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MOLECULAR PHYSICS, 1991, VOL. 72, No. 1,215-228 

Structural study of the angle-averaged soft Kihara potential for linear 
molecular models. A test of perturbation theory 

By CARLOS VEGA and SANTIAGO LAGO 

Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, 
Universidad Complutense, 28040 Madrid, Spain 

(Received 24 May 1990; accepted 9 July 1990) 

The angle-averaged potential corresponding to a Weeks--Chandler-Andersen 
division of an anisotropic Kihara potential is obtained for several molecular 
models. Monte Carlo (MC) simulations are performed and the structural results 
are compared with those coming from Percus-Yevick (PY) and from reference 
hypernetted chain (RHNC) equations. PY and RHNC give similar results at low 
densities, but for high densities and large anisotropies PY fails while RHNC gives 
excellent agreement with MC results. Monte Carlo simulations for soft repulsive 
rods are also carried out, and Z0, A~ and A2 are computed during the runs. A 
comparison of the simulated values with the theoretical ones as predicted by the 
perturbation scheme proposed by Fischer using PY and RHNC results for the 
background correlation function is also made. 

1. Introduction 
Repulsive forces have been shown to be responsible for the structure of simple 

liquids at high densities [1]. For non-polar molecular liquids there is also some 
evidence showing the predominant role played by the short-range forces in determining 
the structure. Several perturbations approaches have been developed on the basis of 
this. Fischer [2] devised a perturbation scheme, choosing the reference potential to 
contain all the repulsive forces, in the WCA spirit. This theory works well for linear 
molecules of moderate elongation and has been extended to mixtures [3] and nonlinear 
molecules [4]. The potential used by Fischer was the multicentre Lennard-Jones, 
although the theory was later applied to the GOCE [5] and Kihara [6] potentials. In 
Fischer's theory the structure of the reference fluid was approximated by a zeroth- 
order expansion of the background correlation function y(rl2, Ol, D~), around a 
RAM spherical potential ~b(r). Of course, it is also possible to solve an integral 
equation [7-9] for the reference system, but then the theory becomes nearly as time 
consuming as simulation. The structure corresponding to the potential th(r) is obtained 
by solving the Ornstein-Zernike (OZ) equation along with a closure relation. Percus- 
Yevick (PY) closure has always been chosen for this purpose, because it was thought 
to be adequate for soft repulsive potentials ~b(r). 

On the other hand, the reference hypernetted chain (RHNC) [10] equation has 
proved to be the most successful theory for spherical potentials. Moreover, the 
Labik-Malijevsky parametrization of the bridge function (the sum of all the so-called 
bridge diagrams) of hard spheres allows an easy application of this theory. However, 
this approach has mainly been applied to short-ranged repulsive spherical potentials 
[11, 12] but not to soft repulsive potentials with a longer repulsive range. The purpose 
of this paper is twofold. First, we shall show how PY closure fails in certain thermo- 
dynamic conditions for RAM th(r) and should therefore not be used without caution. 
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216 C. Vega and S. Lago 

In this case the R H N C  equation proves to be reliable in yielding very good results for 
the structure of  this ~b(r) potential in all the studied conditions. Secondly, we shall 
show the effect of  using the R H N C  results for ~(r) instead of  the traditional PY 
closure within the framework of  Fischer% theory. 

2. Theoretical background 

In Fischer's perturbation theory [2] the full intermolecular potential is divided into 
a reference term and a perturbation term: 

u(rl2, -(21, g'22) = uo(rl2 , o(21, ~r~2) + ~.u| (r12, O i ,  g"22), (1) 

where 2 is a coupling parameter, rl2 is the distance between the centres of  mass of  
molecules 1 and 2, and .(2 i is the set of  orientation coordinates of  molecule i. The 
reference part of  the potential combines all the repulsive forces in the system. 
Therefore the reference (u0) and perturbation (u~) parts are given by [13] 

u(rl2, ~'~l, $r~2) -- Umin(rl2, -t?l, $r~2) for rl2 < rmin(ff'2l, ~2) ,  (2) 

u0(rl2, -(21, ~2)  = 0 for  r12 > rmin(-(~l, ~'22), (3) 

ul(r12, 0 , ,  .02) = I umi"(r'2' *~r ~2) for rl2 < r~i.(01, 02), (4) 
( u(r,2, 01, D~) for rl2 > rmi,(Oi, ~22), (5) 

where rmi n is the distance between the centres of  mass of  the molecules at which a 
minimum occurs in the full potential for a given orientation. The value of  the potential 
at rmi n is Urain. 

The residual part of  the Helmholtz free energy A can be expanded in terms of  the 
parameter 2 to give 

A = A 0 + A~ + A2 + " ' ' ,  (6) 

where A0 is the residual Helmholtz energy of  the reference system and 

Ai = �89 f u,(,,2, o , ,  D.2)go(rl2, 01, Da)drl2 dOi dDa 

= (UI)0 ,  (7) 

A2 = - (2kT)-l((u2~ )o - (U,)2o), (8) 

with 

U, = ~ u , ( i , j )  (9) 
i<j 

where N is the number of  particles, n the number density, k the Boltzmann constant, 
T the absolute temperature and go(r~2, .O~, .02) the pair correlation function of the 
reference systems, and the angular brackets with subscript 0 indicate canonical 
averages over the reference system. 

In Fischer's theory the 2 expansion is truncated at first order, and therefore 
knowledge of  Ao and go is needed. 

go(rl2, -(21, -02) is approximated by 

g o ( r , 2 , 0 , , l ' 2 2 ) =  e x p [  u~ O "  ~ ) ]  - k T  y(r,2), (10) 

where y(r~2) is the background correlation function of  a spherical system at the same 
density and temperature as the actual system and interacting through a spherical 
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Structural study for the Kihara potential 217 

potential given by q~(r): 

e x p [  ~b(r':)l = k T  l <exp [ -  u~ .0" .02) ]> ,  ' k T  (11) 

where the subscript g indicates the geometrical average, y(r) is obtained by solving the 
OZ equation for a spherical potential: 

= n f c(rn)[c(r23 ) + S(r23)]dr3, (12) S(r|z) 

S(rl2) = h(r12) - c(rj2), (13) 

h(rl2) = g ( r l~ ) -  1, (14) 

where c(rl2) is the direct correlation function. An appropriate closure relation must 
be chosen to solve the OZ equation. Previously [2, 3, 4, 6] PY has always been used. 
Here we shall use the PY as weld as the RHNC closures given by 

(PY) c(r,2) = {exp [ 4~(r,2)k.T ]] -- I j  iS (r ,2 )+  11, 

(RHNC) c(r~2) = exp ~ + S(r,2) - B(r~2) - 

(15) 

1 - S(r,2), 

(16) 

where B(rt2) is the bridge function of a reference system which will be in this work that 
of hard spheres. 

A 0 for the reference potential is found as the Helmholtz free energy of a hard 
system AH whose diameter is obtained by setting equal to zero the first-order term of 
the blip expansion [14]: 

f [ e x p ( - ~ ) - e x p ( - f f k T ) ] y o ( r ~ 2 , . 0 , , I 2 2 ) d r , 2 d O ,  dl'22 = O. (17) 

As long as Y0 is unknown, it is approximated by [2]: 

y0(rl2,/21, .0.2) = Y(rl2). (18) 

A H is obtained by integrating one of the equations of state available for hard convex 
bodies [1 5]. Since one of the goals of this work is to show the influence on the 
thermodynamic properties of using different closure relations for obtaining y(r), it is 
convenient to know the exact values of A~ and A0 (or its differential counterpart Z0) 
for every state. This can be achieved by simulating the reference system. Z0 can be 
evaluated during the run and, eventually, A 0 can be obtained by integrating 

A~ = f (Z0  - l) dn (19) 
N k T  n 

from zero to the desired density. A~ can be obtained from (7) as the average of the 
perturbation potential energy on the reference system, and A2 from its fluctuations 
according to (8). For site-site potentials the value u~,n depends on the relative 
orientation of the molecules, and this makes the simulation of the reference system 
rather involved. In fact, no simulation has been carried out for the reference system 
given by (2) and (3) in the multicentre model potential, as far as we are aware. 
However, if the value of the potential minimum is independent of the relative 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
3
:
5
9
 
4
 
J
a
n
u
a
r
y
 
2
0
1
1



218 C. Vega and S. Lago 

(c) 

(b) 

Figure I. Molecular cores used in this paper for the Kihara potential: (a) linear; (b) angular 
propane-like; (c) gauche + butane-like. 

orientation then the simulation of  the reference potential becomes much simpler and 
some examples can be found in the literature [5, 16, 17]. In this work we shall choose 
the Kihara potential [18]: 

u = 4e - , (20) 

where p is the shortest distance between the molecular cores describing the molecular 
geometry and e and tr are the potential parameters. The molecular core does not 
necessarily have to be convex, although this is the most common choice. In the next 
section we shall describe the method used for the evaluation of  y(r) as well as the 
details of  the MC simulations for both the spherical potential ~b(r) and the reference 
potential u0. 

3. Computational details 
The potential ~b(r~2) of ( l  1) was obtained for the reference system defined in (2)-(5) 

specialized to the Kihara potential defined by (20). We have chosen three different 
kinds of  core, which are plotted in figure 1. These are (i) a linear rod, (ii) an angular 
propane-like model and (iii) a gauche + butane model. The linear model was studied 
for three values of  the reduced length L* = L/a, where L is the length of  the rod: 
L* = 0.15, 0.6 and 1.0. In the propane or butane model L* = b/tr was kept equal to 
0-4123 and 0.427 respectively, where b is the carbon-carbon distance. Efficient 
algorithms for evaluating the shortest distance between rods have been described 
elsewhere [19, 20]. The geometrical average of  (11) was obtained using Conroy's 
method [21] with 4822 orientations for each value of  rj2. This method has proved to 
be accurate for nonlinear molecules [4]. 
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Structural study for the Kihara potential 219 

We solved the integral equation for ~b(r) using the Labik-Malijevsky method [22] 
with N = 512 and Ar~2 = 0-0125tr. The bridge function of hard spheres that is needed 
in the RHNC approximation was taken from the Labik-Malijevsky parametrization 
[23, 24]. The diameter of the reference hard sphere in the RHNC approximation, dHs, 
was obtained according to Lado [25]: 

( dB"S(r) 
[g(r)--'g"S(r, dHs)] dd.s dr = 0. (21) 

Equation (21) was solved numerically using an iterative procedure with several values 
of d,s. These trial values were taken to coincide with the grid in r space [26]. 

We carried out two different kind of simulation. First, we performed MC simu- 
lations with the spherical potential ~(r), (11), as obtained from the reference system 
of linear, propane and gauche + butane models interacting through the Kihara 
potential. We used 216 spherical particles in a cubic box with periodic boundary 
conditions. Typically we performed 200000 moves for equilibration, and averages 
were obtained after 600 000 additional moves. The acceptance ratio was always kept 
around 50%. 

The second type of simulations were MC simulations of the anisotropic reference 
potential (2)-(5) of linear rods (see figure 1), interacting through the Kihara potential. 
We used 216 particles and 420000 configurations for equilibration and 500000 
configurations for obtaining the averages. ,4~ and A2 were obtained by evaluating all 
the contributions as far as the half of the box length. When comparisons between 
theory and simulation are made for .4,, we integrated (7) only up to half of the box 
length in order to avoid ambiguities. 

4. Results and discussion 

The RAM potential as given by (11) is temperature-dependent. Nevertheless, 
when applied to a reference anisotropic repulsive system, the temperature dependence 
is weak and it is the molecular shape that mainly determines the shape of the potential. 
In figure 2 we plot the Boltzmann factor defined by (1 l) for three linear models. For 
these models the value at which the Boltzmann factor starts to differ from zero does 
not depend strongly on the reduced length of the molecules. However, the value at 
which the RAM potential ~b(r) vanishes does depend on the reduced length, and is 
given by 2~/6a + L for linear molecules. Therefore ~b(r) obviously becomes softer as 
L* increases. However, before presenting our main conclusion, let us give the relation 
between the Boltzmann factor of any pair potential and the second virial coefficient 
B2: 

f ( r l 2 , ~ Q l ,  g~2) = e x p [  u(rl2''Ol''O2)l-- l ' k T  (22) 

B 2 - -  -~f<f>gdrt2. (23) 

From (I l), (22) and (23), we can see that B2 is the same for the reference anisotropic 
potential u0 and for the spherical potential t~(r). Figure 2 along with (I l), (22) and (23) 
illustrate our second conclusion--namely, that B2 for the reference anisotropic system 
is an increasing function of the reduced length at a given temperature. 

This conclusion can be understood better if one considers that the linear anisotropic 
reference system has similar properties to a hard spherocylinder (a cylinder with two 
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Figure 2. Boltzmann factor of the spherical RAM potential 4>(r~2) as obtained for linear 
molecules using the reference Kihara potential (2), (3) at T* = 1.0 and L* = 0.3 ( ), 
0-6 ( . . . .  ) and i.0 ( - - - - ) .  

spherical caps). B~ for hard convex bodies is a function only of  the non-sphericity 
parameter ~ and is given by [15] 

8~ = (I + 3~)Vm, (24) 

where V m is the molecular volume. For hard spherocylinders �9 is given by 

(L'* + 2)(L'* + 1) 
= (25) 

3L'* + 2 

L'* = Lid, (26) 

where d is the hard-body diameter. Usually L'* will take very similar values to L* 
if the Barker-Henderson prescription for calculating d is used. From (24)-(26), 
it follows that Bz n for hard spherocylinders increases with the reduced length L'*. 
For  hard spherocylinders the distance between the centres of  mass at which the 
unweighted average of the Boltzmann factor vanishes is a for any value of L'*. 
Moreover, the first value at which this Boltzmann factor is unity is given by 
(1 + L'*)a. Therefore the range of  the spherical potential 4~(r), (11), obtained 
for hard spherocylinders increases with L'*. This also means that ~b(r) becomes 
a softer repulsive potential as L'* increases or correspondingly (because of  (25)) as 
increases. It is therefore reasonable to suppose that B2 for soft repulsive rods will also 
be an increasing function of L'* and that ~b(r) will become softer as L* increases. This 
can be seen in figure 2. 

On the basis of  the results obtained for linear cores, we suggest that for anisotropic 
repulsive potentials (soft or hard) B2 increases with �9 and that the spherical RAM q~(r) 
becomes softer as ~ increases (i.e. for hard spheres ~ = 1 and the Boltzmann factor 
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Figure 3. Pair correlation function of a spherical RAM potential 4~(r~2) for a linear model 
with L* = 0.15 interacting through the reference Kihara potential (2) and (3) as 
obtained from MC simulations (e) and from PY ( ) and RHNC ( - - - )  approxi- 
mations at T* = 1.0 and r/ = 0"4. 

becomes a Heaviside step function). In the hard case �9 can be obtained from geometrical 
considerations, and for the soft repulsive potential a is obtained from the equivalent 
hard body. 

We carried out MC simulations of  some of  the spherical RAM potentials corre- 
sponding to the Boltzmann factor plotted in figure 2, and solved the OZ integral 
equation for q~(r), using the R H N C  and PY closure relations. For every model we 
have simulated two values of  the packing fractions defined as 

r I = nV(~),  (27) 

where V(a) is the volume of  a spherocylinder of  diameter a and length L. 
Results are shown in figures 3-5. PY works properly when compared with 

simulations at low densities for the three studied reduced lengths. At high densities, 
PY reproduces the MC data for L* = 0-15, but fails for the other two lengths. R H N C  
compares well with MC results in all cases. The discrepancies between PY and R H N C  
at high densities can be summarized by saying that PY overestimates the height of  the 
first peak ofg(r)  and shifts it to the right. Moreover,  PY oscillates slightly out of  phase 
with respect to the simulations. 

We have also investigated propane and gauche + butane simple models. Figure 6 
compares the Boltzmann factor of  modelled propane with that of  a linear model with 
the same potential range at the same reduced temperature. As they are very different, 
it is clear that 4~(r) for an angular model has a different shape to ~b(r) for a linear one, 
even if the range of  the potential is the same. In fact, ~b(r) for an angular model is 
considerably harsher than 4)(r) for a linear model. We also carried out MC simulations 
and solved the integral equation for the RAM potential o f  propane and gauche + 
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Figure 4. 
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r *  
As figure 3, but for L* = 0-6 and T* = 1"0: (a) r t = 0.2; (b) q = 0.4. 

butane (see figure 1). The results are shown in figures 7 and 8. Again, PY fails at high 
densities, where RHNC still works very well. Furthermore, the discrepancies between 
PY with MC results exhibit the same features as in the linear case. 

Thus it seems that the use of PY in previous work [2, 3, 4, 6] cannot be justified 
for elongated linear models or for angular ones like propane, especially at high densities. 
This is an important point because it is at high densities where the perturbation 
scheme must be applied and RHNC works very well in all the studied cases. 

In applying RHNC,  the diameter of  the equivalent hard sphere is obtained from 
(22). We have observed that the equivalent hard-sphere diameter dus increases for a 
given state with the range of  the potential (i.e. with L*). dHs decreases with temperature 
and with density for a given L*. 

We shall now see the effect of  introducing the accurate yRHsC (r) instead of yPV (r) 
in the perturbation theory through (7), (10) and (17). In order to calculate the 
properties of the reference system, we have used the Nezbeda equation of state 
[27], which has proved to yield very good agreement with MC results for hard 
spherocylinders of  different elongations: 

p _ 1 + (3~ - 2)r t + (~2 + ~ _ l)rt2 _ ~(5~ - 4)73 (28) 
pkT (1 - 7) 3 
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As figure 3, but for L* = 1.0 and T* = I-0: (a) r/ = 0.2; (b) ~/ = 0.4. 

Table 1 shows the effect on the properties of  the reference system. The agreement with 
the MC results is improved when yR"NC(r) is used instead of  yPV(r). For  L* = 0.29 
the R HNC  results agree with the MC results within the simulation error for all the 
densities studied, but the PY results do not. For  high anisotropies, L* = 1, RH N C 
results are closer than PY to the simulation data, but they also disagree with MC 
results at high densities. Deviations at L* = 1 for the predicted and computed 
compressibility factors cannot be explained just by the fact that we are using an 
approximate hard-body equation of  state. The maximum deviation of  the com- 
pressibility factor, as given by (24), from the simulation results observed for hard 
spherocylinders with L'* = Lid = 1 at )7 < 0.5 amounts to 0-1. Therefore at 
~/ < 0.5 the discrepancies between theoretical and simulated results in table 1 for 
L* = 1 and r/ = 0.4 must arise from neglect of  the orientational dependence in 
yo(rj2, g2), .02). RHNC values of  the hard-body diameter as obtained from (17) are 
always smaller than PY ones, which brings the theoretical results closer to the 
experimental ones. We believe that for L* = 1 and r/ = 0-4 only the introduction of  
an orientational dependence in the background correlation function will yield a smaller 
hard-body diameter and improve the agreement with MC results. Approximation of  
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Figure 6. Boltzmann factor of the spherical RAM potential ~b(rt2) as obtained for a propane- 
like model (L* = 0-412) using the reference Kihara potential (2), (3) at T* = 0.5875 
( ) and for a linear model with the same range of the potential (L* = 0.7) at the same 
temperature (----). 

(10) gives too high values of the hard-body diameter and produces too high values of 
Z0 and .4 o at high densities. 

The influence on the .41 term for spherocylinders is shown in table 2, along with 
simulation results for .4~ and A 2 obtained following (7) and (8) and evaluated 
during the MC runs of the reference system. The use of yRHNC(r) instead of yaV(r) 
does not improve the agreement with simulations at high densities. Moreover, 
the results are not very sensitive to the choice of y(r). This is striking because 
yRHNC(r) and yPV(r) are really very different (see figures 3-5). Figure 9 shows 
the integrand as a function of rl2 for yRHNC(r) and ypV(r). Clearly, some cancellation 
of errors occurs. The higher peak of gPV(r) is compensated by the fact that gRHNC(r) 
starts to differ from zero for lower r. The conclusion is that the final value of 
the integral .41, (7), is very close in both cases. However, the theoretical values 
of.4~ are always too high when compared with simulations. These discrepancies must 
again arise from the approximation in (10). Stronger orientational dependence in 
y0(r~2, ~ ,  0-2) is needed in order to improve the agreement between theory and 
experiment. 

At low densities the perturbation scheme does not converge with only the two first 
terms (.4o and .4j). This is shown in table 2, where high values of A2 at low densities 
are presented. At high densities, the term A2 is only 1% of A~. This fast convergence 
of the perturbation series was previously suggested [16] by the resemblance between 
the structure of the reference system and the system interacting through the full 
potential. 
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Figure 7. As figure 3, but for a propane-like model (L* = 0.4123) at T* = 0.5875: 
(a) na 3 = 0.2; (b) no" 3 = 0.41. 

5. Conclusions 
PY closure relation of the OZ equation fails at high densities for soft repulsive 

spherical potentials when the range of the potential is large. When the range is small, 
it always works properly. RHNC with Labik-Malijevsky parametrization works very 
well in all the cases studied, and therefore should replace the PY relation if one is 
interested in the liquid structure. 

The theory reproduces Z0 and At correctly at low densities, which is easily 
explained by the fact that the background correlation function loses its orientational 
dependence at zero density, and so the quality of the approximation (10) improves. 
Z0, A0 and A~ as given by Fischer's theory take too high values at high densities, and 
this deviation is not very dependent on whether yRHNC(r) or simpler approximations 
such as yrV(r) are used. We believe that the theory fails because it neglects the 
orientational dependence of the function y0(rl2,/2~,/22), and efforts should be made 
to remedy this. Some improvements have already been suggested [28, 29], but they are 
very difficult to implement numerically. 
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Figure 8. 

(a) 

(b) 

C. Vega  a n d  S. Lago  
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t$ 
As figure 3, but  for a gauche + butane-like model (L* = 0.427) at T* = 1-0: 

( a )  n o  "3 = 0'15; (b) nas = 0-3. 

Table 1. Compressibility factors Z and blip diameters d of soft repulsive spherocylinders as 
obtained from simulation and from RHNC and PY approximations. 

L* T* q Z ~  c Zo R"Nc Z Pv d "n~c d PY 

0'29 1"075 0"2 2-53 ___ 0"03 2"53 2-53 1"01386 1'01391 
0"29 1'075 0"3 4"29 + 0.04 4"24 4"27 1-013 17 1"01333 
0-29 1"075 0"4 7"48 _ 0-05 7-50 7-60 1"01200 1.01259 
1 1 0'2 2-73 ___ 0"03 2"77 2-77 1'01640 1"01646 
1 1 0"3 4"79 _ 0"04 4"81 4-83 1'01579 1-01606 
1 1 0"4 8"54 ___ 0-06 8"72 8"79 1'01502 1-01561 
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Figure 9. Integrand in (7) as obtained when using yRm~C(r~2) ( - - - )  and fl'V(rlJ ( ) for 
a linear model with L* = 1-0, T* = 1.0 and q = 0.4. e0 is the Boltemann factor of  the 
reference potential. 

Table 2. First and second perturbation terms for soft spherocylinders. Notation as in 
table I. 

L* T* r I A?C/NkT A~nSC/NkT Av, V/NkT A2/NkT 

0-29 1-075 0"2 - 2 ' 0 8  + 0-01 -2-07 -2"07 -0"087 
0"29 1-075 0"3 -3"37 -t- 0"01 -3"34 -3-34  -0-046 
0-29 1"075 0-4 -4 .74  + 0-005 -4"68 -4-69  -0"023 
1 1 0-2 - 1'96 + 0-01 - 1-92 - 1"91 -0"083 
1 1 0"3 - 3'27 _____ 0"01 - 3-07 - 3"05 - 0-070 
1 1 0-4 --4"68 + 0-01 --4-23 -4"23 -0-043 

For  the linear Kihara  models studied, deviations o f  theoretical Zo, .4o and A~ from 
the simulated values show the same features as  those found for the Gaussian (GOCE)  
potential [5]. In both potential models the potential well depth values do not depend 
on the relative orientation. This suggests that  Fischer 's theory, when applied to a 
potential with a non-orientat ional  dependence o f  the well depth, overpredicts A0 and 
.4, and therefore the pressure o f  the full potential model. 

We have shown that  W C A  potential  division makes the per turbat ion series 
converge very rapidly. Nevertheless, an improvement  o f  the approximat ion  given by 
(10) is necessary. 
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