Lue3®

1000

C. Correlation between virial coefficients and single

chain properties B; 800 |

The results presented in Table | correspond to the exact
numerical determination @5 , B3 , andBj . Since it is the
first time that third and fourth virial coefficients have been
evaluated for flexible molecules, we would like to analyze 400 ¢
the accuracy of other possible approximate methods of
evaluating the virial coefficients which have been tested 200
recently? Let us start by showing the exact formulas for the
second and third virial coefficient of a multicomponent mix-
ture:

Bz:zi 2 XinBij,

60

(b)

(14) 1.0

08 -
06

Bs=> > > XiXXBijk, (19 o4 r

i j k 0.2
wherex; is the molar fraction of component B,

For the pearl-necklace model, we can think of each in-

stantaneous configuration of the isolated chdiee of in- 04
tramolecular overlgpas a different component. Let us now 06 ¢
make an approximation for the crossed virial coefficieits -08 |
andB;j . If we apply the following mixing rules, -tor

-1.2 ¢
Bij:(Bii+Bjj)/2! (16) ~1_40
a7 o

FIG. 8. (a) Correlation betweeB; andB, in the pearl-necklace model with
m= 64 obtained with the approximate methodology.Correlation between
B, ands? for the pearl-necklace model witin=64 obtained with the ap-
proximate methodology.

-02

110

Bijk = (Biii + Bjjj + Bk /3,
to Eq.(14) and Eq.(15), they can be rewritten as

52:2 XiBii (18)

Bs=> XiBjii, (19

: ogy breaks down for the fourth virial coefficients, especially

as the chains become longer. One may suspect that the same

with an analogous equation for the fourth virial coefficient. would occur for higher virial coefficients.
Of course Eqs(18)—(19) are not exact, since they are based  The approximate method has the advantage of allowing
on the approximations given by Eq4.6)—(17). One inter- a simpler discussion of the virial coefficients of chains. For
esting feature of Eq€18)—(19), however, is that they allow instance, one may analyze correlations between the indi-
one to estimate the average virial coefficients of the chairvidual virial coefficients and single chain properties such as
molecules from the virial coefficients of individual configu- the radius of gyration or even other individual virial coeffi-
rations. In this way, the algorithm of Sec. Il may be used bycients. We shall now analyze the virial coefficients obtained
selecting a single conformer to compute each of the requirettom the approximate methodology for the pearl-necklace
graphs. model withm=64. In Fig. 8a), we present the correlation

In Table 1, the virial coefficients fom=16 andm=64  between the second and third virial coefficient. Results are
obtained in this way are presentéskee the results labeled presented for 800 instantaneous configurations of the pearl-
with an asterisk By comparing the results of Table | ob- necklace model. As can be seen in Fige)8B3 andB3} are
tained with the approximate methodology, with the ones obstrongly correlated, with a correlation coefficient of about
tained with the exact methodology, one concludes that th€.88. The higher the excluded volume between two mol-

approximate method provides accurate estimateB,oand
B but poor predictions foB,. In fact, differences in the
fourth virial coefficient are of about 5% fan=16 and of

ecules(for hard models the second virial coefficient is one-
half of the excluded volumé the higher the third virial
coefficient. In Fig. &), the correlation betweeB} and the

about 30% form=64. Clearly, the approximate methodol- radius of gyrations?, is shown. Again, it can be seen that
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FIG. 9. Compressibility factor of the pearl-necklace model as obtained from computer simuR¢itsn 39, 44 (symbolg and from the truncate¢hat B,)
virial expansion of the pearl-necklace modwblid ling). (a) Results form=1 (bottom andm=7 (top). (b) Results fom= 32, circles(from Zhouet al., Ref.
44), squaresMcBride, Ref. 49. The results of the truncated virial expansion for the SW chain are also slgashned ling (c) Results fom=64. The results
of the truncated virial expansion for the SW chain are also shi@ashed ling (d) Results form=100. Symbols are simulations results from Li&ef. 39.
Wertheim’s EOS prediction is shown as a dashed line.

these two properties are strongly correlated. In fact, the coreomputer simulatiorf§3° and from the truncated virial ex-
relation coefficient of Fig. @) is —0.89. Also note that, for pansion is presented. It can be seen that the truncated virial
large values of?, B} becomes negative. This is in agree- expansion is able to correctly describe the compressibility
ment with the intuitive idea that configurations with larger factor of the pearl-necklace model for volume fractions up to
values ofs” are somewhat stretched and somehow resemblg—0.25. For larger densities, the truncated virial expansion
the shape of a prolate spherocylinder or ellipsoid, for whichsignificantly underestimates the compressibility factor. Obvi-
B, becomes negativE:**Figure 8b) serves also toillustrate sy, for high densities the contributions from the fifth and
the difficulty in accurately evaluating the fourth virial coef- o rast of the coefficients of the virial expansion should be

ficient of long molecules. In fact, when computij for included. In Fig. 9d), a comparison between simulation
m=64, we found values from around12000 up to about o 39¢oy the pearl-necklace model with=100, the trun-

10000 depending on the chosen configuration. Such a bIgated virial expansion, and Wertheim's EOS is presented.

dispersion of the results is reflected in very large error bar:sThiS figure shows clearly the failure of Wertheim's EOS at

as shown in Table I very low densities(i.e., for y<0.10). This failure is ex-
_ pected, since Wertheim’s EOS does not correctly predict the
D. Equation of state virial coefficients as was shown in Figs. 2—4.

We shall now focus on the possibility of describing the ~ Zhou et al. have shown by analyzing their simulation
equation of state of the pearl-necklace model in the low dentesults for the pearl-necklace model that the compressibility
sity regime via a virial expansion truncated at the fourthfactor for a fixed value of the volume fractidine., y) be-
virial coefficient level. In Fig. 9, the EOS of the pearl- comes a linear function oh oncem s sufficiently big(typi-
necklace model wittm=1, 7, 32, 64, 100 as obtained from cally larger than ¥** This seems to be a general trend in
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160 ™ \ " w TABLE IIl. Second, third, and fourth virial coefficients for the SW pearl-
necklace model described in the text. The reduced temperakdre
140 | s =TI/(el/k) is 3, andA=1.5. The numbers in parentheses gives the uncer-
L tainty of the last digits. Values of the mean-square radius of gyrgsén
120 1 are given in the last column.
100 | 1 m B} B} B (s?
Z s 32 20.988) 2132 86520 9.473
64 30.249) 43005) 216530 20.508

60

40 + . . .
figurations, however, are not representative of the actual con-

figurations presented by a chain in the fluid state at nonzero
density. Actually, configurations obtained at zero density are
more expanded than in the méeite., the square radius of
m gyration is larger at zero density than at liquid-like
FIG. 10. Compressibility factor of the pearl-necklace model as given by thedens't'es;"15 O”'Y . _theor'_es 'r_]CIUdmg Self_'conS'StenCy
truncated virial expansion foy=0.20 (circles and solid lingand fory (namely the possibility of including conformational changes
=0.25(squares and dashed lindhe lines serve as a guide to the eye and with density can be successful in reproducing the low and
were obtained by a least-squares fit. high density regime of polymer molecules. Notice that this is
a specific feature of hard flexible molecules. For hard rigid
models, the introduction of the exact values of the first virial
polymer molecules. Notice that this means that for a fixedcoefficients guarantees the agreement between the virial ex-
volume fraction, pressure becomes independent of chaipansion and simulation at low densities. For hard flexible
length. This linear dependence Afwith m appears also in molecules, however, this is not the case. Self-consistency
almost all theoretical EOS such as Wertheim’s TPT1 or theshould be included in any theoretical treatment where the
generalized Flory dimer theory. Let us analyze if the trun-singlet correlation function is density dependent. A similar
cated virial expansion can reproduce this behavior at lowproblem where this also occurs is in the case of nematogens.
pressures. In Fig. 10, the compressibility factor as obtained@he virial expansion does not guarantee an exact description
from the truncated virial expansion is shown as a function obf the fluid once the nematic phase appe@es, when the
m for two values ofy, namelyy=0.20 andy=0.25. As can  singlet correlation functions becomes anisotrpffc*
be seen, the truncated virial sum is able to reproduce the To summarize, Fig. 9 illustrates that the virial expansion
linear behavior oZ with m for these two volume fractions. provides a reasonable approximation to the EOS of the pearl-
In fact, the correlation coefficient of the linear fit is of the necklace model withm less than 100 ang less than 0.25,
order of 0.9997 for both densities. It is somewhat surprisingout even though we have used the exact first four virial co-
that the virial sum is able to reproduce this linear behaviorgfficients, the agreement with simulation is not perfect be-
since the exact virial coefficients are not linear functions ofcause we are not properly accounting for the possibility of
m (see, Figs. 2-¥ Because of this, one may suspect that forconformational changes in the fluid phase. It is somewhat
longer chains the truncated virial expansion will fail to re- frustrating that the virial sum does not guarantee exact be-
produce the linear behavior & with m found in computer havior in the EOS even for low densitigse., y less than
simulations. 0.20.

Although for the chain lengths considered in this work In order to asses the impact of conformational changes
the truncated virial expansion describes quite well the EO®n the virial coefficients and on the equation of state of a
for values ofy less than 0.30, there is still an issue thathard flexible model, we have evaluated the virial coefficients
should be mentioned. Fan=1, 7, and 16, the virial sum for a model related with the pearl-necklace model. In this
underestimates the value @ffor y=0.30. However, this is new model, the intermolecular interactions are of the hard-
not the case fom= 64, where the truncated virial sum over- sphere typgas in the pearl-necklace mogeHowever, in-
estimates the value & (see Fig. 9. It is difficult to explain  teraction between sites of the same chain will be given by the
why the virial sum provides a compressibility factor higher square well potential witihh =1.5. We shall denote this new
than the experimental value obtained from MC. One possiblenodel as the SW pearl-necklace or more briefly the SW
explanation is that the neglected virial coefficiefits., fifth,  model.
sixth, and higherare negative, so the compressibility factor In Table lll, the virial coefficients of the SW pearl-
is overestimated by the virial sum. Although we cannot com-ecklace model wittm=32 and 64 are given for a reduced
pletely rule out this possibility, we do not think this is the temperature T* =T/(e/k)=3. For this temperature, the
case(at least form=64). In our view, the strange behavior chains adopt more compact configurations than in the pearl-
found form= 64, where the virial sum gives higher values of necklace model, so one can analyze the impact of the in-
Z than the MC simulations, is related to the conformationaltramolecular configurations on the virial expansion and the
changes that occur in a polymer melt as the densitfeOS. As can be seen, the value of the second and third virial
increase$® Note that we are evaluating the virial coefficients coefficient is reduced with respect to the pearl-necklace
by using configurations obtained at zero density. These cormodel. However, the fourth virial coefficient remains almost

20 -
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FIG. 11. Results of the EOS of the pearl-necklace model as obtained from simytiohols, from TPT1(solid line), and from virial-TPT1(dashed ling
for m=7,16,32,64.(a) Results form=7. (b) Results form=16. (c) Results form=32. (d) Results form=64.

the same fom=32 and increases slightly fon=64 (com- tribution arising from the second virial coefficient. This new
pare the data of Tables | and)llIn Figs. 9b), 9(c), the EOS  equation, which we will denote as virial-TPT1, reads as fol-
for the pearl-necklace model as obtained from simulation|ows:

from the virial expansion, and from the virial expansion of _ | * TPTL

the SW model are shown. As can be seen, the shape of the 2= Zrert (B2 =Bz 7Dy, (20)
molecule affects the equation of state. In the pearl-necklacehereZ pr; andB3 ™7™ are given by Eqs(5)—(6), respec-
model, the radius of gyration in the melt is somewhere betively, andBJ is the exact reduced second virial coefficient
tween that of the pearl-necklace model at zero density ands obtained numerically in this work. In Fig. 11, the results
that of the SW model at zero density. The results of Figsof this EOS form=7, 16, 32, and 64 are compared to simu-
9(b), 9(c) again give evidence that only self-consistent theo-ation results. As can be seen, virial-TPT1 significantly im-
ries can successfully describe the EOS of a flexible moleculeroves the results of TPT1, not only at low but also at high
in all the range of densities. densities.

Finally, we would like to propose a new EOS for the
pearl-necklace modf_al. TPTl_l_s a good EOS_ for the _pearlv CONCLUSIONS
necklace model at high densities. However, it overestimates
substantially the pressure at low densities. One may expect In this work, the second, third, and fourth virial coeffi-
that the introduction of the correct virial coefficient in TPT1 cients of the pearl-necklace model with up to 100 monomer
will result in an improved EOS. This kind of correction was units have been computed. To our knowledge, this is the first
introduced by Yethirajet al* for the generalized Flory time that the third and fourth virial coefficients of a polymer
dimer theory. One would expect that the same correction caim the continuum have been computed. Preliminary results
be applied for TPT1. A similar treatment combining low andfor m=150 andm=200 have also been given. We have
high density EOS has also been proposed recently by*L.ue.computed the virial coefficients for a linear rigid model to
Therefore, we shall use TPT1 but imposing the correct conasses the impact of flexibility on the virial coefficients. The
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results provided in this article may be useful for researchers (9) It is shown that TPT1 can be improved by simply

looking for an EOS of the pearl-necklace model. introducing the correct value of the second virial coefficient.
We can summarize the following conclusions from this That improves significantly the results for low densities, and
work. slightly for high densities for chains from 7 up to 64 mono-

(1) Virial coefficients of flexible and rigid molecules dif- mer units.
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