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Equation of state of model branched alkanes:
Theoretical predictions and configurational bias Monte Carlo simulations
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We develop a general configurational bias Monte Carlo algorithm for the simulation of branched
alkanes and compare the results with predictions from theoretical equations of state. We consider
results for all the hexane isomers, as well as for several heptane and octane isomers. The interaction
sites of our united atom model alkanes are hard spheres of equal diameter, thus allowing us to study
the effect of branching in the equation of state without the need of considering the effect of changes
in the size of the sites. We find that, at roughly constant molecular volume, branching has a small
but noticeable effect on the equation of state, somewhat reducing the pressure at which a given
density may be attained. We find that equations of state previously used for linear chains yield very
good agreement with simulation results. Z01 American Institute of Physics.
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I. INTRODUCTION several authors have proposed to describe chains of overlap-
ping hard spheres by using an effective number of tangent
Our knowledge on the equation of stat€OS of flex-  spheres into the original TPT1 equation of st&t@® Our
ible chain molecules has very much improved in the last 1%wn work shows that one such variant, which we call modi-
years. The earlier studies in this area were concerned Witfed \Wertheim theoryMW1), describes very accurately the
rather idealized chain molecules, made of tangent hardquation of state of linear alkanes with up to 30 carbon
spheres. A very important advance was the formulation of &toms!’-1Similarly, Hall and co-workers have extended the
(first-ordey thermodynamic perturbation theoryTPTD,  original GFD in several different ways to account for chain
which allowed to express the properties of the chain molsyeriad-2021and Mehta and Honnéfl have shown that good
ecules in terms of the properties of the constituentygreement with hard-alkane models of up to eight carbon
monomers: Other accurate theories for tangent hard 3toms may be obtained.
spheres, such as the G%nerahzed Flory Di@FD)*" or a Now, when it comes to consider realistic models of re-
recent theory by LueLT)" have also been proposed. As an isive branched alkanes, then the situation is far less satis-

'mport"’_‘?‘t d|ff_<er<e|ncehvy|th respect to TPT1, thesr:a Fheones "Cfactory, as both theoretical and simulation studies are very
quire either single chain propertiéSFD) or two chain prop- scarce if existent. The importance of having accurate equa-

ertles(LT} as an mpgt. .. tions of state for realistic repulsive models should not be

Cons'ld'erm% the”|mfp(;lrtanccre] of prar;]ched molecules, it ISoverlooked, as such a knowledge is essential in a perturba-
et g fn oy o relstc model alanes wih atracte e

. . ' o . _actions. Indeed, the availability of reasonably good equations

the thermodynamic perturbation theory of Wertheim predlcts]c state for repulsiven-alkanes has allowed to study the

that the equation of state of a star polymer is equal to that quuation of state of real alkanes with attractive

a linear chain with the same number of mononfefhis . teraction23-26 A | h tv added
hypothesis was shown to be very accurate in a simulatioff ' cractions: S an example, we nave recently added a

study by Yethiraj, who also extended GFD to star polymers®MPle mean-field perturbation term to our MW1 equation of
with good resultd? Similar conclusions, both from theory state and found that this approach is able to describe impor-

and simulation are also found by Patrickios and Lle. tant qualitative features dh—alkaqe@ Using a somewhat
A rather more difficult problem arises when one tries toM°re elaborated theory, we studied the grltlgal properties of
describe the equation of state of more realistic moleculaPranched alkanes and found good qualitative agreeffient.

models, with chemical features such as overlapping interad?€Cent advances using the Polymer Reference Interaction
tion sites, fixed bending angles, and torsional barriers. Moseite Model(PRISM) have also been reportéd.
frequently, the equation of state of such models is obtained ~The simulation of branched alkanes is already by its own
as an empirical modification of the more soundly basec® rather interesting issue that has attracted much
equations of state of tangent hard spheres. As an examplattention®°~** Initially, such simulations were usually per-
formed using molecular dynamics. However, as new sam-
dpresent address: Institutrfhysik (WA31), Johannes Gutenberg Univer- p!mg techniques were Intmd%g%r)dand the conf!guratlpnal
sitd, 55099, Mainz, Germany. Electronic mail: luis.macdowell@uni- bias method was de\“':'lopé " Monte Carlo simulations
mainz.de became the preferred choice, specially when phase equilibria
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was a matter of conceffi-*? The extension of configura- The flexible nature of the molecule will be introduced at
tional bias to branched alkanes, however, might not be athe level of the torsional degrees of freedom. In this work,
straightforward as one could expect at first thought. The reawe will consider the simplest approximation, so that the
son is that in such case, not all of the torsional and bendingverall potential about a given bond vector is considered to
potential terms may be written as functions of a single genbe the sum ofn-butane torsional potentials. More specifi-
eralized coordinate. Accordingly, sampling of trial positionscally, we will consider that the potential that governs the
from canonical distributions of bending and torsional poten-motion of the chain about a given bond vector, say, that bond
tials becomes much more involved. This fact was probablyector formed by atomsandi+1, is
first realized by Dijkstral and then considered in more detail
by several author¥**In this work we will overcome all the U= 2 U @10, (1)
difficulties related with sampling of the generalized degrees
of freedom by simply freezing all of the bending angles towhere the sum extends over all the dihedral angles formed
their equilibrium positions. Note that the whole descriptionbetween the atoms bonded it@nd the atoms bonded o
of the intra-molecular energy in terms of the bending and+ 1. Furthermoreu,, is an elementaryn-butane torsional
torsional potentials relies explicitly in assuming that thesepotential, which we consider to be of the Ryckaert—
terms are separable. Such an approximation, on its turn, réellemans typ&® Within this approximation, it may be
lies in assuming that bending is subject but to small fluctuashown that there are a total of six classes of torsional poten-
tions. Accordingly, assuming constant bond angles is themials, depending on the local architecture about the consid-
rather reasonable, as long as the Hamiltonian of the alkanesed bond vectofsee Fig. 1 Furthermore, depending on the
may be described in terms of uncoupled bending and torerientation (chirality) of the branches relative to the main
sional contributions. chain, subtypes of these six main classes may appear. Table |
The goal of this paper is therefore twofold. First, we will shows all of the possible torsional potentials that may be
try to fill the lack of simulation results for repulsive model found for the six architectures of Fig. 1, expressed in terms
branched alkanes. Second, we will show that straightforwardf the n-butane elementary potentials. In order to explain all
extensions of theories previously used fealkanes afford a the possible situations, we introduce the phaseThis vari-
good description of the equation of state. able tells us which is the dihedral angle of a branch bonded
The rest of the paper is organized as follows: In nextto atom 3 when the main chain, 1-2-3-4, is in thens con-
section we present our model and the classical flexible corformation (see Fig. 1 Similarly, A’ tells us the dihedral
straint approximation for branched alkanes. Section Il is deangle of a branch bonded to atom 2 as measured relative to
voted to the simulation technique and methodology. In Secthe 4-3-2-1 sequence in tl@nsconformation. Furthermore,
IV we describe two modifications of Wertheim’s TPT1 for A, represent the absolute values of such angles. Subscripts
branched alkanes and compare them with simulations in Sett” and “ " indicate whether the branches considered are
V. We then present our conclusions. attached to a tertiary or a quaternary atom, respectively. For
the model considered in this work, where all the bond angles
are equal and set to the tetrahedral vallies A ;= 120° (see
the Appendix for an expression &, in terms of bond
angles. Although there appear to be 10 torsional potentials,
A. Classical model for branched alkanes subtypes within a class are related by simple symmetry op-
gq-erations, as follows:

Il. MODEL, GENERALIZED COORDINATES, AND
FLEXIBLE CONSTRAINTS

The alkane model that will be employed may be consi

ered as a straightforward extension of the repulsive united Uj(@)=U,(p+A,), (2

atom n-alkane model that was employed in previous

work 1718 Us(p)=Us(¢—Ay), )
Each of the CH groups that may be found in a branched U/ (¢)=Us(d+A,), %)

alkane is described by a single hard sphere interaction site of

diameterd=3.7109 A. Obviously, a more realistic model Ug(¢p)=Ug(p+Ay). 6)

would account for interaction sites of different size, but herej, our model Uy is a function of period 120°, so thikg and

we will concentrate on Fhe (.affect. of pranchif‘g- It is, there—Ug become identical. Also note that the symmetry properties
fore, convenient to consider identical interaction sites, so thathown above should also hold in more elaborated models

addition of different branches has very little effect on the,,nere the elementary torsional potentials depend on the mo-
overall molecular volume. lecular architecturéd

We will consider that the hard-sphere potential is respon-
sible for all of the intermolecular interactions and for those
intramolecular interactions which take place between atom
more than three bonds apart. Bond distances and bond angles In order to consider the effect of freezing the bond dis-
will be described by means of harmonic potential wellstances and angles to their equilibrium value, it will prove
whose force constants are considered to be infinitely largeconvenient to describe the state of our alkane model in terms
Effectively, this corresponds to fixing the bond distance andf generalized coordinates, consistent with the Hamiltonian
angles to their equilibrium values, which we will setltp  described in the previous section. The internal state will be
=1.53 A and#,=109.47°, respectively. given by a set of hard coordinates, which are those governed

g. Generalized coordinates
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class 1 class 2 class 3

class 4 class 5 class 6

FIG. 1. Sketch of the six possible architectures about a bond vector that may be found in branched alkanes.

by infinitely stiff harmonic potentialgi.e., bond distances angles specifying the orientation of the three first atoms of
and bond anglgsand a set of soft torsional degrees of free-the chain relative to a laboratory reference frame.
dom. To be specific, let the alkane hawmeunited carbon
atoms and branches. Also, let us define “branched-atom”
as the first atom of a given branch. Then, each of the branc
atoms will be described by a bond length and the two bon
angles formed between that atom and the backbone. On the Once the generalized coordinates have been defined, let
other hand, each of the remaining non branched atoms wills consider the configurational integral of a fluid\balkane
be described by one bond length, one bond angle and orgolecules. Most generally, it can be expressed in terms of
torsional degree of freedom. Accordingly, the set of hardCartesian coordinates as follows:
coordinates will consist ofn(—1) bond lengths andn(—2
+r) bond angles, while the set of soft variables will be the
(n—3—r) remaining torsional degrees of freedom.

Once the internal state of the molecule is defined by
means of a vector with the hard degrees of freedgm,and  whereU is the total potential energy of the system ards
a vector with the soft degrees of freedogq, we will con-  the vector of Cartesian coordinates of atowf moleculej.
sider a vector(., that contains the set of external coordi- In our case, however, it is far more convenient to express the
nates. These are, namely, a set of three Cartesian coordinateartition function in terms of generalized coordinates as fol-
specifying the position of the first atom, and three Eulerlows:

. Configurational integral

Z“f e AYdryy o ron, (6)

TABLE |. List with all the possible torsional potentials of branched alkanes that may be found when expressed
in terms of elementarp-butane contributions. See Sec. Il A for more details.

n® of 1-4
Class Subtype interactions Chirality
class 1 U;(¢)=uw(¢) 1x1
class 2 Uy(¢)=Ui( @) + Ul d—Ay) 1x2 A=—A,
Us(¢) =Uio( $) + Uio( P+ Ay) 1x2 A=A
class 3 Uy(e) =Uio( @) + U+ Aq) +Uio( P~ Aq) 1x3
class 4 U5(¢)=2utor(¢)+utor(¢+A1)+utor(¢_At) 2X2 A=—-A'
Ug( ) =Uio( §) + 2Uio( p— A) + Uio( p—24)) 2X2 A=A"=—A;
U7(¢) = Uio( @) + 2Uro( @+ Ap) +Uie( p+24¢) 2X2 A=A"=A;
class 5 Ug(¢)=Ui( @)+ U+ Aq) + U p— Aq)
+Ut0r(¢_At)+ut0r(¢+Aq_At)+ut0r(¢_Aq_At) 2X3 Al=—A
Ug(d) =Uio(P) +Uo( P+ Aq) U d— Aq)
Ul p+A) + Ul d+Ag+A) T U d—Ag+AY) 2X3 A=A
class 6 Ujo(¢) =3Uio(h) + Uil d+Ag) + Ul d—Ag) 3x3
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N to be one given molecule or part thereof; and the fragments
Z“f J(g")e A9 dg", () the set of monomers within that molecule. In the most gen-
N ) ) eral case, when the subsystem is a whole moledylés a
where J(q”) is the Jacobian of the transformation aqd  \ector with the Cartesian coordinates of the first atomis
=(Ce,0s,qn) is @ vector that contains all of the generalized 5 \ector with two polar angles specifying the orientation of
coordmateg _of one molecule. For th_e simple case Ofne second atorby is the third Euler angle specifying the
n-alkanes, it is well known that the Jacobian only depends o iantation of the third atom and the remaining. 5 are tor-
the hard and external coordinates of the molettila the  gigna angles.
context of the flexibly constrained model, where the poten- A particularly convenient choice for the trial probability
tials that govern the hard variables are infinitely stiff, th'sdensity in this situation is known as configurational bias
means that all of the hard variables may be trivially inte-samp"ngz_e_ss In this technique, one would like to choose
grated out, leaving a configurational integral that only de-yjg) states for the generalized coordinates of the subsystem,
pends on the soft and external degrees of freedom b,--b,, by sampling each of the vectots,, from a Boltz-

~ mann distribution of the correspondingenergy term. To be
Z“f e  AUdgN, (8 more specific, one would like to select a trial value ligrby

~ _ sampling from the distribution
whereU stands for that part of the potential that does not Sus(by)
e PH1lP1

contain hard contributions, whilg= (ge,qs) is a vector that t,(by) =
only contains the external and soft coordinates of a molecule. * %

For the above equation to hold in the more general case ] ] ] )
of branched alkanes, it is required to show that the Jacobiafnceba is chosen, a trial value fdy, is selected by sampling
of the transformation is also independent of the soft varifrom

— (11
[ e Aulbigp]

ables. In the Appendix we show that indeed the Jacobian of @~ Bua(by . by)
the transformation from Cartesian coordinates to the set of ta(by;b;)= TS E— (12
generalized coordinates does only depend on the hard de- J e PPz Prdb,

grees of freedom. Accordingly, EB) is the general expres- Note thatt, is a function ofb, but depends parametrically on
sion for the partition function of arbitrary branched alkaney . More generally, for fragment, one selectd, by sam-
models within the flexible constraint approximation. pling from a Boltzmann distribution of the form

e*ﬁU|(b| ,b|_1,...,b1)

Il. SIMULATION METHODOLOGY ti(by;by—q,....09) (13

- I e—,eu|(b|’ ,b|_l,...,b1)db|r )
In order to calculate the exact equation of state for our . - .
q It then follows that the overall trial probability density for

model alkane, we will use the well known Monte Carlo the ch bsvstem is ai th duct of the diff ¢
techniquée®® In this method, one calculates the average prop- € chosen subsystem IS given as the product ot the ditieren

erties of a system by sampling configurations from the prob-'

ability density, f, consistent with the thermodynamic en- m

semble considered. First, one attempts to generate a new T(n[o)=[] t(b;;b_1,....by). (14
representative configuration by choosing it from some arbi- =1

trary trial probability densityT(n|o), which determines the The resulting overall acceptance probability is then
likelihood of attempting to generate stategiven that the Qy- O, (bY)- Q. (b" )
system is in stat®. The trial configuration is then accepted A(n|o)=min( g3t 2L mim-1:-°"1 (15)
with probability 'Q1-Qa(b]) " Qm(by_1,....b7) )

T(o|n)f(n) where theQ, factors represent the integrals in the denomina-
T(n[o)f(0)) 9 tors of Eqgs.(11)—(13), while the superscript stands for the

new attempted state and the supersaigtands for the ac-
A. General configurational bias sampling tual state of the system.

Usually, the new state generated differs from the origina| N order to get further physical insight into the problem,

state only by changes of a small subsystem described by i,will prove cor_lvenient_to rewrite th€, integrals. Without
subset of the complete set of degrees of freedom. In man ss of generality, consider that each of the energy terms of

circumstances, the energy of this subsystemluding inter-  £d- (10) may be expressed as two separated contributions
actions with the rest of the syst¢gmmay be written in terms u(by,by_1,....b)=ul(b)+ui(by b, _1,....by), (16)

of a sum of energy terms that may be attributed to different int ] ) . )
fragments, say, 1 ton whereu™ is some stiff potential, which restricts the degrees

b of freedom of fragment to a narrow region; whiles™ is
UP=u,(by) +up(by,by) ++ -+ Un(Bp B 1,01, some softer potential, with shallower potential minima. For
example, in our model alkane the stiff potential is that which
whereb; is a vector of generalized coordinates that specifygoverns the torsional motion, while the loose potential is that
the position of fragment. One typical example of such a of the hard-sphere interactions, both intra and intermolecular.
situation is a system of alkanes, with the subsystem choséWhereas the labeling of these two energy contributions has

A(n|o)=min( 1
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been made in terms of the physical characteristics of thevhere the asterisk next to the sum in the two previous equa-
potential, note, however, that what is really relevant here aréions reminds that thé| positions are chosen from the ca-
their mathematical characteristiag™" must only depend on nonical distribution of the stiff potential.

b,, while u™ may depend on all of the degrees of freedom  One subtlety of this approach is that by imposing super

of u;. With this division, one can show that tlig integrals  detailed balance, one is no longer sampling from the canoni-

may be written as follows: cal distribution, but from an extended or “super canonical”
int distribution of the form
ext e Au(® o
Q|(b|_1,...,b1):C|f e*BU| b’blily..”bl)Tdb’ f(quSN):f(qN)g(SN)i (24)

(17 whereS\ is the set of vectors witk—1 “dummy” possible
whereC, is an integral over the Boltzmann factor of the stiff POSitions for each degree of freedom, wigjes their prob-
potential ability distribution. Actually, this has no practical signifi-
cance whatsoever, d$q") andg(S") are completely inde-
pendent. For this reason, the long term average over the
dummy variablesS", yields unchanged the desired canoni-
cal distribution. In this way, it is seen that continuum con-
figurational bias may be considered as one of the modern
extended ensemble simulation methd@s.

Ci= f e AU d)gh, (18)

Note that it is understood that wher-1, the list of argu-
mentsb,_4,...,b; in Eq. (17) may be ignored. This also
holds for Eqs.(19) and (20) below. From Eq(17) one can In this section we have gone through a rather formal

immediatel had, m nsider n aver f o , . .
ediately see tha, may be conside eq as an average o.descrlpnon of the configurational bias method somewhat
the Boltzmann factor of the loose potential over the canoni- 46 :
| The reason is that we

. . . based on ideas by Maginet a
cal probability density of the stiff potentfd wanted to stress the generality of the technique, which is

Q|(b|71,---,b1)=C|<E_BU'EXI(b’b"1""’bl))im- (19) applicable to any system whose potential energy may be
written as in Eq(10). The concept of super detailed balance
We now introduce(continuum Rosenbluth factors, defined required to justify the extension of configurational bias to
as: continuum systems was first introduced by Frengehl®
~ _ 6X and is further discussed in a recent book with emphasis in the
W= (e t(b’blflwybl»‘m' (20 actual implementation of the algorithtf.
In terms of these factors, one can then show that the appro-
priate acceptance rule consistent with the attempt probabilit. Technical details

of Egs. (1)-(13) is As seen in the previous section, there is no formal dif-

[ Wy Wo(bY) Wi (b -1 bT) ference between simulating branched and linear alkanes, as
A(n|o)=min 1,\7\/ W (%) W (b° oy (21 long as their Hamiltonian is expressed in accordance with
T M me et Eq. (10). Technically, however, some difficulties appear

In practical situations, however, it is not possible to evaluatavhen(i) calculating the coordinates, whéin evaluating the

the Rosenbluth factors of Eq20) exactly, while sampling energy, and whefiii) sampling the torsional angles. We con-
from the continuous attempt probabilities of EGs1)—(13)  sider each of these in turn.

is also very difficult, as theQ, are not known. Actually,
selection of a trial value for the fragments, say, fragment
proceeds as follows. First, one chooses a set pbssible The first problem that arises when considering a
positions for vectot;, sampled from a canonical distribu- branched alkane is exactly how to label the different atoms.
tion of the stiff potential ¢e~#{int). The trial position for the This we do by following the conventions that are used in
fragment, bl is then selected among these finite set of posOrganic chemistry to name an alkalfeln this way, it is
sible positions from a discrete probability distribution of the found that the structure of an alkane may be completely

1. Choosing a growth path

form specified from the order of the branch8sthe number of
ot branches of each order, the number of atoms in each branch
(bl = e AU ) (22 and the label of the atoms to which they are attached. Note,
[N P

however, that this procedure does not provide a unique way
of characterizing the alkane. Indeed, there may be many sev-
If we now impose super detailed balance, that is, detaile@ral such sets of data which specify the same alkang,
balance between “super states,” defined as a canonical stateopentane may be considered to be either 3-methylbutane,
together with its set ok—1 possible positions for each vec- 2-methylbutane, or 2-ethylpropaneEach of the possible

tor b, it follows that the acceptance rule is formally as in Eq.ways of specifying an alkane in this way, by choosing arbi-
(21). The only difference is that the exact continuous Rosemirarily one terminal atom as the first one and other terminal
bluth factors are substituted by their approximate, discretizedtom as the last one, we call it @mplete growth path

S e AT

counterparts Actually, as the atoms are labeled, it is found that the total
K number of complete growth paths fig,q{Nengs— 1), Where

WI:E *efﬁuFXt(bf) (23) NengsiS the number of ends of the molecule. In practice, it is

Ki=1 ' well known that complete regrowth of a chain molecule in a
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(6) repeat from step 3 as many times as required, until a
CH; atom is encountered and the end of the current
branch is, therefore, reached;

(7) if any branch of current order remains to be considered,
let the first of these become the current branch and go to
step 2. Otherwise continue below;

(8) if branches of higher order remain to be considered, let
the next order become the current order and go to step 1.
Otherwise end.

Figure 2 shows an example of this algorithm in action for a
heavily branched alkane. Note that the above iterative proce-
FIG. 2. Choosing a growth path. The black circle shows the tagged atorlure consists mainly of three nested loops. The first one con-
chosen at random among all the atoms. The bold lines show the fragment ¢fols the number of generations, or orders of the branches.
_the c_hain t'hat is seleqted for regrowth. The numbers represent the number 9o second one controls the number of branches of each
iterations in the algorithngsee text and also serve here to label the atoms. . .
Atoms 1 and 2 are selected first. At 2, a branch point is encountered. 3 igeneration and the third one controls the number of atoms
selected as “next” atom, and’ s the first atom of the next branch. The per branch. The outcome of such an algorithm is a list with
growth then continues to atom 3, where 4 is selected as next atom'aisd 4 gl the structural information required to grow the chosen
the first atom of the_ next brano{t_his puts the counter of branches of higher fragment, namely, number of branches per order, number of
order to twog. Iterations of the inner loop end at atom 5. As there are no .
branches of current order left, the algorithm proceeds to consider branché&!OMs per branch and label of the atom to which branches are
of the order abovénote that, during regrowth and retracement, atomsd ~ bonded, as well as a list with the label of the atom to be
i” are grown simultaneously grown in thekth place. Other structural properties of the
fragment to be regrown, such as the current torsional angles
and chirality of the branches may be also calculated while
fluid may be very difficult, so we not always attempt re- walking along the growth path. Once these properties are
growth along a complete growth path, but also allow forknown, growth and retracement proceeds by using a similar
regrowth along a part thereof. Any possible such part, includiterative procedure which is much simpler because the num-
ing complete growth paths is calledgrowth path®! ber of iterations that must be performed in each loop is now
In order to select just any of these possible growth path&nown (i.e., the repeat-until loops that appear in the previous
with equal probability, we use a set of pointers which allowalgorithm are replaced by do loops with bounds that were
to specify which are the atoms bonded to a given atom. Weletermined while choosing the growth path
use a Verlet list like structure to book this information at the ~ Note, however, that one must grow at once all of the
beginning of the simulatio®® We then proceed in the fol- atoms of one branch, say branghtogether with the first
lowing way: First, we tag at random one atom of the chainatom of whichever branch attached itovhile performing
which will eventually become the first “root” atortsee be- regrowth and retracement. The reason is that the torsional
low). We then choose randomly one out of all the atomsangle right before a root point completely specifies the posi-
attached to this tagged atom to become the first atom of théion of whichever atom is bonded to that root point. Accord-
branch to be grown. All the remaining atoms bonded to thengly, the elementary energy term related to this degree of
tagged atom are considered to belong to branches of lowdreedom[see Eq.(10)] includes the interactions of all such
order and will be left unchanged. The branch to be grown isaitoms(see Fig. 2, for an example of the growth order of
thus the first “child” branch of current order and the only atoms.
child branch of the lower order branches.
Once these preliminary definitions are made, a wholes, calculation of the coordinates
(random growth path may be now generated by going
through the following iterative schem@ee Fig. 2, for an
example:

Now that we have devised a method to randomly select a
fragment of the alkane, what is needed is a procedure for the
calculation of the actual coordinates. One easy way that has
(1) Let the first child branch of current order become thebeen employed for linear alkanes is by simply specifying the

“current” branch; Cartesian coordinates of an atom relative to the previous
(2) let the first atom of the current branch become the curatom?® Such a procedure is very simple, though not neces-

rent atom and let the atom of the parent branch to whiclsarily very effective, as the Cartesian coordinates do not ap-

it is bonded become the root atom; pear explicitly in the Hamiltonian. Indeed, this method may
(3) out of all the atoms bonded to the current atdess the cause serious difficulties when applied to branched
root atom, choose a new atom and let this be the “next” alkanes’>~34 For this reason, we choose to characterize the
atom; spatial configuration of the alkanes by means of a set of
(4) let all the atoms bonded to the current atdess the root generalized coordinates which are, essentially, a set of tor-
and next atomsbe stored as first atoms of branches ofsional angles plus external coordinates. The torsional angles
higher order and recall the label of the current atom; may be sampled easily from the appropriate torsional poten-
(5) let the current atom become the root atom. Also let thetials, as we will explain later. In order to convert the set of
next atom become the current atom; generalized coordinates to Cartesian coordinates, we use the
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method of rotation matrixes as describes by Fforn order  that the configurational bias method may be applied in a
to extend the method to calculate the Cartesian coordinatestraightforward manner. Essentially, what is needed is to
of a branched alkane, we simply need to consider it as aample the independent torsional angles from a canonical
bunch of linear atom sequences that bifurcate at the brandtistribution of the corresponding torsional potentiahe out
points (e.g., 3-methylpentane is considered to be the supemwf the 10 possible torsional potentiplsSThe most popular
position of a linear chain of five atoms and of other linearway of sampling from this sort of distribution is known as
chain of four atoms that shares its three first atoms with théhe (Boltzmann rejection schem&:>*For very narrow prob-
previous, longer, chain. Obviously, these three first atomsability distributions, as is the case of branched alkanes or
need not be recalculatedrhus, when calculating the coor- even linear alkanes at low temperature, this method becomes
dinates of the current branch, one just needs to remember théghly inefficient, to such a point that acceptable trial posi-
rotation matrix used to grow the first atom of each of thetion sampling may become the rate determining step in
branches attached to it. Subsequent regrowth of these highesimulations®® In order to avoid this difficulty, we have con-
order branches may be then performed as in a linear chaisjdered the transformation metii8énd found it to yield an

by employing the previously stored rotation matrix to beginexcellent performance. In the transformation method, one
with. would like to sample a random variablg, defined in the
interval[a,b], from a normalized distribution functio(t).

In order to do so, consider the distribution functid#(t),

o ] ) ) defined as
We find it convenient to evaluate the intra and intermo-

lecular energies separately. The reason is that, contrary to the F(t)—J

3. Evaluation of the energy

tf(x)dx. (25)

case of linear alkanes, there is no clear way of determining a

whether two atoms of the same chain are more than three
bonds apart from knowledge of their labé&ssigned as de- The desired random variable, may be sampled in accor-
scribed previously alone. In order to be able to take this dance withf(t), from the following equation:
decision right away during run time, an intra-molecular Ver- .
let neighbor list is created at the beginning of the simula- t=F"(p), (26)
tior_15. This list specifies, for ea_ch of the atoms of the ChamwhereF‘l is the inverse function of andp is a random
which oth-er.ato-ms of that chain are more than three bondﬁumber between 0 and 1 generated from a uniform distribu-
apart. This list is created once and for all and needs not bﬁon.
updated.

As to the intermolecular interactions, we use a linked
cell list method®? Contrary to the more conventional ap-
proach, however, we allow the cells to become smaller thafi) ~ Numerically evaluateF(t) for a large number of

In order to calculatec ! for use during run time, we
proceed as follows:

the range of the potential. Actually, we fix the number of evenly distributed points between 0 and;2

cells, not their length. This allows to employ the method at(ii)  generate an interpolating function fB(t), and use it
high densities and to extend it to the NpT ensemble, where to tabulateF ~* for an evenly distributed set of points
the volume of the simulation box changes. In order to avoid between 0 and 1;

counting intra-molecular interactions two times, each timeliii) use the tabulated set of data f6r * to generate an
the energy of a molecule is being evaluated, we take it out of interpolation spline polynomial.

the list, and then include it again, presumably updated, after

the attempted Monte CariMC) move. Once this polynomial has been calculatéd,® can be

used during run time to generate the desired random variable
] ) from Eq.(26). We find that the transformation method works
4. Sampling of the torsional angles very well, provided that a good interpolation function is used
In most previous configurational bias Monte Carlo appli-for F~1. A simple linear interpolation scheme fails com-
cations to branched alkanes, the models employed had epletely, unlessF ! is tabulated at a very large number of
plicit torsional and bending potentials. This introduces anpoints. On the contrary, using a standard spline method with
important complication, because in this case more bond an800 evenly distributed points between 0 and 1 already pro-
torsional angles appear than there are degrees of freedom. dinices an accurate and smodtft). In practice, we used
this situation, sampling of the degrees of freedom from thel000 points to generate the spline polynomial in order to be
stiff bending and torsional potentials becomes a major comin the safe side.
plication. At least three different ways of tackling the prob- At first thought, it would appear that @R~ ! function
lem have been consideréd3* would have to be created for each of the 10 possible torsional
In the case of the model alkane proposed here, the sitysotentials(see Table )l In practice, however, only ong !
ation is much simpler, because all of the bond angles haviinction for each of the six classes of torsional potentials
been frozen. Accordingly, the only remaining internal de-needs to be evaluated, as several of the torsional potentials
grees of freedom are the torsional angles. More importantlyare trivially related by translatiofsee Eqs(2)—(5)].
to each of these there corresponds a single torsional poten- The global strategy that we use for a configurational bias
tial, independent from all the others. In such a situation, thanove is as follows: First, we choose randomly one molecule
energy of each fragment may be expressed as ifEj.so that will be subject to the attempted move. Then, we choose
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TABLE I1. Single chain simulations for selected alkang®?) is the mean-  random the growth paths used to sample the torsional angles.
squared end to end distan¢ends of the backbome(S?) is the mean However, always using the same path may result in poor

squared radius of gyratiomy is the number of gauche angles and “accept” . . .
stands for the acceptance rat¥). “all-ccb” stands for the configurational sampllng. This can be seen from the results for 3’3'd'methyl'

bias simulations with all possible growth paths chosen with equal probabil4-€thylhexane, where the acceptance rate along the arbi-
ity. “one-cch” stands for the CB simulations when growth is performed trarily chosen(complete¢ growth path is only 1.4%. Allow-
always along the same complete growth path. The numbers in parenthesigg for a choice of different growth paths may result in a
are a measure of the error in the last digit as measured by a single standqrgrge increase of the acceptance rate. For this very bulky
deviation. All distances measured in units of theparameter of a CH . .

branched alkane, allowing for a choice of growth paths re-

om sults in an increase of the acceptance rate of one order of
(R%) () Ng % accept  magnitude.
3,3-dimethyl-4-ethylhexane C. Simulations
all-ccb 2214  0.34122) 8.00012) 30
one-cch 2.2@) 0.34093) 8.00Q0) 1.4 All of the simulation results were obtained using a cubic
pivoting 2.233)  0.34061) 8.00011) 32 box of 108 molecules in the constant press(T) en-
4,8-dipropyldodecane semble. Production runs of 40 000 cycles were preceded by
all-ccb 5.661) 1.00866) 9.031) 56 S ; .
one-cch 5.640) 1.00915) 9.0216) 31 equally long eqU|I|brat|or_1 periods for each _thermody_namlc
pivoting 5.623) 1.0101) 9.021) 58 state. Each cycle consists of 108 canoni¢aNVT) trial
squalane moves, and one volume change attempt. The NVT moves
all-cch 15.71) 2.441) 14.591) 37 were chosen in the proportion 5:5:9:1 from the following
one-cch 15.0) 2.421) 14.592) 20 choices:(1) Center-of-mass translation of the molecu(2)
pivoting 15.52) 2.41(2) 14.623) 58

rotation of the molecule about a randomly chosen axis across
an atom of the molecule chosen at randdB); rotation of
one or more torsional angles using configurational bids;

at random one of all the possible growing paths, which Car%‘ull chain re-growth using configurational bias for all the

. degrees of freedom of the chain. The simulations were
be either completécomplete growth of the moleculer par- o . .
. . started by arbitrarily choosing one molecular conformation
tial (growth starts at a given atom chosen at random such that

. . . and replicating it in space as if it were anN, lattice. The
at least one torsional angle is sampleginally, retrace and . : .
volume was chosen big enough so as to avoid overlapping.

re-growth of the chain is performed along the chosen paﬂ1‘he isotherms were then produced by gradual compression.
and the resulting Rosenbluth factors calculated. For furtheéome expansion runs were also performed and found to

details and a more detailed account of the simulation ProCe; ' ree with the compression. Due to the use of confiqura-
dures employed, the reader is referred elsewfrere. 9 b : 9

Before closing this section, let us show that the proposeéIonal bias and linked cell lists, th.e cost of a SImuIatlon
. . Strongly depends on the state density. Each of the isotherms
methodology does indeed properly sample the internal de-

groduced required between 24 and 36 hours of CPU time in
grees of freedom of our model alkanes. In order to do so, w . .
a 350 MHz processor, depending on the size of the mol-

ha\_/e perfprmed smgle_cham s_|mu.lat|ons using both Conflguécules, but little on the number of branches. Our general MC
rational bias and the simple pivoting algorithiinandom ro-

tations of a part of the chain about a chosen bond v)actorCOde has been tested by comparing with the literature for

. . rigid models®” flexible hard alkane®"° soft alkanes® and
Simulations have been performed for three selected alkaneEénnard-Jones united atom alkafRSood aqareement was
2,6,10,19,23-hexamethiltetracosane (squalang 3,3- 9

dimethyl-4-ethylhexane and 4,8-dipropyldodecane at a temf-Ound in all cases.

perature of 600 K. As some of these alkanes are rather bulky,

we find it necessary to replace the hard—sphere sites Wlth/ EQUAT|ON OF STATE FOR BRANCHED ALKANES
Lennard-Jones sites. The Lennard-Jones parameters used are

those proposed by Poncetd al®® in order to mimic real The first order thermodynamic perturbation theory of
alkanes, but all the remaining geometrical parameters andertheim (TPTD allows to express the free energy of an
torsional potentials are kept as described before. The resul@ssociating system in terms of the properties of a reference
for the mean squared end to end distance, mean Squaragid with no associatiol.When one considers the limit of
radius of gyration and number of torsional gauche angle§omplete association, TPT1 yields an expression for the
(i.e., those torsional angles lying in the interya¥3,57/3])  equation of state of chain molecul® For the case of a
are collected in Table II. Note also that two different variantsfluid made of chains of tangent hard spheres, TPT1 yiélds
have been_employed f_or the configurational bigs simulations. 1+y+y2—y3 1+y—y22

In one variant, sampling proceeds along a single complete Z=n——"——F—-(N—1) ——17+—~,
growth path chosea priori (one-cch. In the other variant, (1=y) (1=y)2-y/2)
sampling is performed along all the possible growth pathswheren is the number of tangent hard spheres in the chain,
either complete or partialall-cch), chosen randomly with while y is the packing fraction, given as the product of the
equal probability. As the table shows, both the pivoting andmolecular volumeyp,,,,; and the number density,

the configurational bias methods yield essentially the same This simple equation has been shown to give a rather
results. Note also that both of the configurational bias variaccurate description of tangent hard sphérés.practice,
ants give the same results. In principle one needs not select hbwever, actual molecules are modeled with interaction sites

(27)
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that overlap considerably, and are known to have rather stiffor the prediction of the number of effective tangent hard
bond angles and a torsional potential that governs the motiospheres amounts to the following alternative definitiondor
about bond vectors Whereas the extension of the original 1 3

TPT1 to such complicated geometries posses yet unsolved ,,— _(L"'z ) (31)
problems, a number of empirical modifications of ER7) 2\ 3670 g

have been sug%els7ted that allow to describe more realistig; the next section, we will test the performance of the MW
chain mole(_:ule_é.‘ Essent|ally,_ all these approaches imply equation of stat§Eq. (28)] when applied to the description
the determination of an effective number @ingent hard  f pranched model alkanes. We will refer to MW1 when the
spheresin terms of geometrical properties of the actual yefinition of « is as in Eq.(29), and to MW2 when the
model under consideration. B _ definition of « is as in Eq.(31).

One such approach is known as the modified Wertheim |, order to obtain the geometrical properties required in
equation(MW). Here, the effective number of hard spheresine mw equation of staté.e., B, and vy for MWL1; vy

is dgtgrmined in such a way that the_actua_ll S(_econd viriah g Smor fOr MW2), one needs to make thermal averages of
coefficient of the molecule under consideration is correctlys;ch properties over all possible molecular conformations. In
described. The original Eq27) is then rewritten as follows: pinciple, this would require rather complicated integration.
1+y+y2—y3 1+y—y2/2 However, the intramolecular potential restricts the values of
W—(Za—Z) m the torsional d_egrees of freedom to very narrow regi.ons.. In
(28) accordance with the rotational isomeric state approximation
o ) ) (RIS), we can therefore, consider that each torsional degree
where the nonsphericity parametey,is a geometrical prop-  of freedom adopts either of three possible discrete states,
erty defined in terms of the second virial coefficient of theynown ast, g*, andg™.% The number of possible states in
molecule under consideration the molecule is then'3 wherev is the total number of tor-
By/vme=3a+1. (29)  sional degrees of freedom. For alkanes of up to eight carbon
atoms, the total number of possible states is then not larger
The advantage of expressing Eg8) in terms ofe is that it than 243, so that the geometrical properties may be deter-
has a rather intuitive interpretation, as it measures to Whahined as an exhaustive Boltzmann average over all the pos-
extent does a molecule deviate from sphericity. sible states. For larger chains, the averages require use of a
Initially, Eq. (28) was used to describe realistic models pjonte Carlo sampling procedure. Both of these two possi-
of n-alkanes up to 8 carbon atoms and shown to give rathegjjities have been considered in detail elsewhere, and we

that, for long chains, the computation Bf, may become

rather time consuming. To avoid this difficulty, we have pro-
posed a method based on convex body geom@BG) that
allows to give very accurate estimatesBf for chains of up ~ A. Results for model alkanes
to 100 interaction sites, as well as for models of branched
alkanes®52 When this method is used to determiBe, it
can be shown that E@28) yields a very good description of

Z=(2a—1)

V. RESULTS AND DISCUSSION

Note that all of the interaction sites are hard spheres but
the model is not athermal due to the torsional potential. All

delnalk ; b g details of of the simulations considered in this section were obtained at
modeln-alkanes of up to 30 carbon atomisFor details of - 1_ 365 8g k. |n Table Il we present the geometrical param-

the m(.—:‘thodz the reader is referred to the original paefs. eters required in the MW EOS for several isomers of hexane,
Here, it suffices to say that the proposed methodology a||0Wﬁeptane and octaneMV! stands for the nonsphericity pa-
to determineB, from knowledge of single chain properties ;v ater when defined as in E9 and determined by

alone, namely, the surface, volume, and principal MOMENtS, .2 ns of the CBG method. whiteV? is the nonsphericity
of inertia. Other required geometrical properties, such as th arameter when defined as in E81). Within a given group
volume and surface of each conformer may be calculate f isomers. botha"™! and W2 show similar trends

using an algorithm due to Dodd and Theodofdu. gradually decreasing as the number of branches increases.
Another empirical modification of Eq(27) was sug-  gpyigusly, as the interaction sites of amalkane are re-

gested by Zhou, Hall, and Stéfi.These authors determine ‘moved from the ends and placed closed to the center we

the number of effective tangent hard spheres of the chain 'Hwight expect that the molecules become more spherical, and

such a way that the effective fluid ha}s the_same surface antﬂe decrease in the nonsphericity parameter reflects this fact.
volume as the molecules under consideration. It then foIIowsNote however thatMV! seems to be more sensitive to the

that the effective number of tangent hard spheres is given b¥ho|ecular shape than"2 as it takes larger values for the

Sﬁml more anisotropic values, and smaller values for the more
(30)  spherical ones. As an example, consider the octane isomers,

where it is seen that the values®f"V! range from 1.578 for

where s, is the surface of the molecule under consider-n-octane, to 1.236 for 2,2,3,3-tetramethylbutane; on the other

ation. hand, the corresponding values @V range from 1.517

In order to facilitate subsequent discussion, it is conveto 1.340. At any rate the variations @' and o™MW?
nient to keep the form of the original MW equati¢ig.  within a group of isomers is always much larger than that
(28)]. When this is done, the Zhou—Hall-Stell methodologyshown by the molecular volume, which is seen to change not

Ngs= s
" 36mu2,,
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TABLE Ill. Parameters required for the evaluation of the MW equation of 25
state atT=366.88 K. «®*“'is the nonsphericity parameter as defined from
MW1 [Eqg. (29)] and determined from the exact second virial coefficient.
a™* is the nonsphericity parameter as defined from MW1 and determined
from the methodology proposed in Refs. 18 and 622 is the nonsphe- VA
ricity parameter as defined from MWZEQ. (31)]. v is the molecular
volume in units of the hard-sphere diameter.

2 } n-hexane | 2-methylpentane

Alkane afxet o™t amw2 Umol/d3

Hexane isomers

n-hexane 1.388764 1.384190 1.35367 2.027 161 20 | 3—methylpentane L 2,3-dimethylbutane
2-methylpentane 1.342432 1.326175 1.33179 2.020609
3-methylpentane 1.299319 1.286616 1.30904 2.014426
2,3-dimethylbutane 1.260096 1.242015 1.28964 2.008 400
2,2-dimethylbutane 1.244580 1.228991 1.28358 2.006 021
cyclohexane 1.148527 1.147430 1.15966 1.832725
Heptane isomers
n-heptane 1.481831 1.474216 1.4351 2326571
3-methylhexane 1.400875 1.381213 1.39559 2.314944 .
3-ethylpentane 1365731 1.344971 1.37917 2310332 20 | B2-dimethylbutane - cyclohexane
2,3-dimethylpentar®  1.324803 1.303196 1.35653 2.303199
3,3-dimethylpentane 1.278768 1.264449 1.33016 2.294881 Z 15 F
2,2,3-trimethylbutane 1.255534 1.233229 1.31636 2.290177 10 |
Octane isomers
n-octane 1573728 1578162 151728 2.625892 5t
4-methylheptane 1.507 777 1.489392 1.4845 2.615952
3-ethylhexane 1469124 1449776 1.46749 2.611095 0 * * * *
2,5-dimethylhexane 1.460839 1.448761 1.46814 2.610603 0 0.2 04 0 0.2 0.4 0.6
2,2,3-trimethylpentar®) 1.324832 1.309049 1.3856  2.584 962 y y

3-ethyl-3-methylpentane  1.318 695 1.313148 1.37936 2.583754

2,2,3 3-tetramethylbutane  1.250 243 1.236054 1.33963 2.569 577FIG. 3. Compressibility factors of hexane isomers as a function of the

packing fraction. Symbols are results from NpT MC simulations of this
work, while the lines are predictions from MW(ull line) and MW2
(dashed ling Note that packing fractions may be converted back to densi-
ties using the molecular volumes of Table III.

more than 2% with the exception of cyclohexane which is
not really an-hexane isomer in the sense that it has a differ-
ent chemical formula be once more very good. Note, however, that cyclohexane
The fact that volume changes are much smaller thamleparts somewhat from the previous models because we
nonsphericity changes in our alkane models is quite intereshave considered it a rigid molecule in the chair
ing because it will allow us to discuss the variation of theconfiguratior*®
EOS of the isomers as a function of the molecular anisotropy  Figure 4 shows the EOS of the heptane isomers. Note
alone. that, as the chain length increases, the number of possible
As a final point, Table Ill shows the nonsphericity pa- isomers increases dramatically and here we consider six out
rameter as defined from E@R9) when determined exactly of the nine possible isomers. Our choice is such, however,
from the true second virial coefficients of the molecules.that we consider all of the possible architectures: The linear
Note thata®®may only be compared with™V!, asa™V?  isomer, n-heptane; the only isomer with an ethyl group,
has a different definition. What is seen by comparirf®®  3-ethyl-pentane; one out of the two isomers with a single
with ™" is that the CBG method proposed does give in-methyl group, 3-methylethane; two out of the four dimethyl
deed very good and reliable estimates &2 and so for isomers, 2,3-dimethylpentane, and 3,3-dimethylpentane; and
the second virial coefficient of the molecules. This goodfinally, the most highly branched isomer, 2,2,3-
agreement was already observed in a previous paper. trimethylbutane. Once more, both MW1 and MW2 are seen
Let us now consider the EOS of several different isomergo be in very good agreement with the simulation results.
of the alkane series. In Fig. 3 we show the EOS of all theHowever, it seems that MW1 slightly underestimates the
hexane isomers, i.e., n-hexane, 2-methylpentane, EOS of the more branched isomers, while MW2 shows here
3-methylpentane, 2,3-dimethylbutane, and 2,2-very good predictions for all of the isomers.
dimethylbutane, as well as that of cyclohexane. The symbols When it comes to the octane isomers, there are a total of
are the results as obtained from simulation, while the fulll8, and here we just consider six representative members: the
lines are the predictions from MW1 and the dashed lindinear isomern-octane; one ethyl isomer, 3-ethylhexane; one
those from MW?2. Note that fon-hexane and the two meth- methyl isomer, 4-methylheptane; one of the dimethyl iso-
ylpentanes both MW1 and MW?2 show excellent agreementers, 2,5-dimethylhexane; one methyl-ethyl isomer, 3,3-
with simulation. For 2,3 and 2,2 dimethylbutane the agreeethylmethylpentane; and finally the more branched isomer
ment between theory and simulation is also very good, al2,2,3,3-tetramethylbutane. The theoretical prediction for
though some differences between MW1 and MW2 becoméehese isomers are shown in Fig. 5. For the first four isomers
apparent. Finally, the predictions for cyclohexane are seen tconsidered, the agreement between theory and simulation is
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30
25 | n-heptane [ 3-ethylpentane
20t
Z ;51
10

[ 3—ethylhexane

25 | 3-methylhexane I 2,3—dimethylpentane 25 | 4-methylheptane I 2,5-dimethylhexane

20 | 3,3—dimethylpentane I 25 | 3,3-ethylmethylpenthane

0 0.2 0.4 0 0.2 04 0.6 0 0.2 0.4 0 0.2 04 0.6
y y y y

FIG. 4. As in Fig. 3 but for heptane isomers. FIG. 5. As in Fig. 3 but for octane isomers.

seen to be excellent and the results for MW1 and MW?2 aréane and octane. To be specific, let us consider Table V,
hardly distinguishable. For the two remaining isomers, dif-where the EOS of heptane isomers is shown. What is clearly
ferences between MW1 and MW2 become apparent, wittmade apparent at first sight, by horizontal inspection of the
MW?2 predicting somewhat higher compressibility factorstable is that indeed the EOS of the different isomers is very
than MW1. Overall, both MW1 and MW?2 are shown to give similar. Comparing pairs of contiguous columns, such as that
rather reliable predictions for the compressibility factor, de-of 2,3-dimethylpentane p;3) and 3-ethylpentanep(), it
spite the fact that we have considered a rather broad range wfould seem that the EOS is identical within simulation error.
packing fractions, frony=0 toy=0.5, close to the expected The great similarity between the EOS of isomers of repulsive
fluid—solid transitior?® alkanes was already observed by Setaal. for models made

An interesting issue that was not possible to consider byf tangent spheré$. A closer inspection at Table V, how-
examining Figs. 3-5 is to what extent do the compressibilityever, will show interesting systematic trends which are in
factors of the isomers of a given alkane differ. Actually, thefact predicted by both MW1 and MW2. Indeed, by taking a
differences are rather small and would have hardly been apgeok at Eq.(28) one concludes that, for a given pressure, the
preciated if plotted in the same graph. For this reason, ismaller the nonsphericity, the larger the packing fraction. Ac-
proves more convenient to consider Tables IV-VI, whichcordingly, if the molecular volumes are constant or nearly so,
show the simulation results for the isomers of hexane, hepthe larger ise the smaller the density. To test this prediction,

TABLE IV. Equation of state of hexane isomers Bt 366.88 K as obtained from simulation. The pressure,
p/kgT, is given in units ofd®, as well as the densities. From left to right, cyclohexang (2,2-dimethylbutane
(p2), 2,3-dimethyllbutane f3), 3-methylpentaneg(), 2-methylpentaneds), andn-hexane fpg). The num-

bers in parenthesis are a measure of the error in the last digit as measured by a single standard deviation.

p/kgT P1 P2 P3 Pa Ps Ps
0.05 0.0363) 0.0352) 0.0362) 0.0353) 0.0352) 0.0342)
0.10 0.06@) 0.05713) 0.05713) 0.0563) 0.0563) 0.0553)
0.50 0.1414) 0.1283) 0.1283) 0.1283) 0.1245) 0.1254)
1.00 0.1824) 0.1654) 0.1653) 0.1644) 0.1623) 0.1604)
2.00 0.22%4) 0.2044) 0.2024) 0.2013) 0.1973) 0.1983)
3.00 0.2513) 0.2263) 0.2253) 0.2242) 0.223) 0.2202)
4.00 0.2683) 0.2423) 0.2414) 0.24Q2) 0.2363) 0.2342)
5.00 0.2813) 0.2543) 0.2552) 0.2533) 0.2483) 0.2492)
6.00 0.29@2) 0.2612) 0.2622) 0.2633) 0.2592) 0.25711)
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TABLE V. Equation of state of heptane isomers. The densities are, from left to right, 2,2,3-trimethylbutane
(p1), 3,3-dimethylpentanept), 2,3-dimethylpentanepi), 3-ethylpentane d,), 3-methylhexane 4s), and
n-heptane fg). Rest of notation as in Table IV.

p/ksT P1 P2 P3 Pa Ps Ps
0.05 0.0342) 0.0342) 0.0332) 0.0342) 0.0332) 0.0332)
0.10 0.0583) 0.0533) 0.0533) 0.0533) 0.0522) 0.0513)
0.50 0.1193) 0.1174) 0.1164) 0.1153) 0.1143) 0.1123)
1.00 0.1513) 0.1493) 0.1493) 0.1473) 0.1453) 0.1443)
2.00 0.1882) 0.1832) 0.1822) 0.1802) 0.1802) 0.1752)
3.00 0.2022) 0.2033) 0.2012) 0.1992) 0.1991) 0.1952)
4.00 0.2162) 0.2173) 0.2132) 0.21Q02) 0.2112) 0.2082)
5.00 0.2272) 0.2262) 0.2252) 0.2231) 0.2222) 0.2191)
6.00 0.2371) 0.2342) 0.2342) 0.2312) 0.23q1) 0.2272)

Table V collects the EOS of heptane isomers, arranged iagreement. For larger bond lengit@s8 and 1.0 MW1 fails
columns from the isomer with smaller (left), to the isomer  clearly, while MW2 in seen to be significantly better, yield-
with higher« (right). Inspection of the last row of this table, ing rather reasonable results.

where the differences are more apparent, shows that indeed The reason for the discrepancy between MW1 and MW2
the larger the nonsphericity, the smaller the density at a fixedt long bond distances may be traced back to the definition of
pressure. What we can conclude from these considerations fe effective number of tangent hard spheres. In both MW1
that MW1 and MW2 are not only able to give good quanti- gnd Mw2, Nes=2a—1. By construction, MW2 yields;
tative predictions for the EOS. They are also able to describe. y jn the limit wherel ,=d, so that one recovers the origi-

very fine differences that are found between the differentyg) TPT1 result of Wertheim, which is known to be quite

isomer of a given alkane. accurate. On the other hand, using the definitionvqfro-
posed in MW1, one finds that.; is significantly smaller
B. Results for chains with different bond lengths thann for 1,=d.

Previously, we have seen that both MW1 and MW2 are It would appear that MW1 is a good equation of state for
able to correctly estimate the equation of state of a larg&nlecules with bond lengths between 0.4 and 0.6, but that
number of branched alkanes. Here we will consider whethef@nnot be used for larger bond lengths. Although we have
these equations of state may be also applied to other modefoWn that M\Qﬂ gives good results for alkanes of up to 30
with larger bond lengths. To this end, we have performecfrbon atoms? a scaling argument shows that it should
simulations for athermal linear alkanes with=16. The e€ventually fail for larger model alkanes. Indeed, it may be
bond angles are set again to the tetrahedral value, but trffown that MW1 predicts a compressibility faptorthat scales
torsional potential allows for a free rotation about the bond@Sn°"~*, wherew is the exponent for the scaling law of the
vectors(i.e., uniform torsional potentialFour different bond ~ radius of gyratior?>® For repulsive chains, we expect this
lengthsl,/d are considered, namell,/d=0.4, 0.6, 0.8, 1.  €xponent to ber=0.6, so that the compressibility factor is

In Table VIl we collect the molecular parameters re- predicted to scale as®. On the contrary, it is expected that
quired to apply MW1 and MW2. The results obtained fromthe compressibility factor of large chain molecules will scale
simulation are collected in Table VIII. Comparison with the linearly with n,%¢ so that MW1 must eventually fail for long
theoretical equations of state may be seen in Fig. 6, wherenough model alkanes. Despite of this failure, it is expected
the pressuredd®/kgT) is plotted as a function of the num- that MW1 will give better results than MW2 at low densities,
ber density,pd®. For the smallest bond length,/d=0.4, as it introduces the exact second virial coefficient by con-
the figure shows that both MW1 and MW?2 yield very good struction. On the other hand, MW2 does not predict the cor-

TABLE VI. Equation of state of octane isomers. The densities are, from left to right, 2,2,3,3-tetramethylbutane
(p1), 3-ethyl-3-methylpentanept), 2,5-dimethylhexaneg;), 3-ethylhexaned,), 4-methylheptaneqs), and
n-octane pg). Rest of the notation as in Table IV.

p/kgT P1 P2 P3 Pa Ps Pe
0.05 0.0382) 0.0322) 0.0322) 0.0312) 0.0312) 0.0312)
0.10 0.0513) 0.0512) 0.0493) 0.0493) 0.0482) 0.0472)
0.50 0.114) 0.1073) 0.1043) 0.1043) 0.1022) 0.1032)
1.00 0.1393) 0.1363) 0.1312) 0.1313) 0.1322) 0.1302)
2.00 0.1693) 0.1662) 0.1612) 0.1602) 0.16Q3) 0.1572)
3.00 0.1862) 0.1842) 0.1782) 0.1792) 0.1762) 0.1751)
4.00 0.2022) 0.1942) 0.1912) 0.1901) 0.1891) 0.1882)
5.00 0.2142) 0.2041) 0.1991) 0.2002) 0.1992) 0.1952)
6.00 0.2222) 0.2122) 0.20712) 0.2061) 0.2072) 0.2021)
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TABLE VII. Molecular parameters for use in the MW1 and MW2 equations \/|, CONCLUSIONS
of state for linear chains with 16 monomers as a function of the bond length, . ) o
l. Rest of the caption as in Table III. In this paper we have considered the statistical thermo-

dynamics of model branched alkanes. We start with a rather

lo/d o™ a™ ™ Uimol/d° realistic Hamiltonian that contains bending and torsional po-
0.4 1.932 2.044 2.0183 4.8311 tentials, as well as excluded volume interactions. We show
0.6 2,741 3.040 3.4930 6.7439 that within the classical flexible constraint approximation,

0.8 3.86 4.165 5.2805 7.9380 the configurational integral takes a simple form, namely, an
1.0 5.65 5.910 8.5000 8.3776

integral of the Boltzmann factor of the remaining soft poten-
tials. This follows from the fact that the Jacobian of the
transformation form Cartesian to generalized coordinates
does not depend on the soft degrees of freedom.

We have then performed configurational bias simulations
; . bt several isomers of hexane, heptane, and octane. We find
yields worse results than MWl at low den_sﬁ?ésActually, that, provided that the molecular volume of the isomers is
MW2 and TPT1 are identical for=1 and it has been re- qinjjar the equation of state changes but little. At any rate,
cently _ShOWS” that TPT1 produces rather inaccurate Viriajhe change is such that, at a given packing fraction, the larger
coefficients’ the nonsphericity, the larger the pressure. Or, alternatively, at

‘ Ilt/ij_interesting ;9 ccl>nsider the comprgssibility factorsa given pressure, the larger the nonsphericity, the smaller the
or lo/d=1.0. For this elongation MW2 reduces to TPT1, corresponding equilibrium density.

which is known to predict accurately the equation of state of We have tested two empirical modifications of Wer-

the fully flexible pearl-necklace modeHowever, as seen, in qims TPTA for the prediction of the equation of state. One
F_|g. 5’_MW2 (i.e., TPTD deviates significantly fron_1 the of these introduces an effective number of tangent hard
smulatlon results for the_ tangent sphere model co_nS|dered IQpheres determined so as to reproduce the exact second virial
this work._CIe_arIy, the discrepancy is fjue to the fixed bondCoeﬁcicient of the mode(MW1). The other, proposed by
angle, which is seen to have a negligible effect at low denyy, .\ ‘Hajl and Stelf® uses an effective number of spheres
sity, but a very significant one at higher densities. Actually,such that both molecular surface and volume of the model
the pearl necklace model is known to have a crystal phasﬁre reproducedMW?2). We find that both MW1 and MW2
with cIosedYFég\cked face-centered-culitr) arrangement of provide a rather satisfactory agreement with simulations, al-
monomer$’ % However, fixing the bond angle to the tetra- though MW2 has the advantage of being somewhat less
, ) Sifomputationally demanding. We have also studied the perfor-
tal and freezing thus takes _pla_ce at much lower denéﬁles_. mance of these two equations of state as the bond length
Herg we observe th"_ﬂ th_e liquid phase a'readY feels th'schanges. We find that MW2 gives rather good results for all
steric hindrance, which is reflected from the divergence Ofreduced bond lengths between 0.4 and 1.0, while MW1 fails
the compressibility factor. for reduced bond lengths larger than 0.6.
As an example of the usefulness of having an accurate
equation of state for repulsive molecular models, let us con-

rect virial coefficients and we have observed that indee

TABLE VIII. Equation of state results for the athermal alkane model with

16 monomers as obtained from simulatipn., densities fol ,=0.6d; p,, 200 7
densities forl ;=0.8d; p3, densities fol ;=1.0d. The results fol ,=0.4d v A ol=04
are not included, as they agree with the results of YettiRaf. 70 within ! o l=0.6
statistical accuracy. We supplement that data set with the state point 4, ! a1=08
(p/kgT=3.45,p=0.102. Pressure and density given in unitsdt vi=10
p/ksT P1 P2 P3
120
0.010 0.0066 0.0058 0.0050
0.025 0.0119 0.0098 0.0083 4
0.050 0.0174 0.0139 0.0115
0.100 0.0237 0.0187 0.0152
0.500 0.0431 0.0332 0.0273
1.000 0.0526 0.0404 0.0338
2.000 0.0626 0.0487 0.0412
3.000 0.0686 0.0534 0.0458
4.000 0.0728 0.0569 0.0488
5.000 0.0761 0.0596 0.0503
6.000 0.0790 0.0615 0.0513
8.000 0.0635 0.0522
10.00 0.0644 0.0526
12.00 0.0651 0.0528 FIG. 6. Compressibility factor for linear chains of 16 atoms and varying
16.00 0.0659 0.0531 bond lengths. Empty symbols are simulation results from this work. The
20.00 0.0662 0.0533 crosses are simulation results from YetHidior the same model ant
24.00 0.0534 =0.4. The full lines are predictions from MW1 while the dashed lines are

predictions from MW2.
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TABLE IX. Dependence of the critical properties with the molecular param-tg yse Eqs(33)—(35) to make simple qualitative predictions
eters as predicted from Eq33)~(35). ~ and™\, indicate increase or de- pon the variation of the critical properties in terms of the
crease of the critical property with respect to an increase of the correspond- | | t A | ) sh that

ing molecular parameter, respectively. — indicates no effect of themo ecular parameters. As an exgmp € Em S OWS, a
molecular parameter on the critical property. the smallera, the largerT,. Thls.explalns why highly
branched alkanes such as 2,3,3,-trimethyloctane may have a
larger critical temperature thamoctane, when it is expected

Molecular parameter

Critical
property @ Vol Qv that the former should have a smaller van der Waals constant.
Equations(33)—(35) may be considered as a succinct
Ve /! / — ; At ; ; ;
rationalization of the results we obtained in a previous paper,
Te N N\ / . o
Do N N % where we found that a mean-field theory could qualitatively
Ze N — — predict the critical properties of branched alkaff&gable 1X

presents a summary of the conclusions drawn form these
equations.

sider a simple perturbation theory. Within the spirit of a van
der Waals(vdW) theory, we consider the MW form of the
equation of state and then add to this a simple mean-field The authors are indebted to N. G. Almarza for providing
perturbation term. The pressure then takes the form us with unpublished results and to J. I. Siepmann for sending
_ . _ 2 us a manuscript prior to publicatiaiiRef. 33. We are also
P=Puw(p;Umol: @)~ Buaup " (32 grateful to P. Monson and A. Malanoski for helpful corre-
wherepyyy is the pressure as predicted by the MW equationspondence. We also want to thank R. Gayéi. Muiler, and
of state. If we then apply the conditions for the critical point, A. Milchev for helpful discussions. This work was finan-
we find that the critical properties may be obtained in closecially supported by the Spanish DGCYT under Grant No.
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APPENDIX A: JACOBIAN OF THE TRANSFORMATION
_ Budw FROM CARTESIAN TO GENERALIZED
Te= oy e (&) (3% COORDINATES IN BRANCHED ALKANES
avaw In this Appendix we show that the Hamiltonian of the

Pe=72"Pc (a), (35  transformation from Cartesian coordinates to generalized co-

mol ordinates in a branched alkane is independent of the torsional

where Vi, T%, and p? are all dimensionless, universal degrees of freedormfg}.

functions of . The explicit form of these functions is not
important. What matters is thaty is a monotonously in-
creasing function ofr, while T} andp? are both monoto-
nously decreasing functions ef This knowledge is enough

Consider a small fragment of some arbitrary branched
alkane, as shown in Fig. 7. This fragment is made of a linear
chain of atomsi—3, i—2, i—1, i. Now, let there be two
branched atoms+ 1 andi +2 bonded to atomn— 1. Let the

FIG. 7. Sketch of a branched alkane.
6,, 6;.,, andé, . 5 define bond angles
formed between atoms i+1, andi
+2 and the backbonew;,s, «@j,4,
and «; , 5 are bond angles formed be-
tween the bond vectorns, r;,,, and
lis2. @iy iy, aNde;,, (Nt shown
are dihedral angles that describe the
orientation of atoms, i+1, andi+2
relative to the axis formed between
—2 andi—1.
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set of polar coordinates that specify the position of aiom
relative to a reference frame formed from atomsl, i —2
andi—3 bel;, 6;, and¢;. Let there be similar sets, ;,
0,.1, and ¢; ;1 for atomi+1 and similarly for atom + 2.
Note that polar angle® correspond to bond angles, while
azimuthal angleg correspond to dihedral angles.

Using a local reference frame and an appropriate rotatio
matrix, the Cartesian coordinates of atoms+ 1 andi+2

may be written as® s

MacDowell, Vega, and Sanz
COS; 4 54 = COSH; COSH; | +SinB; SiNB; | COSA; .,
(A3)
COS«;, 5=C0SH; ;1 COSH; , ,+SiNG;,1SING; ;>

XCOSAHl_AHZ)- (Ad)

therek is either 1 or 2 and\; , \= @i k— @; -

Note that the set of EQ9A3) and (A4) immediately
uggest a very convenient new set of coordinaies g, . 1,

Oiio, Aii1, Ajyo, @, Which completely specify the posi-

tion of atomsi, i+ 1, andi +2. We choose to call these the

whered. is the complementary of bond angleandj ranges internal set qf coordinates. Note already that with the internal
| P y fandj rang set of coordinates all of the bond angles may be expressed

fromi toi+2. The Jacobian of the transformation from Car'independently of the dihedral angie . The transformation
tesian to polar coordinates for these three atoms may be th(?rnom polar to internal coordinates ié trivial, and the corre-
shown 10 be sponding Jacobian can be seen toJge; = 1.
it2 These set of coordinates is, however, still nonconvenient,
Jep=1]1 1Zsing;. because the bending potentials will become complicated
= functions ofA;, 1, A, ,. For this reason, we choose a set of
The Jacobian from Cartesian to polar coordinates for ageneralized coordinatesy;, aj,1, @12, ®ji3, Aita, O,
atom belonging to a linear chain has been already consideratade of five of the six bond angles, and one single torsional
by Go and Scherag4.Note that what is obtained here is the degree of freedomg

rj= Ij(cosT9J- ,sin79j COS; ,sin~6j sing)), (A1)

(A2)

product of the Jacobians for the last atom of the three linear
sequencesi3)—(i—2)—(i—1)—i, (i—3)—(i—2)—(i
—1)—(i+1), and {(—=3)—(i—2)—(i—1)—(i+2).

The set of polar coordinates used to describe atigms
+1, i+2 is not convenient, however. The reason is that,
owing to the branches new bond angles 3, «;,4, and
a; 5 appear(see Fig. 7. These bond angles have a corre-
sponding hard potential, and it would be desirable to have a
set of generalized coordinates that explicitly accounts for
them. In order to proceed, we take the scalar products
“Tiy1, Fi"Ti4+2, iz1-Ti4+o and obtain

0i=ai, (A5)
Oir1= a1, (AB)
Oii2= 42, (A7)
A= Aina(ag, @irg,ai43,9), (A8)
Ai2=Aio(ai @ir,ai44,9), (A9)
¢i=¢. (A10)

At first instance, it is convenient to write the Jacobian of

this transformation formally

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
JA; JA; JA; JA;
Jiﬁg: i+1 i+1 0 i+1 i+1 , (All)
da dajyq daj i3 ¢
('9Ai+2) 0 ((7Ai+2) 0 ((9Ai+2) ((9Ai+2)
Ja daj g a4 g d¢
0 0 0 0 0 1
|
one then gets simply COSa; — COSa;j COSq;
COSA, 4 (= atk T Rk (A14)
3 aAi+1)_(aAi+2) (A1) Sina; sina; 4
9\ dajig) \daiia Now, the Jacobian of the overall transformation from

The derivatives may be obtained by implicit derivation Cartesian to generalized coordinates is just the product of

from Eq. (A3)

( A ): sina; 2k (AL13)
daitoik]  sina; sina; 1—cof A,

where agairk is either 1 or 2 and
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Jepyr Jp—i» Jig, SO that we finally get

2 .
IFksinais o4k
Sina; SinA;

2
—12i
Jemg=1i smaikﬂl

(A15)

It is then seen thal._. 4 only depends on the hard bond
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