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Extending Wertheim’s perturbation theory to the solid phase:
The freezing of the pearl-necklace model
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An extension of Wertheim’s first order perturbation thep§. S. Wertheim, J. Chem. Phy87,
7323(1987] for chain molecules in the solid phase is proposed. In particular the solid phase of a
model of freely jointed chains of tangent hard spheres has been considered. The equation of state
and free energies from theory are compared with simulation results obtained previously by
Malanoski and MonsofA. P. Malanoski and P. A. Monson, J. Chem. PHy&7, 6899(1997] for

chains with up to eight monomer units. The agreement between theory and simulation is good for
the densities close to the melting, and deteriorates for densities close to close-packing. We also
evaluated theoretically the fluid-solid equilibrium of the pearl-necklace model and compare with
simulation results. The theory reproduces reasonably well the trends observed in the simulation
results. ©2001 American Institute of Physic§DOI: 10.1063/1.1372329

I. INTRODUCTION that the EOS and pair correlation function of the reference LJ
fluid is accurately known. Gil-Villegast al. have shown that

In the early 1980s Wertheim developed a theory to deathe same holds true for square well chafrend recently the
with the thermodynamic properties of fluids with associationsame has been shown for Yukawa chdih@ne can summa-
forces;*for example, hydrogen bonding fluids. It was soonrize by saying that a good EOS of chain molecules interact-
realized that the formalism proposed could lead to an aping through a given pair potential can be obtained if the EOS
proximate equation of state for a completely different sys-and pair correlation function of the monomer fluid are known
tem, namely, that formed by chain molecules. The reason fosiccurately. Therefore, an approximate but reliable descrip-
this surprising relation arises from the fact that chains are¢ion of flexible chains in the fluid phase can be obtained
formed from a fluid of associating monomers when thenowadays in a rather straightforward way. Since the message
strength of the association becomes infinitely strong. Thiseems a little bit enthusiastic we should temper our expecta-
interesting finding was discovered independently bytions by mentioning that Wertheim’s theory describes fluids
Werthein? and by Chapman, Jackson and GubBifiscan  made up of tangent monomer units, without any restriction in
be stated that since the publication of these two papers a netlve bond angle or in the torsional energy. We shall denote
era has been born for the statistical mechanics of flexiblenodels like these as fully flexible models. However, from a
molecules. In the simplest implementation of the theory,chemical point of view the models of real interest are those
which is commonly denoted as the first order perturbatiorin which the bond angle is fixed, there is a torsional potential
theory (TPT1), the only information required to build an and the monomers are not tangent but overlap when forming
approximate equation of state for the chain fluid is the equathe chain. For these more realistic models, Wertheim’'s
tion of state and the pair correlation function at contact of theheory is not yet successful and the situation is far from
monomer fluid. In the first order perturbation theory, thesatisfactory.
properties of the chain fluid are independent of the torsional In recent years, Wertheim’s theory has been used to pre-
state of the molecule and of the bond angle between thredict the vapor-liquid equilibrium of fully flexible molecules.
consecutive beads. For hard spheres, both the equation Gfitical properties as obtained from Wertheim’s theory have
state (EOS and the pair correlation at contact are well been compared to simulation results. This has been done by
known, and, therefore, it is simple to derive an equation ofEscobedo and de Pablo for Lennard-Jofieh and square
state for the fluid phase of chains of tangent hard spheresvell (SW) chainst* by Blas and Vega for LJ chaitfsand by
This is the reason why the first application of Wertheim’s MacDowell et al. for LJ chains with flexible bond lengtH.
theory of association to flexible molecules was performed oThe theory performs a reasonable job in estimating the co-
hard flexible chain$® Further development followed in the existence envelope and the critical properties of chain fluids.
early 1990s. Zhou and Stélland W. Smithet al® reformu- Although the fluid phase of fully flexible chains has been
lated Wertheim’s theory of association in a different lan-studied extensively for hard models and for models with at-
guage, namely that of the equilibrium constant. Chapmantractive forces, the solid phase has received far less attention
showed that Wertheim’s formalism could also be applied tosee, for instance, the recent review in Ref). 15olid phases
systems with attractive forces. The work of Johnsonof long flexible molecules are of interest since at room tem-
et al1®* has shown that Wertheim’s formalism yields quite perature and pressure long flexible molecules are in the solid
a good description for Lennard-Jonés)) chains, provided phase. For instance, all linear alkanes with more than 20
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carbon atoms are solid at room temperature and pressure afidid will be labeled by the superscript ref. Let us also as-

the same is true for polyethylene. Therefore the study ofume that in another container of voluideand temperature

solid phases of flexible chains seems to be interesting nok, we haveN=N""m fully flexible chains ofm monomers

only from a scientific point of view but also from a practical each. By fully flexible chains we mean chains mfmono-

point of view. The same is true for the fluid-solid equilibrium mers, with a fixed bond length df= o, and no other con-

of these kind of systems. straints(i.e., there is no restriction in either bonding or in the
Two recent studies have focused on the fluid-solid equitorsional angles Each monomer of a certain chain interacts

librium of two simple models of fully flexible molecules. In with all the other monomers in the systdire., in the same

the first study Malanoski and MonsBrhave examined the molecule or in other moleculgsvith the pair potentiali(r).

fluid-solid equilibrium of freely jointed chains of tangent The variables is a value ofr for which the functionu(r)

hard spheres, the so called pearl-necklace model. These astarts to increase strongly towards positive val(ies, for a

thors have studied the pearl-necklace model in the solidhard sphere it corresponds to the hard diameter whereas for a

phase, determining the equation of staterfor 3,4,5,6,7,8. LJ bead it corresponds to the distance where the pair poten-

In addition they also performed free energy calculations thusial vanisheg The chain system described so far will be

computing the fluid-solid equilibrium for these models. In denoted as the chain fluid.

the solid phase the atoms are arranged in a close packed fcc The Helmholtz free energy of the reference flaif' can

solid but there is no long range orientation order between thée divided into an ideal and a residual part as follows:

bond vectors of the chairté-??In the other study Polson and

Frenkef® have studied the fluid-solid equilibrium of a similar A" _

model with Lennard-Jones interactioi; place of hard NekT N"kT NekT

sphere interactionsIn addition to fully flexible chains, Pol-

son and Frenkel considered the case of semi-rigid chainghere p™® is the number density of the reference fluid and

(i.e., they introduce a bending potential restricting the posi_vvhere we arbitrarily assigned the value of thermal de Broglie

tion of the bond anglgs Taking this research on fluid-solid wavelength tar. The residu_al term represents the differ_ence
equilibrium one step further both groups have considered thBetween the reference fluid and that of a system without
fluid-solid equilibrium of simple models af-alkanes, with intermolecular interactions at the same temperature and den-

hard interactior® and with LJ interaction& respectively. ~ SI- o o

One interesting issue is the theoretical description of  1he free energy of the chain fluidi can also be divided
flexible molecules in the solid phase. Recently Malanoskinto an ideal and a residual part as follows:
et al?® have illustrated how cell theory can be successfully A Ages  Aesicua , Avesigual
implemented for the determination of the properties of flex- 7= NkT T NKT =In(po”)—1+ NKT ' 2
ible molecules in the solid phase. This is certainly a route
which deserves further work. Another possibility is the ex-where p is the number density of chains. Thermodynamic
tension of Wertheim’s first order perturbation thedfjPT1,  properties without any superscript refer to the chain fluid.
to solid phases. In an interesting paper, Sear and Jacksdme residual term represents the difference between the chain
combined ideas from TPT1 and from cell theory and pro-fluid and an ideal gas of chains at the same temperature and
posed an EOS for the rigid dimer in the solid phds&@he  number density. In the ideal gas of chains there are no inter-
results were highly encouraging. They suggest ideas for exnolecular interactions, whereas intramolecular interactions
tending the theory to longer chains, although results were nare still present. Let us assume at this point that the proper-
presented. In this work, we shall propose an extension ofies (thermodynamic and structujaif the reference fluid are
Wertheim’s first order perturbation theory to the solid phaseknown. Can we obtain an approximation @fegqus Of the
In particular, we shall show how the theory can be imple-chain fluid from the properties of the monomer fluid? Fol-
mented for the pearl-necklace model. The EOS and free etewing Zhou and Stell, the residual properties of the chain
ergies obtained from this extension will be compared withfluid are given after several approximations as
the simulation results from Malanoski and Mons8rOnce

f ref ref ref
_ Aideal AreSidua|:|n(pfef0-3)_l+ residual

e Y

the TPT1 has been extended to the solid phase, it is possible AresiduaI: mA:Zfsidual_ (m=1)In y*( o) 3)

to compute the fluid-solid equilibrium of the pearl-necklace NKT Nrefk T y '

model theoretically and to compare with the simulation re- refr _ _

sults. wherey™®(¢) is the background correlation functforof the
reference fluid at contact. The background correlation func-

Il. BRIEE DESCRIPTION OF WERTHEIM'S tion is related to the pair correlation function by

PERTURBATION THEORY y(r)=exp(Bu(r))g(r). 4

We shall summarize the main ideas contained within  Therefore, the free energy of the chain fluid is given by
Wertheim’s theory by following the formulation introduced

by Zhou and Stell:?® Let us assume that we have a certain .
number,N'®', of spherical monomer particles within a certain NKT In(po®)—1+m
volumeV at temperaturd. These spherical particles interact

through a spherical pair potentia(r). We shall denote this The above equation shows that the free energy of the
fluid as the reference fluid and the properties of this referencehain fluid may be obtained from a knowledge of the re-

ref
residual

reer (M= Din y*(a). (5)
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sidual free energy of the reference fluid and the pair backis obtained as a function of. By substituting Eq(7) and
ground correlation function of the reference fluid at theg!®(¢) in Eq.(6) one obtains the well known TPT1 EOS for
bonding distance of the chain. The equation of state whiclihnard sphere chains which reads

follows from Eq.(5) is given by

1+ 9+ 7]2— 773 1+ 7]—0.5172
szzref_(m_ 1) 1+prefa In yrr:ff(a') , (6) Zf m (1— 7])3 (m 1) (1— 77)(1—0.577) . (12)
P The residual free energy of the chain fluid is then given by
where we have defined™" as 2= p/(p"™kT). We shall A 2(1— 7)° (27-3)
denote Egs(5) and (6) as Wertheim’s TPT1 theo”f resf =(m—1)In 7 —(m) 7 —3m. (13
We note that the arguments used to arrive at Ef)sand NkT (2=m) (1-7)?

(6) make no specigl mengion whatsoever of t.he actual naturEquations(lS) and (12) give the residual free energy and
of the phase consideréd® What we suggest is to use these EOS of the hard chains in the fluid phase. By adding the

two equations foboth the fluid phase and the solid phase. jeg term as given by Ed2) one obtains the free energy of
All that is then needed to obtain a fully unified theory for the \na hard chain fluid.

phase equilibria of chain molecules is the residual free en-

ergy, compressibility factor and pair correlation function of .

the monomer fluid both for the fluid and solid phases. NoteB' The solid phase

that in this way we depart from the approach proposed by Implementation of TPT1 for the solid phase is made as

Sear and Jacksdi,as we do not find it necessary to invoke follows. For the pearl-necklace model in the solid phase, the

a cell theory for the solid phase. reference system is that of hard spheres in the solid phase.
We shall now show how to obtain the fluid and solid The solid phase of hard spheres is described quite accurately

phase residual free energy, compressibility factor and radidly the EOS proposed by Halft,which is essentially a least

distribution functions for use in Eq$5) and(6). squares fit to the simulation results of hard spheres obtained

by Alder3 The EOS for hard sphere solid reads

7= (12— 3a)/a+2.557 696r+0.125 307 &

A. The fluid phase

Implementation of TPT1 for the fluid phase has been

performed previously by a number of authors so we shall +0.176 239 3%—1.053 3083+ 2.818 6214
only provide the main ideas. 5 .
For the pearl-necklace model, the reference fluid is that —2.921 934°+1.118 413, (14)

spheres is described quite accurately by the

Carnahan-Starlin§ EOS: = 4( 1— i) (15)
1+ 9+ 7]2— 7]3 ep
Ze=— (7)  where 5,,= /62 is the volume fraction at close packing
f 1 3 p
(1=7n) for hard spheres.
where the subscript denotes properties of the fluid phase ~ The virial route to the pressure of hard spheres reads
and » is the volume fraction of the hard spheres, defined as 7%= 1+ 479" (0). (16)
T 3 e ™M 3 By replacing Eq(14) in Eq. (16) the value ofg™®(o) is

— — ) 8
7—87P 6 °° @ obtained as a function of;. By replacing Eq.(14) and
f . . . . .
Notice that for tangent hard spheres the volume fractiords (%) in Eq.(6) the EOS for chains in the solid phaggis
of the chain fluid and that of the reference fluid are the same?Ptained. The expression d is straightforward although

The residual free energy of the hard sphere reference fluid f&ther lengthy and can be determined easily by using an al-
obtained from the thermodynamic relation: gebraic manipulations program such as Maple.
Let us now focus on the determination of the free energy

AL nZE—1 of the chain solid. As it can be seen in E@) all that is

Nrefk-l—: fo " d7. ©) needed is an expression fgff(a) and for the residual free
energy of the hard sphere solid. The residual free energy of

When using the Carnahan-Starling EOS for the hardhe hard sphere solid can be obtained from the thermody-

sphere fluid one obtains namic relationship:
Ass;  (4-37p) 10 A(m) Alts(mo)  [(Z8'-1)
prantall// 2 (10 = d7, (17
N®kT (1-79) N®kT  N®kT o 7

The virial route to the pressure of hard sphétesads WhereAﬁggs( 10) IS the residual free energy of a reference
ref_ ref hard sphere solid at a certain reference volume fractign
=1+ . X ) .
Zi = 1+4ngr (o) (12) For hard spheres in the solid phase the residual free energy
For hard sphereg®(o) and y©(o) adopt the same has been evaluated by free energy calculations by a number
value. By substituting Eq7) in Eq. (11) the value ofg{*(¢)  of authors. The latest and most accurate calculattansve
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FIG. 1. Equation of state of chains with=3,5,7 in the fluid phase as 200
obtained from simulatiorfRef. 18 (symbolg and from TPT1(lines). The
results from bottom to top correspondro=3,5,7. 180 |

160 -

yielded A[ggs( 70)/ (N®kT)=5.918 89 for a reference pack-
ing fraction of ,=0.5450. Therefore, the residual free en-
ergy of the reference hard sphere solid can be obtained as Z |

Aref ( ) ” Zref_ 1)
Tresst ) _ 5 918 89+ &0 d
N'ek T 05450 77

140

7. (18)
80 -

The integral of Eq(18) can be evaluated again by using
an algebraic package such as Maffle.

One may summarize by saying that all that is needed for ‘ . ‘
implementing Wertheim’'s TPT1 to the solid phase of hard ) °% 06 - 065 o7
chains is the EOS of the hard sphere reference solid and the
value of the residual free energy at a certain density. ByIG. 2. Equation of state of chains in the solid phase as obtained from
using Eqs.(l6) and (18) the rest of the properties of the simulation (Ref. 18 (symbolg and from TPT1(lines. (a) Results from

. . .. .. bottom to top correspond tm=2,3,4,5. (b) Results from bottom to top
reference hard sphere solid are obtained. By substituting,esnong tan=6,7,8.
these properties of the hard sphere reference solid into Egs.
(6) and (5) the properties of the hard sphere chain solid are
obtained. All the final expressions of the thermodynamicsimulation is presented fom=3,5,7 chains in the fluid
properties of the chain model, in the fluid and in the solidphase. The reduced pressure, defineg*as p/(kT/o?), is
phase, are obtained analytically, although for the solid phasplotted as a function of the volume fractionfor chains with
they are rather lengthy. We should mention that the theoryn=23,5,7 monomers. As can be seen the agreement is quite
used in this work is identical to that of Sear and Jackéfor ~ good and this has been previously noticed by other authors.
the fluid phase. However, for the solid phase, although the In Fig. 2 the EOS as obtained from the extension of
EOS is identical to that proposed by Sear and Jackson, odrPT1 to solid phases described in this work and from the
expression for the free energy differs from that proposed byimulations results of Malanoski and Monson is presented.
Sear and Jacksbh[see, for instance, Eq30) of their pa-  The reduced pressure is plotted as a function of the volume
per]. fraction for m=2,3,4,5[Fig. 2(a)] and for m=6,7,8 [Fig.
2(b)]. Simulations results fom=2 were taken from Vega,
Paras and Monsdhand correspond to an ordered solid since
no simulation results are yet available for the equation of

In this section we shall compare the results obtainedtate of a disordered fcc solid dimer. For short chafig.
from the theory described in the previous section with the2(a)] the agreement between theory and simulation is quite
simulations results of Malanoski and Monsbfor the pearl-  good for all the considered range of densities. For longer
necklace model. These authors have provided empirical fitshains, the results are good for the low densitthsse close
to their simulation results for the fluid and solid phases ofto the melting pointbut deteriorate significantly at high den-
chain molecules withm ranging fromm=3 up tom=8. sities and as the molecules become longer. Obviously, the
Therefore when plotting simulations results it should be un-deficiencies of the theory become more evident for longer
derstood that they were obtained by using these fits. chains.

In Fig. 1 the EOS as obtained from TPT1 and from In Table I, the free energies of the chains in the solid

Ill. RESULTS
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TABLE I. Free energies of the pearl-necklace model in the solid phase a3 ABLE II. Fluid-solid equilibrium of the pearl-necklace model determined
obtained from simulation(Ref. 18 A/(NkT) and from the extension of from simulation and from TPT1 theoryy; and 5 denotes the volume

Wertheim’s theory to the solid phase performed in this warfk™/(NKT). fractions of the fluid and solid phases at coexistence, respectipély.
=p/(kT/o®) corresponds to the reduced pressure at coexistend&T)
m 7 A/(NKT) ATPTY(NKT) corresponds to the chemical potential at coexistence. For each vahef
first row presents the simulation results from Malanoski and Mori&ei.
3 0.6754 21.70 21.92 18) whereas the second one corresponds to the theoretical predictions.
4 0.6806 29.13 29.53
5 0.6859 36.52 37.69 m Method 7 7s p* wl(KT)
6 0.6806 43.01 43.67
7 0.6806 49.33 50.79 1 MC 0.4939 0.5451 11.70 16.20
8 0.6806 55.67 57.93 1 TPT1 0.4932 0.5451 11.69 16.19
2 TPT1 0.5147 0.5728 12.24 32.06
3 MC 0.5288 0.5864 12.90 49.01
3 TPT1 0.5215 0.5824 12.42 48.12
4 MC 0.5289 0.5917 13.00 65.82
phase as obtained from TPT1 are compared with the free 4 TPT1 0.5247 0.5870 12.48 64.20
energies determined by Malanoski and Monson by free en- 5 MC 0.5341 0.5969 13.63 84.18
ergy calculationd® The agreement may be considered as sat- ° TPT1 05268 0.5900  12.54 8041
. : .6 MC 0.5393 0.6021 13.88 101.75
isfactory. Again, results seem to be better for shorter chains ¢ TPT1 05279 0.5917 1254 96.48
and deteriorate somewhat for longer chains. Taking into ac- 7 MC 0.5393 0.6074 14.16 121.8
count the simplicity of the theory, and the complexity of the 7 TPT1 0.5288 0.5930 12.56 112.66
free energy calculation@n fact, the paper by Malanoski and 8 MC 0.5393 0.6021 13.43 133.9
8 TPT1 0.5293 0.5938 12.56 128.73

Monson probably contains the first free energy calculations
for the solid phase of flexible molecu)esne is surprised
even by such a good agreement. Table | illustrates that the
extension of TPT1 to solid phases proposed in this work [ et us now present the results for the fluid-solid equilib-
does not only provide a reasonable EOS for the solid phasgum. In Table Il the coexistence densities and pressures of
but also reasonable free energies. the fluid-solid equilibria of hard sphere chains as obtained
One of the consequences of Wertheim's TPT1 for fluidfrom theory and from simulation are presented. As can be
and solid phases is that it predicts that, for a fixed value okeen, the agreement between theory and simulation is reason-
the volume fractiony, the compressibility factor should be aple. In Fig. 4 coexistence densities are plotted. In general
a linear function ofn for sufficiently long chains for the fluid  the theory underestimates the densities at which the fluid-
phase that has already been illustrated by adl*’ Let us  solid equilibrium occurs. The theory predicts a slight in-
now show that this also holds for the solid phase. In Flg ?(;rease of the freezing densities with In fact, the theory
the compressibility factoZ is plotted as a function ah, for predicts an increase from=0.4939 form=1 (the freezing
several volume fractionazO.6,0.62,0.64,0.66,0.68,0.7. Itis density for hard Spher% to »=0.5293 form=8 for the
seen that the behavior & versusm seems to be linear for yolume fractions of the fluid phase at freezing. It also pre-
low volume fractions but deviates significantly at high den-gicts a slight increase of the volume fraction of the solid
sities. phase at melting. Similar trends are observed in the simula-
tions results. Trends observed in Fig. 4 may explain why a

300

0.65 e : . ey —
0.6 -« o ° [ d [
///,,,
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‘» ./_.’_A [ ] [ L
200 054 — -
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z n
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FIG. 4. Coexistence densities of the fluid-solid equilibrium of the pearl-
FIG. 3. Compressibility factors, as a function ofm for the pearl-necklace  necklace model. The densities are presented as volume fractionsy.i.e.,
model in the solid phase. Symbols: simulation results from Malanoski andResults are presented for several valuesoLines corresponds to theoret-
Monson(Ref. 18. Lines: TPT1 theory for the solid phase. Lines from top to ical predictions from TPT1 for the fluid and solid phases. Symbols: Simu-
bottom corresponds tg=0.70,0.68,0.66,0.64,0.62, and 0.60, respectively. lations results from Malanoski and Mons¢Ref. 18.
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26 ; w w ‘ ‘ ‘ _ Aes—A1(n) +MA( 7). (23

Equation(23) holds for the fluid and for the solid phase. To
this residual term, one must add the ideal term, given by
In(pa®)—1=In(7)—In(7m/6)— 1. The condition of equal
chemical potentials in the fluid and solid phasgg(kT)
=u'[(KT), gives

p 14 + . o ° ° o °
2g ] In(7) +(Aw(n) + MAA(7) +Z1(77) + MZy(7))
10 ¢ ! 2 ’ ’ ! 2 ! ’
ol =In(7")+(A(n" ) +mAn")+Z1 (7)) +mZ(7')).
6 (24
41 For long values om Eq. (24) can be rewritten as
2 L
0 ‘ Ao(m)+Zy(m)=Ay(n")+Z5(7"), (25)
1 2 3 4 5 6 7 8
m where again any dependence withhas disappeared. For

FIG. 5. Coexistence pressures of the fluid-solid equilibrium of the pearl-lrmnlte'y Iong Ch_ams the VOI_ume fractions at CoeXI_Stem?e’
necklace model. The pressures are presented in reduced phits and#’, are obtained by solving Eq&2) and(25), which do
=p/(kT/o®). Results are presented for several valuesnolLines corre-  Not contain anyn dependence. Therefore, according to TPT1
sponds to theoret_ical predictions from TPT1 for the fluid and solid phasesthe volume fractions of the fluid and solid phases at coexist-
Symbols: Simulations results from Malanoski and MongRef. 18. ence must reach asymptotic finite values for very |0ng
chains.
The reduced pressure at coexistence can be obtained

previous estimate of the fluid-solid equilibrium of the from the expression
dimer®® gave volume fractions at coexistence very close to . 60°((Zy(n)+mZy( )
that of hard spheres. p*=—o 7, (26)
In Fig. 5 the reduced coexistence pressures are shown as T m
a function ofm. Again, the theory underestimates the coex-so that wherm tends to infinity it reads
istence pressures. 603
An interesting feature which appears in Figs. 4 and S is  p*=—2Z,(7) 7. (27
the fact that densitie§.e., volume fractionsand pressures 77
seems to reach asymptotic values for large valugs.dfhis  According to Eq.(27) the reduced pressure must also reach
is an interesting feature which seems to be also observed #n asymptotic finite value for infinitely long chains. In es-
the simulation results. Let us explain the origin of this sence, if the EOS of the fluid and solid phases is a linear
asymptotic limit. In Wertheim TPT1 the compressibility fac- function of m for a fixed value of, then the coexistence
tor can be written in the forffi volume fractions and pressures must reach an asymptotic
_ value. The same is true for the chemical potential per mono-
Z2=24(m)+mZy(7), (19 mer unit at coexistende.e., w/(kTm)] which increasesgac-
whereZ, andZ, are functions which depend only on This  cording to the simulation resujtffom 16.3 form=3 to 16.7
is true for the solid and for the fluid phase. We shall dse for m=8 as can be inferred from the results of Table .
andZ, for the fluid phase and; andZ; for the solid phase. Finally, in Fig. 6 the fluid-solid equilibrium of the pearl-
The prime will denote properties of the solid phase, whereasecklace model as obtained from TPT1 theory is plotted for
variables without prime refer to the fluid phase. Let us definen=1,2,4,8. The results fom=1,2 are clearly distinguish-
the reduced pressure as able from the results fom=4,8. However, it is seen that
o there is little difference between the results fie=4 and the
p* =T (20) results form=8. This indicates that the fluid-solid equilib-
rium for these models are close to the asymptotic limit.
One of the conditions for equilibrium between the fluid ~ The preceding discussion illustrates that freezing proper-
and solid phases is that = p* " which can be written after (i€ of chains must reach asymptotic values wivetends to
Eq. (19): infinity. As an example of a real system with this property,
we should mention the case of polyethylene. In fact, it is well
Zy(m) 21 known that the triple point temperature of polyethylene
m ' @D reaches an asymptotic finite value.

z
77(22(71)+ =77’(Zé(71’)+

For sufficiently long values om Eq. (21) reads

1ZAm=n"22n"), (22 In this article Wertheim’s theory has been extended to
where any dependence with respectridnas disappeared.  solid phases. The theory requires knowledge of the residual
The residual free energy of a chain is given from TPT1free energy of the reference fluid and of the contact value of
theory a$’ the radial distribution function. For hard spheres, both the

IV. CONCLUSIONS
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quired when the reference system consists of chains with
atoms which are distributed over a fcc lattice, but not when

the reference system consists of individual atoms arranged in
a fcc lattice.

The main message of this article is that a qualitative
view of the freezing of hard sphere chains can be obtained
from the knowledge of the phase diagram of the much sim-
pler hard sphere model.

Some possible extensions of this work are the extension
to two dimensional systems and the extension to systems
with attractive forces. Such extensions seem rather straight-
forward.

] Some other interesting issues concern the possibility of
el ‘ . ‘ extending Wertheim’s first order perturbation theory to sec-

n ' ' ‘ ond order. That requires knowledge of the three body corre-

lation function of the hard sphere reference system. Although
FIG. 6. Fluid-solid e_quilibrium_ of the pearl—necklac_e model as obtainedfor the fluid phase the three body correlation function is well
from TPT1 for the fluid and solid phases. For the qu_ld phase results correknown’ rather little or nothing is known about the three body
spond(from top to bottom to m=1,2,4,8. For the solid phase results cor- . . . :
respond(from top to bottom to m=1,2,4,8. The pressures are presented in COIrelation function of the hard sphere system in the solid
reduced unitg* =p/(kT/ o). phase. Of course, the role of flexibility on solid phases also
deserves further research. It is not clear at this point whether
flexible and rigid chains differ significantly in the EOS and
structure of the solid phase, and whether Wertheim’s theory
jould also be extended or not to ordered solids formed by
f

residual free energy and the contact valueggbs) are well
known for both the fluid and the solid phases. To check th
accuracy of the theory, we have compared the theoretic
predictions with recent simulation data for the pearl-necklac
model in the solid phase. It is found that the extension of

TPT1 to the solid phase yields a good EOS, although th&CKNOWLEDGMENT
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