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Extending Wertheim’s perturbation theory to the solid phase:
The freezing of the pearl-necklace model

C. Vega and L. G. MacDowell
Departamento de Quı´mica Fı́sica, Facultad de Ciencias Quı´micas, Universidad Complutense,
28040 Madrid, Spain

~Received 7 February 2001; accepted 27 March 2001!

An extension of Wertheim’s first order perturbation theory@M. S. Wertheim, J. Chem. Phys.87,
7323 ~1987!# for chain molecules in the solid phase is proposed. In particular the solid phase of a
model of freely jointed chains of tangent hard spheres has been considered. The equation of state
and free energies from theory are compared with simulation results obtained previously by
Malanoski and Monson@A. P. Malanoski and P. A. Monson, J. Chem. Phys.107, 6899~1997!# for
chains with up to eight monomer units. The agreement between theory and simulation is good for
the densities close to the melting, and deteriorates for densities close to close-packing. We also
evaluated theoretically the fluid-solid equilibrium of the pearl-necklace model and compare with
simulation results. The theory reproduces reasonably well the trends observed in the simulation
results. © 2001 American Institute of Physics.@DOI: 10.1063/1.1372329#
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I. INTRODUCTION

In the early 1980s Wertheim developed a theory to d
with the thermodynamic properties of fluids with associat
forces,1–4 for example, hydrogen bonding fluids. It was so
realized that the formalism proposed could lead to an
proximate equation of state for a completely different s
tem, namely, that formed by chain molecules. The reason
this surprising relation arises from the fact that chains
formed from a fluid of associating monomers when t
strength of the association becomes infinitely strong. T
interesting finding was discovered independently
Wertheim5 and by Chapman, Jackson and Gubbins.6 It can
be stated that since the publication of these two papers a
era has been born for the statistical mechanics of flex
molecules. In the simplest implementation of the theo
which is commonly denoted as the first order perturbat
theory5 ~TPT1!, the only information required to build a
approximate equation of state for the chain fluid is the eq
tion of state and the pair correlation function at contact of
monomer fluid. In the first order perturbation theory, t
properties of the chain fluid are independent of the torsio
state of the molecule and of the bond angle between th
consecutive beads. For hard spheres, both the equatio
state ~EOS! and the pair correlation at contact are w
known, and, therefore, it is simple to derive an equation
state for the fluid phase of chains of tangent hard sphe
This is the reason why the first application of Wertheim
theory of association to flexible molecules was performed
hard flexible chains.5,6 Further development followed in th
early 1990s. Zhou and Stell,7 and W. Smithet al.8 reformu-
lated Wertheim’s theory of association in a different la
guage, namely that of the equilibrium constant. Chapm9

showed that Wertheim’s formalism could also be applied
systems with attractive forces. The work of Johns
et al.10,11 has shown that Wertheim’s formalism yields qu
a good description for Lennard-Jones~LJ! chains, provided
10410021-9606/2001/114(23)/10411/8/$18.00
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that the EOS and pair correlation function of the reference
fluid is accurately known. Gil-Villegaset al.have shown that
the same holds true for square well chains12 and recently the
same has been shown for Yukawa chains.13 One can summa-
rize by saying that a good EOS of chain molecules intera
ing through a given pair potential can be obtained if the E
and pair correlation function of the monomer fluid are know
accurately. Therefore, an approximate but reliable desc
tion of flexible chains in the fluid phase can be obtain
nowadays in a rather straightforward way. Since the mess
seems a little bit enthusiastic we should temper our expe
tions by mentioning that Wertheim’s theory describes flu
made up of tangent monomer units, without any restriction
the bond angle or in the torsional energy. We shall den
models like these as fully flexible models. However, from
chemical point of view the models of real interest are tho
in which the bond angle is fixed, there is a torsional poten
and the monomers are not tangent but overlap when form
the chain. For these more realistic models, Wertheim
theory is not yet successful and the situation is far fro
satisfactory.

In recent years, Wertheim’s theory has been used to
dict the vapor-liquid equilibrium of fully flexible molecules
Critical properties as obtained from Wertheim’s theory ha
been compared to simulation results. This has been don
Escobedo and de Pablo for Lennard-Jones~LJ! and square
well ~SW! chains,14 by Blas and Vega for LJ chains15 and by
MacDowell et al. for LJ chains with flexible bond lengths.16

The theory performs a reasonable job in estimating the
existence envelope and the critical properties of chain flu

Although the fluid phase of fully flexible chains has be
studied extensively for hard models and for models with
tractive forces, the solid phase has received far less atten
~see, for instance, the recent review in Ref. 17!. Solid phases
of long flexible molecules are of interest since at room te
perature and pressure long flexible molecules are in the s
phase. For instance, all linear alkanes with more than
1 © 2001 American Institute of Physics
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carbon atoms are solid at room temperature and pressure
the same is true for polyethylene. Therefore the study
solid phases of flexible chains seems to be interesting
only from a scientific point of view but also from a practic
point of view. The same is true for the fluid-solid equilibriu
of these kind of systems.

Two recent studies have focused on the fluid-solid eq
librium of two simple models of fully flexible molecules. I
the first study Malanoski and Monson18 have examined the
fluid-solid equilibrium of freely jointed chains of tangen
hard spheres, the so called pearl-necklace model. Thes
thors have studied the pearl-necklace model in the s
phase, determining the equation of state form53,4,5,6,7,8.
In addition they also performed free energy calculations t
computing the fluid-solid equilibrium for these models.
the solid phase the atoms are arranged in a close packe
solid but there is no long range orientation order between
bond vectors of the chains.17–22In the other study Polson an
Frenkel23 have studied the fluid-solid equilibrium of a simila
model with Lennard-Jones interactions~in place of hard
sphere interactions!. In addition to fully flexible chains, Pol-
son and Frenkel considered the case of semi-rigid ch
~i.e., they introduce a bending potential restricting the po
tion of the bond angles!. Taking this research on fluid-soli
equilibrium one step further both groups have considered
fluid-solid equilibrium of simple models ofn-alkanes, with
hard interactions24 and with LJ interactions,25 respectively.

One interesting issue is the theoretical description
flexible molecules in the solid phase. Recently Malano
et al.26 have illustrated how cell theory can be successfu
implemented for the determination of the properties of fle
ible molecules in the solid phase. This is certainly a ro
which deserves further work. Another possibility is the e
tension of Wertheim’s first order perturbation theory,5 TPT1,
to solid phases. In an interesting paper, Sear and Jac
combined ideas from TPT1 and from cell theory and p
posed an EOS for the rigid dimer in the solid phase.27 The
results were highly encouraging. They suggest ideas for
tending the theory to longer chains, although results were
presented. In this work, we shall propose an extension
Wertheim’s first order perturbation theory to the solid pha
In particular, we shall show how the theory can be imp
mented for the pearl-necklace model. The EOS and free
ergies obtained from this extension will be compared w
the simulation results from Malanoski and Monson.18 Once
the TPT1 has been extended to the solid phase, it is pos
to compute the fluid-solid equilibrium of the pearl-neckla
model theoretically and to compare with the simulation
sults.

II. BRIEF DESCRIPTION OF WERTHEIM’S
PERTURBATION THEORY

We shall summarize the main ideas contained wit
Wertheim’s theory by following the formulation introduce
by Zhou and Stell.7,28 Let us assume that we have a certa
number,Nref, of spherical monomer particles within a certa
volumeV at temperatureT. These spherical particles intera
through a spherical pair potentialu(r ). We shall denote this
fluid as the reference fluid and the properties of this refere
Downloaded 19 Jun 2001 to 147.96.5.37. Redistribution subject to AIP
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fluid will be labeled by the superscript ref. Let us also a
sume that in another container of volumeV and temperature
T, we haveN5Nref/m fully flexible chains ofm monomers
each. By fully flexible chains we mean chains ofm mono-
mers, with a fixed bond length ofL5s, and no other con-
straints~i.e., there is no restriction in either bonding or in th
torsional angles!. Each monomer of a certain chain interac
with all the other monomers in the system~i.e., in the same
molecule or in other molecules! with the pair potentialu(r ).
The variables is a value ofr for which the functionu(r )
starts to increase strongly towards positive values~i.e., for a
hard sphere it corresponds to the hard diameter whereas
LJ bead it corresponds to the distance where the pair po
tial vanishes!. The chain system described so far will b
denoted as the chain fluid.

The Helmholtz free energy of the reference fluidAref can
be divided into an ideal and a residual part as follows:

Aref

NrefkT
5

Aideal
ref

NrefkT
1

Aresidual
ref

NrefkT
5 ln~r refs3!211

Aresidual
ref

NrefkT
, ~1!

wherer ref is the number density of the reference fluid a
where we arbitrarily assigned the value of thermal de Brog
wavelength tos. The residual term represents the differen
between the reference fluid and that of a system with
intermolecular interactions at the same temperature and
sity.

The free energy of the chain fluidA can also be divided
into an ideal and a residual part as follows:

A

NkT
5

Aideal

NkT
1

Aresidual

NkT
5 ln~rs3!211

Aresidual

NkT
, ~2!

where r is the number density of chains. Thermodynam
properties without any superscript refer to the chain flu
The residual term represents the difference between the c
fluid and an ideal gas of chains at the same temperature
number density. In the ideal gas of chains there are no in
molecular interactions, whereas intramolecular interacti
are still present. Let us assume at this point that the pro
ties ~thermodynamic and structural! of the reference fluid are
known. Can we obtain an approximation forAresidual of the
chain fluid from the properties of the monomer fluid? Fo
lowing Zhou and Stell, the residual properties of the ch
fluid are given after several approximations as

Aresidual

NkT
5m

Aresidual
ref

NrefkT
2~m21!ln yref~s!, ~3!

whereyref(s) is the background correlation function29 of the
reference fluid at contact. The background correlation fu
tion is related to the pair correlation function by

y~r !5exp~bu~r !!g~r !. ~4!

Therefore, the free energy of the chain fluid is given

A

NkT
5 ln~rs3!211m

Aresidual
ref

NrefkT
2~m21!ln yref~s!. ~5!

The above equation shows that the free energy of
chain fluid may be obtained from a knowledge of the
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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sidual free energy of the reference fluid and the pair ba
ground correlation function of the reference fluid at t
bonding distance of the chain. The equation of state wh
follows from Eq.~5! is given by

Z5mZref2~m21!S 11r ref
] ln yref~s!

]r ref D , ~6!

where we have definedZref as Zref5p/(r refkT). We shall
denote Eqs.~5! and ~6! as Wertheim’s TPT1 theory.4,6

We note that the arguments used to arrive at Eqs.~5! and
~6! make no special mention whatsoever of the actual na
of the phase considered.7,28 What we suggest is to use the
two equations forboth the fluid phase and the solid phas
All that is then needed to obtain a fully unified theory for t
phase equilibria of chain molecules is the residual free
ergy, compressibility factor and pair correlation function
the monomer fluid both for the fluid and solid phases. N
that in this way we depart from the approach proposed
Sear and Jackson,27 as we do not find it necessary to invok
a cell theory for the solid phase.

We shall now show how to obtain the fluid and so
phase residual free energy, compressibility factor and ra
distribution functions for use in Eqs.~5! and ~6!.

A. The fluid phase

Implementation of TPT1 for the fluid phase has be
performed previously by a number of authors so we sh
only provide the main ideas.

For the pearl-necklace model, the reference fluid is t
of hard spheres in the fluid phase. The fluid phase of h
spheres is described quite accurately by
Carnahan–Starling30 EOS:

Zf
ref5

11h1h22h3

~12h!3
, ~7!

where the subscriptf denotes properties of the fluid pha
andh is the volume fraction of the hard spheres, defined

h5
p

6
s3r ref5

pm

6
s3r. ~8!

Notice that for tangent hard spheres the volume fract
of the chain fluid and that of the reference fluid are the sa
The residual free energy of the hard sphere reference flu
obtained from the thermodynamic relation:

Ares,f
ref

NrefkT
5E

0

hZf
ref21

h
dh. ~9!

When using the Carnahan–Starling EOS for the h
sphere fluid one obtains

Ares,f
ref

NrefkT
5h

~423h!

~12h!2
. ~10!

The virial route to the pressure of hard spheres31 reads

Zf
ref5114hgf

ref~s!. ~11!

For hard spheresgf
ref(s) and yf

ref(s) adopt the same
value. By substituting Eq.~7! in Eq. ~11! the value ofgf

ref(s)
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is obtained as a function ofh. By substituting Eq.~7! and
gf

ref(s) in Eq. ~6! one obtains the well known TPT1 EOS fo
hard sphere chains which reads

Zf5m
11h1h22h3

~12h!3
2~m21!

11h20.5h2

~12h!~120.5h!
. ~12!

The residual free energy of the chain fluid is then given

Ares,f

NkT
5~m21!ln

2~12h!3

~22h!
2~m!

~2h23!

~12h!2
23m. ~13!

Equations~13! and ~12! give the residual free energy an
EOS of the hard chains in the fluid phase. By adding
ideal term as given by Eq.~2! one obtains the free energy o
the hard chain fluid.

B. The solid phase

Implementation of TPT1 for the solid phase is made
follows. For the pearl-necklace model in the solid phase,
reference system is that of hard spheres in the solid ph
The solid phase of hard spheres is described quite accur
by the EOS proposed by Hall,32 which is essentially a leas
squares fit to the simulation results of hard spheres obta
by Alder.33 The EOS for hard sphere solid reads

Zs
ref5~1223a!/a12.557 696a10.125 307 7a

10.176 239 3a221.053 308a312.818 621a4

22.921 934a511.118 413a6, ~14!

wherea has been defined as

a54S 12
h

hcp
D , ~15!

wherehcp5p/6A2 is the volume fraction at close packin
for hard spheres.

The virial route to the pressure of hard spheres read

Zs
ref5114hgs

ref~s!. ~16!

By replacing Eq.~14! in Eq. ~16! the value ofgs
ref(s) is

obtained as a function ofh. By replacing Eq.~14! and
gs

ref(h) in Eq. ~6! the EOS for chains in the solid phaseZs is
obtained. The expression ofZs is straightforward although
rather lengthy and can be determined easily by using an
gebraic manipulations program such as Maple.34

Let us now focus on the determination of the free ene
of the chain solid. As it can be seen in Eq.~3! all that is
needed is an expression forgs

ref(s) and for the residual free
energy of the hard sphere solid. The residual free energ
the hard sphere solid can be obtained from the thermo
namic relationship:

Ares,s
ref ~h!

NrefkT
5

Ares,s
ref ~h0!

NrefkT
1E

h0

h ~Zs
ref21!

h
dh, ~17!

where Ares,s
ref (h0) is the residual free energy of a referen

hard sphere solid at a certain reference volume fractionh0 .
For hard spheres in the solid phase the residual free en
has been evaluated by free energy calculations by a num
of authors. The latest and most accurate calculations35 have
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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yielded Ares,s
ref (h0)/(NrefkT)55.918 89 for a reference pack

ing fraction ofh050.5450. Therefore, the residual free e
ergy of the reference hard sphere solid can be obtained

Ares,s
ref ~h!

NrefkT
55.918 891E

0.5450

h ~Zs
ref21!

h
dh. ~18!

The integral of Eq.~18! can be evaluated again by usin
an algebraic package such as Maple.34

One may summarize by saying that all that is needed
implementing Wertheim’s TPT1 to the solid phase of ha
chains is the EOS of the hard sphere reference solid and
value of the residual free energy at a certain density.
using Eqs.~16! and ~18! the rest of the properties of th
reference hard sphere solid are obtained. By substitu
these properties of the hard sphere reference solid into
~6! and ~5! the properties of the hard sphere chain solid
obtained. All the final expressions of the thermodynam
properties of the chain model, in the fluid and in the so
phase, are obtained analytically, although for the solid ph
they are rather lengthy. We should mention that the the
used in this work is identical to that of Sear and Jackson27 for
the fluid phase. However, for the solid phase, although
EOS is identical to that proposed by Sear and Jackson,
expression for the free energy differs from that proposed
Sear and Jackson27 @see, for instance, Eq.~30! of their pa-
per#.

III. RESULTS

In this section we shall compare the results obtain
from the theory described in the previous section with
simulations results of Malanoski and Monson18 for the pearl-
necklace model. These authors have provided empirical
to their simulation results for the fluid and solid phases
chain molecules withm ranging from m53 up to m58.
Therefore when plotting simulations results it should be
derstood that they were obtained by using these fits.

In Fig. 1 the EOS as obtained from TPT1 and fro

FIG. 1. Equation of state of chains withm53,5,7 in the fluid phase as
obtained from simulation~Ref. 18! ~symbols! and from TPT1~lines!. The
results from bottom to top correspond tom53,5,7.
Downloaded 19 Jun 2001 to 147.96.5.37. Redistribution subject to AIP
s

r

he
y

g
s.

e
c

se
ry

e
ur
y

d
e

ts
f

-

simulation is presented form53,5,7 chains in the fluid
phase. The reduced pressure, defined asp* 5p/(kT/s3), is
plotted as a function of the volume fractionh for chains with
m53,5,7 monomers. As can be seen the agreement is q
good and this has been previously noticed by other auth

In Fig. 2 the EOS as obtained from the extension
TPT1 to solid phases described in this work and from
simulations results of Malanoski and Monson is present
The reduced pressure is plotted as a function of the volu
fraction for m52,3,4,5 @Fig. 2~a!# and for m56,7,8 @Fig.
2~b!#. Simulations results form52 were taken from Vega
Paras and Monson36 and correspond to an ordered solid sin
no simulation results are yet available for the equation
state of a disordered fcc solid dimer. For short chains@Fig.
2~a!# the agreement between theory and simulation is q
good for all the considered range of densities. For lon
chains, the results are good for the low densities~those close
to the melting point! but deteriorate significantly at high den
sities and as the molecules become longer. Obviously,
deficiencies of the theory become more evident for lon
chains.

In Table I, the free energies of the chains in the so

FIG. 2. Equation of state of chains in the solid phase as obtained f
simulation ~Ref. 18! ~symbols! and from TPT1~lines!. ~a! Results from
bottom to top correspond tom52,3,4,5. ~b! Results from bottom to top
correspond tom56,7,8.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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phase as obtained from TPT1 are compared with the
energies determined by Malanoski and Monson by free
ergy calculations.18 The agreement may be considered as s
isfactory. Again, results seem to be better for shorter cha
and deteriorate somewhat for longer chains. Taking into
count the simplicity of the theory, and the complexity of t
free energy calculations~in fact, the paper by Malanoski an
Monson probably contains the first free energy calculati
for the solid phase of flexible molecules! one is surprised
even by such a good agreement. Table I illustrates that
extension of TPT1 to solid phases proposed in this w
does not only provide a reasonable EOS for the solid ph
but also reasonable free energies.

One of the consequences of Wertheim’s TPT1 for flu
and solid phases is that it predicts that, for a fixed value
the volume fraction,h, the compressibility factor should b
a linear function ofm for sufficiently long chains for the fluid
phase that has already been illustrated by Hallet al.37 Let us
now show that this also holds for the solid phase. In Fig
the compressibility factorZ is plotted as a function ofm, for
several volume fractionsh50.6,0.62,0.64,0.66,0.68,0.7. It
seen that the behavior ofZ versusm seems to be linear fo
low volume fractions but deviates significantly at high de
sities.

FIG. 3. Compressibility factors,Z, as a function ofm for the pearl-necklace
model in the solid phase. Symbols: simulation results from Malanoski
Monson~Ref. 18!. Lines: TPT1 theory for the solid phase. Lines from top
bottom corresponds toh50.70,0.68,0.66,0.64,0.62, and 0.60, respective

TABLE I. Free energies of the pearl-necklace model in the solid phas
obtained from simulation~Ref. 18! A/(NkT) and from the extension of
Wertheim’s theory to the solid phase performed in this workATPT1/(NkT).

m h A/(NkT) ATPT1/(NkT)

3 0.6754 21.70 21.92
4 0.6806 29.13 29.53
5 0.6859 36.52 37.69
6 0.6806 43.01 43.67
7 0.6806 49.33 50.79
8 0.6806 55.67 57.93
Downloaded 19 Jun 2001 to 147.96.5.37. Redistribution subject to AIP
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Let us now present the results for the fluid-solid equil
rium. In Table II the coexistence densities and pressure
the fluid-solid equilibria of hard sphere chains as obtain
from theory and from simulation are presented. As can
seen, the agreement between theory and simulation is rea
able. In Fig. 4 coexistence densities are plotted. In gen
the theory underestimates the densities at which the fl
solid equilibrium occurs. The theory predicts a slight i
crease of the freezing densities withm. In fact, the theory
predicts an increase fromh50.4939 form51 ~the freezing
density for hard spheres31! to h50.5293 form58 for the
volume fractions of the fluid phase at freezing. It also p
dicts a slight increase of the volume fraction of the so
phase at melting. Similar trends are observed in the sim
tions results. Trends observed in Fig. 4 may explain wh

d

FIG. 4. Coexistence densities of the fluid-solid equilibrium of the pea
necklace model. The densities are presented as volume fractions, i.eh.
Results are presented for several values ofm. Lines corresponds to theoret
ical predictions from TPT1 for the fluid and solid phases. Symbols: Sim
lations results from Malanoski and Monson~Ref. 18!.

asTABLE II. Fluid-solid equilibrium of the pearl-necklace model determine
from simulation and from TPT1 theory.h f and hs denotes the volume
fractions of the fluid and solid phases at coexistence, respectively.p*
5p/(kT/s3) corresponds to the reduced pressure at coexistence.m/(kT)
corresponds to the chemical potential at coexistence. For each value ofm the
first row presents the simulation results from Malanoski and Monson~Ref.
18! whereas the second one corresponds to the theoretical predictions

m Method h f hs p* m/(kT)

1 MC 0.4939 0.5451 11.70 16.20
1 TPT1 0.4932 0.5451 11.69 16.19
2 TPT1 0.5147 0.5728 12.24 32.06
3 MC 0.5288 0.5864 12.90 49.01
3 TPT1 0.5215 0.5824 12.42 48.12
4 MC 0.5289 0.5917 13.00 65.82
4 TPT1 0.5247 0.5870 12.48 64.20
5 MC 0.5341 0.5969 13.63 84.18
5 TPT1 0.5268 0.5900 12.54 80.41
6 MC 0.5393 0.6021 13.88 101.75
6 TPT1 0.5279 0.5917 12.54 96.48
7 MC 0.5393 0.6074 14.16 121.8
7 TPT1 0.5288 0.5930 12.56 112.66
8 MC 0.5393 0.6021 13.43 133.9
8 TPT1 0.5293 0.5938 12.56 128.73
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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previous estimate of the fluid-solid equilibrium of th
dimer36 gave volume fractions at coexistence very close
that of hard spheres.

In Fig. 5 the reduced coexistence pressures are show
a function ofm. Again, the theory underestimates the coe
istence pressures.

An interesting feature which appears in Figs. 4 and 5
the fact that densities~i.e., volume fractions! and pressures
seems to reach asymptotic values for large values ofm. This
is an interesting feature which seems to be also observe
the simulation results. Let us explain the origin of th
asymptotic limit. In Wertheim TPT1 the compressibility fa
tor can be written in the form38

Z5Z1~h!1mZ2~h!, ~19!

whereZ1 andZ2 are functions which depend only onh. This
is true for the solid and for the fluid phase. We shall useZ1

andZ2 for the fluid phase andZ18 andZ28 for the solid phase.
The prime will denote properties of the solid phase, wher
variables without prime refer to the fluid phase. Let us defi
the reduced pressure as

p* 5
ps3

kT
. ~20!

One of the conditions for equilibrium between the flu
and solid phases is thatp* 5p* 8 which can be written after
Eq. ~19!:

hS Z2~h!1
Z1~h!

m D5h8S Z28~h8!1
Z18~h8!

m D . ~21!

For sufficiently long values ofm Eq. ~21! reads

hZ2~h!5h8Z28~h8!, ~22!

where any dependence with respect tom has disappeared.
The residual free energy of a chain is given from TP

theory as14

FIG. 5. Coexistence pressures of the fluid-solid equilibrium of the pe
necklace model. The pressures are presented in reduced unitsp*
5p/(kT/s3). Results are presented for several values ofm. Lines corre-
sponds to theoretical predictions from TPT1 for the fluid and solid pha
Symbols: Simulations results from Malanoski and Monson~Ref. 18!.
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Ares5A1~h!1mA2~h!. ~23!

Equation~23! holds for the fluid and for the solid phase. T
this residual term, one must add the ideal term, given
ln(rs3)215ln(h)2ln(pm/6)21. The condition of equal
chemical potentials in the fluid and solid phases,m/(kT)
5m8/(kT), gives

ln~h!1~A1~h!1mA2~h!1Z1~h!1mZ2~h!!

5 ln~h8!1~A18~h8!1mA28~h8!1Z18~h8!1mZ28~h8!!.

~24!

For long values ofm Eq. ~24! can be rewritten as

A2~h!1Z2~h!5A28~h8!1Z28~h8!, ~25!

where again any dependence withm has disappeared. Fo
infinitely long chains the volume fractions at coexistenceh
andh8, are obtained by solving Eqs.~22! and~25!, which do
not contain anym dependence. Therefore, according to TP
the volume fractions of the fluid and solid phases at coex
ence must reach asymptotic finite values for very lo
chains.

The reduced pressure at coexistence can be obta
from the expression

p* 5
6s3

p S ~Z1~h!1mZ2~h!

m Dh, ~26!

so that whenm tends to infinity it reads

p* 5
6s3

p
Z2~h!h. ~27!

According to Eq.~27! the reduced pressure must also rea
an asymptotic finite value for infinitely long chains. In e
sence, if the EOS of the fluid and solid phases is a lin
function of m for a fixed value ofh, then the coexistence
volume fractions and pressures must reach an asymp
value. The same is true for the chemical potential per mo
mer unit at coexistence@i.e., m/(kTm)] which increases~ac-
cording to the simulation results! from 16.3 form53 to 16.7
for m58 as can be inferred from the results of Table II.

Finally, in Fig. 6 the fluid-solid equilibrium of the pearl
necklace model as obtained from TPT1 theory is plotted
m51,2,4,8. The results form51,2 are clearly distinguish-
able from the results form54,8. However, it is seen tha
there is little difference between the results form54 and the
results form58. This indicates that the fluid-solid equilib
rium for these models are close to the asymptotic limit.

The preceding discussion illustrates that freezing prop
ties of chains must reach asymptotic values whenm tends to
infinity. As an example of a real system with this proper
we should mention the case of polyethylene. In fact, it is w
known that the triple point temperature of polyethyle
reaches an asymptotic finite value.

IV. CONCLUSIONS

In this article Wertheim’s theory has been extended
solid phases. The theory requires knowledge of the resid
free energy of the reference fluid and of the contact value
the radial distribution function. For hard spheres, both

l-

s.
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residual free energy and the contact value ofg(s) are well
known for both the fluid and the solid phases. To check
accuracy of the theory, we have compared the theore
predictions with recent simulation data for the pearl-neckl
model in the solid phase. It is found that the extension
TPT1 to the solid phase yields a good EOS, although
results deteriorate significantly at very high densities and
long chains. Also, the free energies of the theory seem to
in rather good agreement with these simulations. In this w
it has been possible to theoretically determine the fluid-s
equilibrium of the pearl-necklace model. Good agreem
with simulation is found. It is found that the theory predic
asymptotic values for coexistence properties such as vol
fractions and pressures whenm is sufficiently large. An ex-
planation for this behavior has been proposed. Simula
results seem to support the existence of these limits whem
goes to infinity. Although the theory does not show quan
tative agreement with simulation, the results are at le
qualitatively correct, and this is especially satisfactory wh
one considers the complexity of the problem of the flu
solid equilibrium of hard chains, and the simplicity of th
theory. The usefulness of this approach should not be o
looked, as free energy calculations for the solid phase
pearl-necklace chains is not at all a trivial matter. There
at least two important difficulties. The first is that one mu
select several random arrangements of the molecules in
solid phase and then perform averages of the free ene
and densities~for a given pressure! of each possible configu
ration. Second, some approximate expression for the com
natorial entropy that arises when considering these poss
arrangements is needed. Interestingly TPT1 does not req
such combinatorial entropy, because it is based on a re
ence system made of unbounded monomers; the molec
appear naturally as a consequence of association react
and all free energy contributions that result from their fo
mation are accounted for by the lny(s) term, whether in the
fluid or in the solid phase. The combinatorial entropy is

FIG. 6. Fluid-solid equilibrium of the pearl-necklace model as obtain
from TPT1 for the fluid and solid phases. For the fluid phase results co
spond~from top to bottom! to m51,2,4,8. For the solid phase results co
respond~from top to bottom! to m51,2,4,8. The pressures are presented
reduced unitsp* 5p/(kT/s3).
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quired when the reference system consists of chains w
atoms which are distributed over a fcc lattice, but not wh
the reference system consists of individual atoms arrange
a fcc lattice.

The main message of this article is that a qualitat
view of the freezing of hard sphere chains can be obtai
from the knowledge of the phase diagram of the much s
pler hard sphere model.

Some possible extensions of this work are the extens
to two dimensional systems and the extension to syst
with attractive forces. Such extensions seem rather strai
forward.

Some other interesting issues concern the possibility
extending Wertheim’s first order perturbation theory to s
ond order. That requires knowledge of the three body co
lation function of the hard sphere reference system. Althou
for the fluid phase the three body correlation function is w
known, rather little or nothing is known about the three bo
correlation function of the hard sphere system in the so
phase. Of course, the role of flexibility on solid phases a
deserves further research. It is not clear at this point whe
flexible and rigid chains differ significantly in the EOS an
structure of the solid phase, and whether Wertheim’s the
could also be extended or not to ordered solids formed
linear rigid molecules. We hope this work encourages furt
research in the area of solid phases of flexible molecules
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