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Equation of state of model branched alkanes:
Theoretical predictions and configurational bias Monte Carlo simulations

Luis G. MacDowell,a) Carlos Vega, and Eduardo Sanz
Departamento de Quı´mica Fı́sica, Facultad de Ciencias Quı´micas, Universidad Complutense,
Madrid 28040, Spain

~Received 14 May 2001; accepted 5 July 2001!

We develop a general configurational bias Monte Carlo algorithm for the simulation of branched
alkanes and compare the results with predictions from theoretical equations of state. We consider
results for all the hexane isomers, as well as for several heptane and octane isomers. The interaction
sites of our united atom model alkanes are hard spheres of equal diameter, thus allowing us to study
the effect of branching in the equation of state without the need of considering the effect of changes
in the size of the sites. We find that, at roughly constant molecular volume, branching has a small
but noticeable effect on the equation of state, somewhat reducing the pressure at which a given
density may be attained. We find that equations of state previously used for linear chains yield very
good agreement with simulation results. ©2001 American Institute of Physics.
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I. INTRODUCTION

Our knowledge on the equation of state~EOS! of flex-
ible chain molecules has very much improved in the last
years. The earlier studies in this area were concerned
rather idealized chain molecules, made of tangent h
spheres. A very important advance was the formulation o
~first-order! thermodynamic perturbation theory~TPT1!,
which allowed to express the properties of the chain m
ecules in terms of the properties of the constitu
monomers.1–5 Other accurate theories for tangent ha
spheres, such as the Generalized Flory Dimer~GFD!6,7 or a
recent theory by Lue~LT!8 have also been proposed. As a
important difference with respect to TPT1, these theories
quire either single chain properties~GFD! or two chain prop-
erties~LT! as an input.

Considering the importance of branched molecules,
not surprising that all of these theories have been extende
predict the properties of star polymers. In fact, to first ord
the thermodynamic perturbation theory of Wertheim pred
that the equation of state of a star polymer is equal to tha
a linear chain with the same number of monomers.9 This
hypothesis was shown to be very accurate in a simula
study by Yethiraj, who also extended GFD to star polym
with good results.10 Similar conclusions, both from theor
and simulation are also found by Patrickios and Lue.11

A rather more difficult problem arises when one tries
describe the equation of state of more realistic molecu
models, with chemical features such as overlapping inte
tion sites, fixed bending angles, and torsional barriers. M
frequently, the equation of state of such models is obtai
as an empirical modification of the more soundly bas
equations of state of tangent hard spheres. As an exam

a!Present address: Institut fu¨r Physik ~WA31!, Johannes Gutenberg Unive
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several authors have proposed to describe chains of ove
ping hard spheres by using an effective number of tang
spheres into the original TPT1 equation of state.12–16 Our
own work shows that one such variant, which we call mo
fied Wertheim theory~MW1!, describes very accurately th
equation of state of linear alkanes with up to 30 carb
atoms.17–19Similarly, Hall and co-workers have extended th
original GFD in several different ways to account for cha
overlap7,20,21and Mehta and Honnell22 have shown that good
agreement with hardn-alkane models of up to eight carbo
atoms may be obtained.

Now, when it comes to consider realistic models of r
pulsive branched alkanes, then the situation is far less s
factory, as both theoretical and simulation studies are v
scarce if existent. The importance of having accurate eq
tions of state for realistic repulsive models should not
overlooked, as such a knowledge is essential in a pertu
tion theory for realistic model alkanes with attractive inte
actions. Indeed, the availability of reasonably good equati
of state for repulsiven-alkanes has allowed to study th
equation of state of real alkanes with attracti
interactions.23–26 As an example, we have recently added
simple mean-field perturbation term to our MW1 equation
state and found that this approach is able to describe im
tant qualitative features ofn-alkanes.27 Using a somewhat
more elaborated theory, we studied the critical properties
branched alkanes and found good qualitative agreeme28

Recent advances using the Polymer Reference Interac
Site Model~PRISM! have also been reported.29

The simulation of branched alkanes is already by its o
a rather interesting issue that has attracted m
attention.30–34 Initially, such simulations were usually pe
formed using molecular dynamics. However, as new sa
pling techniques were introduced35 and the configurationa
bias method was developed,36–38 Monte Carlo simulations
became the preferred choice, specially when phase equil
0 © 2001 American Institute of Physics
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6221J. Chem. Phys., Vol. 115, No. 13, 1 October 2001 Equation of state of model branched alkanes
was a matter of concern.39–42 The extension of configura
tional bias to branched alkanes, however, might not be
straightforward as one could expect at first thought. The r
son is that in such case, not all of the torsional and bend
potential terms may be written as functions of a single g
eralized coordinate. Accordingly, sampling of trial positio
from canonical distributions of bending and torsional pote
tials becomes much more involved. This fact was proba
first realized by Dijkstra31 and then considered in more deta
by several authors.32–34In this work we will overcome all the
difficulties related with sampling of the generalized degre
of freedom by simply freezing all of the bending angles
their equilibrium positions. Note that the whole descripti
of the intra-molecular energy in terms of the bending a
torsional potentials relies explicitly in assuming that the
terms are separable. Such an approximation, on its turn
lies in assuming that bending is subject but to small fluct
tions. Accordingly, assuming constant bond angles is t
rather reasonable, as long as the Hamiltonian of the alka
may be described in terms of uncoupled bending and
sional contributions.

The goal of this paper is therefore twofold. First, we w
try to fill the lack of simulation results for repulsive mod
branched alkanes. Second, we will show that straightforw
extensions of theories previously used forn-alkanes afford a
good description of the equation of state.

The rest of the paper is organized as follows: In n
section we present our model and the classical flexible c
straint approximation for branched alkanes. Section III is
voted to the simulation technique and methodology. In S
IV we describe two modifications of Wertheim’s TPT1 fo
branched alkanes and compare them with simulations in
V. We then present our conclusions.

II. MODEL, GENERALIZED COORDINATES, AND
FLEXIBLE CONSTRAINTS

A. Classical model for branched alkanes

The alkane model that will be employed may be cons
ered as a straightforward extension of the repulsive un
atom n-alkane model that was employed in previo
work.17,18

Each of the CHn groups that may be found in a branch
alkane is described by a single hard sphere interaction si
diameterd53.7109 Å. Obviously, a more realistic mod
would account for interaction sites of different size, but he
we will concentrate on the effect of branching. It is, the
fore, convenient to consider identical interaction sites, so
addition of different branches has very little effect on t
overall molecular volume.

We will consider that the hard-sphere potential is resp
sible for all of the intermolecular interactions and for tho
intramolecular interactions which take place between ato
more than three bonds apart. Bond distances and bond a
will be described by means of harmonic potential we
whose force constants are considered to be infinitely la
Effectively, this corresponds to fixing the bond distance a
angles to their equilibrium values, which we will set tol 0

51.53 Å andu05109.47°, respectively.
Downloaded 26 Sep 2001 to 147.96.5.37. Redistribution subject to AIP
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The flexible nature of the molecule will be introduced
the level of the torsional degrees of freedom. In this wo
we will consider the simplest approximation, so that t
overall potential about a given bond vector is considered
be the sum ofn-butane torsional potentials. More speci
cally, we will consider that the potential that governs t
motion of the chain about a given bond vector, say, that b
vector formed by atomsi and i 11, is

U tor5( utor~wk!, ~1!

where the sum extends over all the dihedral angles form
between the atoms bonded toi and the atoms bonded toi
11. Furthermore,utor is an elementaryn-butane torsional
potential, which we consider to be of the Ryckaer
Bellemans type.43 Within this approximation, it may be
shown that there are a total of six classes of torsional po
tials, depending on the local architecture about the con
ered bond vector~see Fig. 1!. Furthermore, depending on th
orientation ~chirality! of the branches relative to the ma
chain, subtypes of these six main classes may appear. Ta
shows all of the possible torsional potentials that may
found for the six architectures of Fig. 1, expressed in ter
of the n-butane elementary potentials. In order to explain
the possible situations, we introduce the phase,D. This vari-
able tells us which is the dihedral angle of a branch bon
to atom 3 when the main chain, 1-2-3-4, is in thetrans con-
formation ~see Fig. 1!. Similarly, D8 tells us the dihedral
angle of a branch bonded to atom 2 as measured relativ
the 4-3-2-1 sequence in thetransconformation. Furthermore
Dk represent the absolute values of such angles. Subsc
‘‘ t’’ and ‘‘ q’’ indicate whether the branches considered a
attached to a tertiary or a quaternary atom, respectively.
the model considered in this work, where all the bond ang
are equal and set to the tetrahedral value,D t5Dq5120° ~see
the Appendix for an expression ofDk in terms of bond
angles!. Although there appear to be 10 torsional potentia
subtypes within a class are related by simple symmetry
erations, as follows:

U3~f!5U2~f1D t!, ~2!

U6~f!5U5~f2D t!, ~3!

U7~f!5U5~f1D t!, ~4!

U9~f!5U8~f1D t!. ~5!

In our model,U8 is a function of period 120°, so thatU8 and
U9 become identical. Also note that the symmetry propert
shown above should also hold in more elaborated mod
where the elementary torsional potentials depend on the
lecular architecture.33

B. Generalized coordinates

In order to consider the effect of freezing the bond d
tances and angles to their equilibrium value, it will pro
convenient to describe the state of our alkane model in te
of generalized coordinates, consistent with the Hamilton
described in the previous section. The internal state will
given by a set of hard coordinates, which are those gover
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 1. Sketch of the six possible architectures about a bond vector that may be found in branched alkanes.
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by infinitely stiff harmonic potentials~i.e., bond distances
and bond angles!, and a set of soft torsional degrees of fre
dom. To be specific, let the alkane haven united carbon
atoms andr branches. Also, let us define ‘‘branched-atom
as the first atom of a given branch. Then, each of the bra
atoms will be described by a bond length and the two bo
angles formed between that atom and the backbone. On
other hand, each of the remaining non branched atoms
be described by one bond length, one bond angle and
torsional degree of freedom. Accordingly, the set of ha
coordinates will consist of (n21) bond lengths and (n22
1r ) bond angles, while the set of soft variables will be t
(n232r ) remaining torsional degrees of freedom.

Once the internal state of the molecule is defined
means of a vector with the hard degrees of freedom,qh , and
a vector with the soft degrees of freedom,qs , we will con-
sider a vector,qe , that contains the set of external coord
nates. These are, namely, a set of three Cartesian coordi
specifying the position of the first atom, and three Eu
Downloaded 26 Sep 2001 to 147.96.5.37. Redistribution subject to AIP
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angles specifying the orientation of the three first atoms
the chain relative to a laboratory reference frame.

C. Configurational integral

Once the generalized coordinates have been defined
us consider the configurational integral of a fluid ofN alkane
molecules. Most generally, it can be expressed in terms
Cartesian coordinates as follows:

Z}E e2bUdr11¯rn1¯rnN , ~6!

whereU is the total potential energy of the system andr i j is
the vector of Cartesian coordinates of atomi of moleculej.
In our case, however, it is far more convenient to express
partition function in terms of generalized coordinates as f
lows:
essed
TABLE I. List with all the possible torsional potentials of branched alkanes that may be found when expr
in terms of elementaryn-butane contributions. See Sec. II A for more details.

Class Subtype
ner of 1–4
interactions Chirality

class 1 U1(f)5utor(f) 131
class 2 U2(f)5utor(f)1utor(f2D t) 132 D52D t

U3(f)5utor(f)1utor(f1D t) 132 D5D t

class 3 U4(f)5utor(f)1utor(f1Dq)1utor(f2Dq) 133
class 4 U5(f)52utor(f)1utor(f1D t)1utor(f2D t) 232 D52D8

U6(f)5utor(f)12utor(f2D t)1utor(f22D t) 232 D5D852D t

U7(f)5utor(f)12utor(f1D t)1utor(f12D t) 232 D5D85D t

class 5 U8(f)5utor(f)1utor(f1Dq)1utor(f2Dq)
1utor(f2D t)1utor(f1Dq2D t)1utor(f2Dq2D t) 233 D852D t

U9(f)5utor(f)1utor(f1Dq)1utor(f2Dq)
1utor(f1D t)1utor(f1Dq1D t)1utor(f2Dq1D t) 233 D85D t

class 6 U10(f)53utor(f)13utor(f1Dq)13utor(f2Dq) 333
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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6223J. Chem. Phys., Vol. 115, No. 13, 1 October 2001 Equation of state of model branched alkanes
Z}E J~qN!e2bU~qN!dqN, ~7!

where J(qN) is the Jacobian of the transformation andq
5(qe ,qs ,qh) is a vector that contains all of the generaliz
coordinates of one molecule. For the simple case
n-alkanes, it is well known that the Jacobian only depends
the hard and external coordinates of the molecule.44 In the
context of the flexibly constrained model, where the pot
tials that govern the hard variables are infinitely stiff, th
means that all of the hard variables may be trivially in
grated out, leaving a configurational integral that only d
pends on the soft and external degrees of freedom

Z}E e2bŨ~ q̃N!dq̃N, ~8!

where Ũ stands for that part of the potential that does n
contain hard contributions, whileq̃5(qe ,qs) is a vector that
only contains the external and soft coordinates of a molec

For the above equation to hold in the more general c
of branched alkanes, it is required to show that the Jaco
of the transformation is also independent of the soft va
ables. In the Appendix we show that indeed the Jacobia
the transformation from Cartesian coordinates to the se
generalized coordinates does only depend on the hard
grees of freedom. Accordingly, Eq.~8! is the general expres
sion for the partition function of arbitrary branched alka
models within the flexible constraint approximation.

III. SIMULATION METHODOLOGY

In order to calculate the exact equation of state for
model alkane, we will use the well known Monte Car
technique.45 In this method, one calculates the average pr
erties of a system by sampling configurations from the pr
ability density, f, consistent with the thermodynamic e
semble considered. First, one attempts to generate a
representative configuration by choosing it from some a
trary trial probability density,T(nuo), which determines the
likelihood of attempting to generate staten given that the
system is in stateo. The trial configuration is then accepte
with probability

A~nuo!5minS 1,
T~oun! f ~n!

T~nuo! f ~o! D . ~9!

A. General configurational bias sampling

Usually, the new state generated differs from the origi
state only by changes of a small subsystem described
subset of the complete set of degrees of freedom. In m
circumstances, the energy of this subsystem~including inter-
actions with the rest of the system! may be written in terms
of a sum of energy terms that may be attributed to differ
fragments, say, 1 tom

Usub5u1~b1!1u2~b2 ,b1!1¯1um~bm ,bm21 ,...,b1!,
~10!

wherebi is a vector of generalized coordinates that spec
the position of fragmenti. One typical example of such
situation is a system of alkanes, with the subsystem cho
Downloaded 26 Sep 2001 to 147.96.5.37. Redistribution subject to AIP
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to be one given molecule or part thereof; and the fragme
the set of monomers within that molecule. In the most g
eral case, when the subsystem is a whole molecule,b1 is a
vector with the Cartesian coordinates of the first atom,b2 is
a vector with two polar angles specifying the orientation
the second atom,b3 is the third Euler angle specifying th
orientation of the third atom and the remainingbi .3 are tor-
sional angles.

A particularly convenient choice for the trial probabilit
density in this situation is known as configurational bi
sampling.36–38 In this technique, one would like to choos
trial states for the generalized coordinates of the subsys
b1¯bn , by sampling each of the vectors,bl , from a Boltz-
mann distribution of the correspondingul energy term. To be
more specific, one would like to select a trial value forb1 by
sampling from the distribution

t1~b1!5
e2bu1~b1!

* e2bu1~b18!db18
, ~11!

onceb1 is chosen, a trial value forb2 is selected by sampling
from

t2~b2 ;b1!5
e2bu2~b2 ,b1!

* e2bu2~b28 ,b1!db28
. ~12!

Note thatt2 is a function ofb2 but depends parametrically o
b1 . More generally, for fragmentl, one selectsbl by sam-
pling from a Boltzmann distribution of the form

t l~bl ;bl 21 ,...,b1!5
e2bul ~bl ,bl 21 ,...,b1!

* e2bul ~bl8 ,bl 21 ,...,b1!dbl8
. ~13!

It then follows that the overall trial probability density fo
the chosen subsystem is given as the product of the diffe
t l

T~nuo!5)
l 51

m

tl~bl ;bl 21 ,...,b1!. ~14!

The resulting overall acceptance probability is then

A~nuo!5minS 1,
Q1•Q2~b1

n!¯Qm~bm21
n ,...,b1

n!

Q1•Q2~b1
o!¯Qm~bm21

o ,...,b1
o!

D , ~15!

where theQl factors represent the integrals in the denomin
tors of Eqs.~11!–~13!, while the superscriptn stands for the
new attempted state and the superscripto stands for the ac-
tual state of the system.

In order to get further physical insight into the problem
it will prove convenient to rewrite theQl integrals. Without
loss of generality, consider that each of the energy term
Eq. ~10! may be expressed as two separated contribution

ul~bl ,bl 21 ,...,b1!5ul
int~bl !1ul

ext~bl ,bl 21 ,...,b1!, ~16!

whereul
int is some stiff potential, which restricts the degre

of freedom of fragmentl to a narrow region; whileul
ext is

some softer potential, with shallower potential minima. F
example, in our model alkane the stiff potential is that whi
governs the torsional motion, while the loose potential is t
of the hard-sphere interactions, both intra and intermolecu
Whereas the labeling of these two energy contributions
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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6224 J. Chem. Phys., Vol. 115, No. 13, 1 October 2001 MacDowell, Vega, and Sanz
been made in terms of the physical characteristics of
potential, note, however, that what is really relevant here
their mathematical characteristics:ul

int must only depend on
bl , while ul

ext may depend on all of the degrees of freedo
of ul . With this division, one can show that theQl integrals
may be written as follows:

Ql~bl 21 ,...,b1!5ClE e2bul
ext

~b,bl 21 ,...,b1!
e2bul

int
~b!

Cl
db,

~17!

whereCl is an integral over the Boltzmann factor of the st
potential

Cl5E e2bul
int

~b!db. ~18!

Note that it is understood that whenl 51, the list of argu-
ments bl 21 ,...,b1 in Eq. ~17! may be ignored. This also
holds for Eqs.~19! and ~20! below. From Eq.~17! one can
immediately see thatQl may be considered as an average
the Boltzmann factor of the loose potential over the cano
cal probability density of the stiff potential46

Ql~bl 21 ,...,b1!5Cl^e
2bul

ext
~b,bl 21 ,...,b1!& int . ~19!

We now introduce~continuum! Rosenbluth factors, define
as:

w̃l5^e2bul
ext

~b,bl 21 ,...,b1!& int . ~20!

In terms of these factors, one can then show that the ap
priate acceptance rule consistent with the attempt probab
of Eqs.~11!–~13! is

A~nuo!5minS 1,
w̃1•w̃2~b1

n!¯w̃m~bm21
n ,...,b1

n!

w̃1•w̃2~b1
o!¯w̃m~bm21

o ,...,b1
o!

D . ~21!

In practical situations, however, it is not possible to evalu
the Rosenbluth factors of Eq.~20! exactly, while sampling
from the continuous attempt probabilities of Eqs.~11!–~13!
is also very difficult, as theQl are not known. Actually,
selection of a trial value for the fragments, say, fragmenl,
proceeds as follows. First, one chooses a set ofk possible
positions for vectorbl , sampled from a canonical distribu
tion of the stiff potential (}e2buint). The trial position for the
fragment,bl

t is then selected among these finite set of p
sible positions from a discrete probability distribution of t
form

t l~bl
t!5

e2bul
ext

~bl
t
!

( j 51
k * e2bul

ext
~bl

j
!
. ~22!

If we now impose super detailed balance, that is, deta
balance between ‘‘super states,’’ defined as a canonical s
together with its set ofk21 possible positions for each vec
tor b, it follows that the acceptance rule is formally as in E
~21!. The only difference is that the exact continuous Rose
bluth factors are substituted by their approximate, discreti
counterparts

wl5
1

k (
j 51

k

* e2bul
ext

~bl
j
!, ~23!
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where the asterisk next to the sum in the two previous eq
tions reminds that thebl

j positions are chosen from the ca
nonical distribution of the stiff potential.

One subtlety of this approach is that by imposing su
detailed balance, one is no longer sampling from the can
cal distribution, but from an extended or ‘‘super canonica
distribution of the form

f̂ ~qN,SN!5 f ~qN!•g~SN!, ~24!

whereSN is the set of vectors withk21 ‘‘dummy’’ possible
positions for each degree of freedom, whileg is their prob-
ability distribution. Actually, this has no practical signifi
cance whatsoever, asf (qN) andg(SN) are completely inde-
pendent. For this reason, the long term average over
dummy variables,SN, yields unchanged the desired canon
cal distribution. In this way, it is seen that continuum co
figurational bias may be considered as one of the mod
extended ensemble simulation methods.47

In this section we have gone through a rather form
description of the configurational bias method somew
based on ideas by Maginnet al.46 The reason is that we
wanted to stress the generality of the technique, which
applicable to any system whose potential energy may
written as in Eq.~10!. The concept of super detailed balan
required to justify the extension of configurational bias
continuum systems was first introduced by Frenkelet al.38

and is further discussed in a recent book with emphasis in
actual implementation of the algorithm.48

B. Technical details

As seen in the previous section, there is no formal d
ference between simulating branched and linear alkanes
long as their Hamiltonian is expressed in accordance w
Eq. ~10!. Technically, however, some difficulties appe
when~i! calculating the coordinates, when~ii ! evaluating the
energy, and when~iii ! sampling the torsional angles. We co
sider each of these in turn.

1. Choosing a growth path

The first problem that arises when considering
branched alkane is exactly how to label the different atom
This we do by following the conventions that are used
organic chemistry to name an alkane.49 In this way, it is
found that the structure of an alkane may be complet
specified from the order of the branches,50 the number of
branches of each order, the number of atoms in each bra
and the label of the atoms to which they are attached. N
however, that this procedure does not provide a unique w
of characterizing the alkane. Indeed, there may be many
eral such sets of data which specify the same alkane~e.g.,
isopentane may be considered to be either 3-methylbut
2-methylbutane, or 2-ethylpropane!. Each of the possible
ways of specifying an alkane in this way, by choosing ar
trarily one terminal atom as the first one and other termi
atom as the last one, we call it acomplete growth path.
Actually, as the atoms are labeled, it is found that the to
number of complete growth paths isnends(nends21), where
nendsis the number of ends of the molecule. In practice, it
well known that complete regrowth of a chain molecule in
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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6225J. Chem. Phys., Vol. 115, No. 13, 1 October 2001 Equation of state of model branched alkanes
fluid may be very difficult, so we not always attempt r
growth along a complete growth path, but also allow
regrowth along a part thereof. Any possible such part, incl
ing complete growth paths is called agrowth path.51

In order to select just any of these possible growth pa
with equal probability, we use a set of pointers which allo
to specify which are the atoms bonded to a given atom.
use a Verlet list like structure to book this information at t
beginning of the simulation.52 We then proceed in the fol
lowing way: First, we tag at random one atom of the cha
which will eventually become the first ‘‘root’’ atom~see be-
low!. We then choose randomly one out of all the ato
attached to this tagged atom to become the first atom of
branch to be grown. All the remaining atoms bonded to
tagged atom are considered to belong to branches of lo
order and will be left unchanged. The branch to be grown
thus the first ‘‘child’’ branch of current order and the on
child branch of the lower order branches.

Once these preliminary definitions are made, a wh
~random! growth path may be now generated by goi
through the following iterative scheme~see Fig. 2, for an
example!:

~1! Let the first child branch of current order become t
‘‘current’’ branch;

~2! let the first atom of the current branch become the c
rent atom and let the atom of the parent branch to wh
it is bonded become the root atom;

~3! out of all the atoms bonded to the current atom~less the
root atom!, choose a new atom and let this be the ‘‘nex
atom;

~4! let all the atoms bonded to the current atom~less the root
and next atoms! be stored as first atoms of branches
higher order and recall the label of the current atom;

~5! let the current atom become the root atom. Also let
next atom become the current atom;

FIG. 2. Choosing a growth path. The black circle shows the tagged a
chosen at random among all the atoms. The bold lines show the fragme
the chain that is selected for regrowth. The numbers represent the numb
iterations in the algorithm~see text! and also serve here to label the atom
Atoms 1 and 2 are selected first. At 2, a branch point is encountered.
selected as ‘‘next’’ atom, and 38 as the first atom of the next branch. Th
growth then continues to atom 3, where 4 is selected as next atom and8 as
the first atom of the next branch~this puts the counter of branches of high
order to two!. Iterations of the inner loop end at atom 5. As there are
branches of current order left, the algorithm proceeds to consider bran
of the order above~note that, during regrowth and retracement, atomsi and
i 8 are grown simultaneously!.
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~6! repeat from step 3 as many times as required, unt
CH3 atom is encountered and the end of the curr
branch is, therefore, reached;

~7! if any branch of current order remains to be consider
let the first of these become the current branch and g
step 2. Otherwise continue below;

~8! if branches of higher order remain to be considered,
the next order become the current order and go to ste
Otherwise end.

Figure 2 shows an example of this algorithm in action fo
heavily branched alkane. Note that the above iterative pro
dure consists mainly of three nested loops. The first one c
trols the number of generations, or orders of the branch
The second one controls the number of branches of e
generation and the third one controls the number of ato
per branch. The outcome of such an algorithm is a list w
all the structural information required to grow the chos
fragment, namely, number of branches per order, numbe
atoms per branch and label of the atom to which branches
bonded, as well as a list with the label of the atom to
grown in thekth place. Other structural properties of th
fragment to be regrown, such as the current torsional an
and chirality of the branches may be also calculated wh
walking along the growth path. Once these properties
known, growth and retracement proceeds by using a sim
iterative procedure which is much simpler because the n
ber of iterations that must be performed in each loop is n
known ~i.e., the repeat-until loops that appear in the previo
algorithm are replaced by do loops with bounds that w
determined while choosing the growth path!.

Note, however, that one must grow at once all of t
atoms of one branch, say branchi, together with the first
atom of whichever branch attached toi while performing
regrowth and retracement. The reason is that the torsio
angle right before a root point completely specifies the po
tion of whichever atom is bonded to that root point. Accor
ingly, the elementary energy term related to this degree
freedom@see Eq.~10!# includes the interactions of all suc
atoms ~see Fig. 2, for an example of the growth order
atoms!.

2. Calculation of the coordinates

Now that we have devised a method to randomly sele
fragment of the alkane, what is needed is a procedure for
calculation of the actual coordinates. One easy way that
been employed for linear alkanes is by simply specifying
Cartesian coordinates of an atom relative to the previ
atom.40 Such a procedure is very simple, though not nec
sarily very effective, as the Cartesian coordinates do not
pear explicitly in the Hamiltonian. Indeed, this method m
cause serious difficulties when applied to branch
alkanes.32–34 For this reason, we choose to characterize
spatial configuration of the alkanes by means of a set
generalized coordinates which are, essentially, a set of
sional angles plus external coordinates. The torsional an
may be sampled easily from the appropriate torsional po
tials, as we will explain later. In order to convert the set
generalized coordinates to Cartesian coordinates, we us
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method of rotation matrixes as describes by Flory.53 In order
to extend the method to calculate the Cartesian coordin
of a branched alkane, we simply need to consider it a
bunch of linear atom sequences that bifurcate at the bra
points ~e.g., 3-methylpentane is considered to be the su
position of a linear chain of five atoms and of other line
chain of four atoms that shares its three first atoms with
previous, longer, chain. Obviously, these three first ato
need not be recalculated!. Thus, when calculating the coo
dinates of the current branch, one just needs to remembe
rotation matrix used to grow the first atom of each of t
branches attached to it. Subsequent regrowth of these hig
order branches may be then performed as in a linear ch
by employing the previously stored rotation matrix to beg
with.

3. Evaluation of the energy

We find it convenient to evaluate the intra and interm
lecular energies separately. The reason is that, contrary to
case of linear alkanes, there is no clear way of determin
whether two atoms of the same chain are more than th
bonds apart from knowledge of their labels~assigned as de
scribed previously! alone. In order to be able to take th
decision right away during run time, an intra-molecular V
let neighbor list is created at the beginning of the simu
tions. This list specifies, for each of the atoms of the cha
which other atoms of that chain are more than three bo
apart. This list is created once and for all and needs no
updated.

As to the intermolecular interactions, we use a link
cell list method.52 Contrary to the more conventional ap
proach, however, we allow the cells to become smaller t
the range of the potential. Actually, we fix the number
cells, not their length. This allows to employ the method
high densities and to extend it to the NpT ensemble, wh
the volume of the simulation box changes. In order to av
counting intra-molecular interactions two times, each ti
the energy of a molecule is being evaluated, we take it ou
the list, and then include it again, presumably updated, a
the attempted Monte Carlo~MC! move.

4. Sampling of the torsional angles

In most previous configurational bias Monte Carlo app
cations to branched alkanes, the models employed had
plicit torsional and bending potentials. This introduces
important complication, because in this case more bond
torsional angles appear than there are degrees of freedo
this situation, sampling of the degrees of freedom from
stiff bending and torsional potentials becomes a major co
plication. At least three different ways of tackling the pro
lem have been considered.32–34

In the case of the model alkane proposed here, the s
ation is much simpler, because all of the bond angles h
been frozen. Accordingly, the only remaining internal d
grees of freedom are the torsional angles. More importan
to each of these there corresponds a single torsional po
tial, independent from all the others. In such a situation,
energy of each fragment may be expressed as in Eq.~16! so
Downloaded 26 Sep 2001 to 147.96.5.37. Redistribution subject to AIP
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that the configurational bias method may be applied in
straightforward manner. Essentially, what is needed is
sample the independent torsional angles from a canon
distribution of the corresponding torsional potential~one out
of the 10 possible torsional potentials!. The most popular
way of sampling from this sort of distribution is known a
the~Boltzmann! rejection scheme.48,54For very narrow prob-
ability distributions, as is the case of branched alkanes
even linear alkanes at low temperature, this method beco
highly inefficient, to such a point that acceptable trial po
tion sampling may become the rate determining step
simulations.33 In order to avoid this difficulty, we have con
sidered the transformation method54 and found it to yield an
excellent performance. In the transformation method, o
would like to sample a random variable,t, defined in the
interval@a,b#, from a normalized distribution function,f (t).
In order to do so, consider the distribution function,F(t),
defined as

F~ t !5E
a

t

f ~x!dx. ~25!

The desired random variable,t, may be sampled in accor
dance withf (t), from the following equation:

t5F21~p!, ~26!

whereF21 is the inverse function ofF and p is a random
number between 0 and 1 generated from a uniform distri
tion.

In order to calculateF21 for use during run time, we
proceed as follows:

~i! Numerically evaluateF(t) for a large number of
evenly distributed points between 0 and 2p ;

~ii ! generate an interpolating function forF(t), and use it
to tabulateF21 for an evenly distributed set of point
between 0 and 1;

~iii ! use the tabulated set of data forF21 to generate an
interpolation spline polynomial.

Once this polynomial has been calculated,F21 can be
used during run time to generate the desired random vari
from Eq.~26!. We find that the transformation method work
very well, provided that a good interpolation function is us
for F21. A simple linear interpolation scheme fails com
pletely, unlessF21 is tabulated at a very large number
points. On the contrary, using a standard spline method w
500 evenly distributed points between 0 and 1 already p
duces an accurate and smoothf (t). In practice, we used
1000 points to generate the spline polynomial in order to
in the safe side.

At first thought, it would appear that anF21 function
would have to be created for each of the 10 possible torsio
potentials~see Table I!. In practice, however, only oneF21

function for each of the six classes of torsional potenti
needs to be evaluated, as several of the torsional poten
are trivially related by translation@see Eqs.~2!–~5!#.

The global strategy that we use for a configurational b
move is as follows: First, we choose randomly one molec
that will be subject to the attempted move. Then, we cho
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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at random one of all the possible growing paths, which c
be either complete~complete growth of the molecule! or par-
tial ~growth starts at a given atom chosen at random such
at least one torsional angle is sampled!. Finally, retrace and
re-growth of the chain is performed along the chosen p
and the resulting Rosenbluth factors calculated. For furt
details and a more detailed account of the simulation pro
dures employed, the reader is referred elsewhere.55

Before closing this section, let us show that the propo
methodology does indeed properly sample the internal
grees of freedom of our model alkanes. In order to do so,
have performed single chain simulations using both confi
rational bias and the simple pivoting algorithm~random ro-
tations of a part of the chain about a chosen bond vect!.
Simulations have been performed for three selected alka
2,6,10,19,23-hexamethiltetracosane ~squalane!, 3,3-
dimethyl-4-ethylhexane and 4,8-dipropyldodecane at a t
perature of 600 K. As some of these alkanes are rather bu
we find it necessary to replace the hard-sphere sites
Lennard-Jones sites. The Lennard-Jones parameters use
those proposed by Poncelaet al.56 in order to mimic real
alkanes, but all the remaining geometrical parameters
torsional potentials are kept as described before. The re
for the mean squared end to end distance, mean squ
radius of gyration and number of torsional gauche ang
~i.e., those torsional angles lying in the interval@p/3,5p/3#!
are collected in Table II. Note also that two different varian
have been employed for the configurational bias simulatio
In one variant, sampling proceeds along a single comp
growth path chosena priori ~one-ccb!. In the other variant,
sampling is performed along all the possible growth pat
either complete or partial~all-ccb!, chosen randomly with
equal probability. As the table shows, both the pivoting a
the configurational bias methods yield essentially the sa
results. Note also that both of the configurational bias v
ants give the same results. In principle one needs not sele

TABLE II. Single chain simulations for selected alkanes.^R2& is the mean-
squared end to end distance~ends of the backbone!; ^S2& is the mean
squared radius of gyration;ng is the number of gauche angles and ‘‘accep
stands for the acceptance ratio~%!. ‘‘all-ccb’’ stands for the configurational
bias simulations with all possible growth paths chosen with equal proba
ity. ‘‘one-ccb’’ stands for the CB simulations when growth is perform
always along the same complete growth path. The numbers in parent
are a measure of the error in the last digit as measured by a single sta
deviation. All distances measured in units of thes parameter of a CH2
group.

^R2& ^S2& ng % accept

3,3-dimethyl-4-ethylhexane
all-ccb 2.21~4! 0.3412~2! 8.0001~2! 30
one-ccb 2.20~2! 0.3409~3! 8.000~0! 1.4
pivoting 2.23~3! 0.3406~1! 8.0001~1! 32

4,8-dipropyldodecane
all-ccb 5.66~1! 1.0086~6! 9.03~1! 56
one-ccb 5.64~1! 1.0091~5! 9.021~6! 31
pivoting 5.62~3! 1.010~1! 9.02~1! 58

squalane
all-ccb 15.7~1! 2.44~1! 14.59~1! 37
one-ccb 15.4~1! 2.42~1! 14.59~2! 20
pivoting 15.5~2! 2.41~2! 14.62~3! 58
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random the growth paths used to sample the torsional ang
However, always using the same path may result in p
sampling. This can be seen from the results for 3,3-dimeth
4-ethylhexane, where the acceptance rate along the a
trarily chosen~complete! growth path is only 1.4%. Allow-
ing for a choice of different growth paths may result in
large increase of the acceptance rate. For this very bu
branched alkane, allowing for a choice of growth paths
sults in an increase of the acceptance rate of one orde
magnitude.

C. Simulations

All of the simulation results were obtained using a cub
box of 108 molecules in the constant pressure~NPT! en-
semble. Production runs of 40 000 cycles were preceded
equally long equilibration periods for each thermodynam
state. Each cycle consists of 108 canonical~NVT! trial
moves, and one volume change attempt. The NVT mo
were chosen in the proportion 5:5:9:1 from the followin
choices:~1! Center-of-mass translation of the molecule;~2!
rotation of the molecule about a randomly chosen axis ac
an atom of the molecule chosen at random;~3! rotation of
one or more torsional angles using configurational bias;~4!
full chain re-growth using configurational bias for all th
degrees of freedom of the chain. The simulations w
started by arbitrarily choosing one molecular conformat
and replicating it in space as if it were ana-N2 lattice. The
volume was chosen big enough so as to avoid overlapp
The isotherms were then produced by gradual compress
Some expansion runs were also performed and found
agree with the compression. Due to the use of configu
tional bias and linked cell lists, the cost of a simulatio
strongly depends on the state density. Each of the isothe
produced required between 24 and 36 hours of CPU tim
a 350 MHz processor, depending on the size of the m
ecules, but little on the number of branches. Our general
code has been tested by comparing with the literature
rigid models,57 flexible hard alkanes,58,70 soft alkanes,59 and
Lennard-Jones united atom alkanes.60 Good agreement wa
found in all cases.

IV. EQUATION OF STATE FOR BRANCHED ALKANES

The first order thermodynamic perturbation theory
Wertheim ~TPT1! allows to express the free energy of a
associating system in terms of the properties of a refere
fluid with no association.4 When one considers the limit o
complete association, TPT1 yields an expression for
equation of state of chain molecules.5,61 For the case of a
fluid made of chains of tangent hard spheres, TPT1 yield5,9

Z5n
11y1y22y3

~12y!3 2~n21!
11y2y2/2

~12y!~12y/2!
, ~27!

wheren is the number of tangent hard spheres in the cha
while y is the packing fraction, given as the product of t
molecular volume,vmol and the number density,r.

This simple equation has been shown to give a rat
accurate description of tangent hard spheres.5 In practice,
however, actual molecules are modeled with interaction s

il-
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that overlap considerably, and are known to have rather
bond angles and a torsional potential that governs the mo
about bond vectors.53 Whereas the extension of the origin
TPT1 to such complicated geometries posses yet unso
problems, a number of empirical modifications of Eq.~27!
have been suggested that allow to describe more rea
chain molecules.12–17Essentially, all these approaches imp
the determination of an effective number oftangent hard
spheres in terms of geometrical properties of the actu
model under consideration.

One such approach is known as the modified Werth
equation~MW!. Here, the effective number of hard spher
is determined in such a way that the actual second v
coefficient of the molecule under consideration is correc
described. The original Eq.~27! is then rewritten as follows

Z5~2a21!
11y1y22y3

~12y!3 2~2a22!
11y2y2/2

~12y!~12y/2!
,

~28!

where the nonsphericity parameter,a, is a geometrical prop-
erty defined in terms of the second virial coefficient of t
molecule under consideration

B2 /vmol53a11. ~29!

The advantage of expressing Eq.~28! in terms ofa is that it
has a rather intuitive interpretation, as it measures to w
extent does a molecule deviate from sphericity.

Initially, Eq. ~28! was used to describe realistic mode
of n-alkanes up to 8 carbon atoms and shown to give ra
satisfactory results.17 The main drawback of this treatment
that, for long chains, the computation ofB2 may become
rather time consuming. To avoid this difficulty, we have pr
posed a method based on convex body geometry~CBG! that
allows to give very accurate estimates ofB2 for chains of up
to 100 interaction sites, as well as for models of branch
alkanes.18,62 When this method is used to determineB2 , it
can be shown that Eq.~28! yields a very good description o
model n-alkanes of up to 30 carbon atoms.18 For details of
the method, the reader is referred to the original papers.18,62

Here, it suffices to say that the proposed methodology allo
to determineB2 from knowledge of single chain propertie
alone, namely, the surface, volume, and principal mome
of inertia. Other required geometrical properties, such as
volume and surface of each conformer may be calcula
using an algorithm due to Dodd and Theodorou.63

Another empirical modification of Eq.~27! was sug-
gested by Zhou, Hall, and Stell.16 These authors determin
the number of effective tangent hard spheres of the chai
such a way that the effective fluid has the same surface
volume as the molecules under consideration. It then follo
that the effective number of tangent hard spheres is given

ne f5
smol

3

36pvmol
2 , ~30!

where smol is the surface of the molecule under consid
ation.

In order to facilitate subsequent discussion, it is con
nient to keep the form of the original MW equation@Eq.
~28!#. When this is done, the Zhou–Hall–Stell methodolo
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for the prediction of the number of effective tangent ha
spheres amounts to the following alternative definition fora:

a5
1

2 S smol
3

36pvmol
2 11D . ~31!

In the next section, we will test the performance of the M
equation of state@Eq. ~28!# when applied to the descriptio
of branched model alkanes. We will refer to MW1 when t
definition of a is as in Eq.~29!, and to MW2 when the
definition of a is as in Eq.~31!.

In order to obtain the geometrical properties required
the MW equation of state~i.e., B2 andvmol for MW1; vmol

andsmol for MW2!, one needs to make thermal averages
such properties over all possible molecular conformations
principle, this would require rather complicated integratio
However, the intramolecular potential restricts the values
the torsional degrees of freedom to very narrow regions
accordance with the rotational isomeric state approxima
~RIS!, we can therefore, consider that each torsional deg
of freedom adopts either of three possible discrete sta
known ast, g1, andg2.53 The number of possible states
the molecule is then 3n, wheren is the total number of tor-
sional degrees of freedom. For alkanes of up to eight car
atoms, the total number of possible states is then not la
than 243, so that the geometrical properties may be de
mined as an exhaustive Boltzmann average over all the
sible states. For larger chains, the averages require use
Monte Carlo sampling procedure. Both of these two pos
bilities have been considered in detail elsewhere, and
refer the reader to those papers for further explanations.18,62

V. RESULTS AND DISCUSSION

A. Results for model alkanes

Note that all of the interaction sites are hard spheres
the model is not athermal due to the torsional potential.
of the simulations considered in this section were obtaine
T5366.88 K. In Table III we present the geometrical para
eters required in the MW EOS for several isomers of hexa
heptane, and octane.aMW1 stands for the nonsphericity pa
rameter when defined as in Eq.~29! and determined by
means of the CBG method, whileaMW2 is the nonsphericity
parameter when defined as in Eq.~31!. Within a given group
of isomers, bothaMW1 and aMW2 show similar trends,
gradually decreasing as the number of branches increa
Obviously, as the interaction sites of ann-alkane are re-
moved from the ends and placed closed to the center
might expect that the molecules become more spherical,
the decrease in the nonsphericity parameter reflects this
Note, however thataMW1 seems to be more sensitive to th
molecular shape thanaMW2 as it takes larger values for th
more anisotropic values, and smaller values for the m
spherical ones. As an example, consider the octane isom
where it is seen that the values ofaMW1 range from 1.578 for
n-octane, to 1.236 for 2,2,3,3-tetramethylbutane; on the o
hand, the corresponding values foraMW2 range from 1.517
to 1.340. At any rate the variations ofaMW1 and aMW2

within a group of isomers is always much larger than th
shown by the molecular volume, which is seen to change
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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more than 2%~with the exception of cyclohexane which
not really an-hexane isomer in the sense that it has a diff
ent chemical formula!.

The fact that volume changes are much smaller t
nonsphericity changes in our alkane models is quite inter
ing because it will allow us to discuss the variation of t
EOS of the isomers as a function of the molecular anisotr
alone.

As a final point, Table III shows the nonsphericity p
rameter as defined from Eq.~29! when determined exactly
from the true second virial coefficients of the molecule
Note thataexactmay only be compared withaMW1, asaMW2

has a different definition. What is seen by comparingaexact

with aMW1 is that the CBG method proposed does give
deed very good and reliable estimates foraexact and so for
the second virial coefficient of the molecules. This go
agreement was already observed in a previous paper.62

Let us now consider the EOS of several different isom
of the alkane series. In Fig. 3 we show the EOS of all
hexane isomers, i.e., n-hexane, 2-methylpentane
3-methylpentane, 2,3-dimethylbutane, and 2
dimethylbutane, as well as that of cyclohexane. The symb
are the results as obtained from simulation, while the
lines are the predictions from MW1 and the dashed l
those from MW2. Note that forn-hexane and the two meth
ylpentanes both MW1 and MW2 show excellent agreem
with simulation. For 2,3 and 2,2 dimethylbutane the agr
ment between theory and simulation is also very good,
though some differences between MW1 and MW2 beco
apparent. Finally, the predictions for cyclohexane are see

TABLE III. Parameters required for the evaluation of the MW equation
state atT5366.88 K. aexct is the nonsphericity parameter as defined fro
MW1 @Eq. ~29!# and determined from the exact second virial coefficie
amw1 is the nonsphericity parameter as defined from MW1 and determ
from the methodology proposed in Refs. 18 and 62.amw2 is the nonsphe-
ricity parameter as defined from MW2@Eq. ~31!#. vmol is the molecular
volume in units of the hard-sphere diameter.

Alkane aexct amw1 amw2 vmol /d
3

Hexane isomers
n-hexane 1.388 764 1.384 190 1.353 67 2.027 16
2-methylpentane 1.342 432 1.326 175 1.331 79 2.020 6
3-methylpentane 1.299 319 1.286 616 1.309 04 2.014 4
2,3-dimethylbutane 1.260 096 1.242 015 1.289 64 2.008 4
2,2-dimethylbutane 1.244 580 1.228 991 1.283 58 2.006 0
cyclohexane 1.148 527 1.147 430 1.159 66 1.832 72

Heptane isomers
n-heptane 1.481 831 1.474 216 1.4351 2.326 57
3-methylhexane 1.400 875 1.381 213 1.395 59 2.314 94
3-ethylpentane 1.365 731 1.344 971 1.379 17 2.310 33
2,3-dimethylpentane~R! 1.324 803 1.303 196 1.356 53 2.303 199
3,3-dimethylpentane 1.278 768 1.264 449 1.330 16 2.294 8
2,2,3-trimethylbutane 1.255 534 1.233 229 1.316 36 2.290 1

Octane isomers
n-octane 1.573 728 1.578 162 1.517 28 2.625 89
4-methylheptane 1.507 777 1.489 392 1.4845 2.615 95
3-ethylhexane 1.469 124 1.449 776 1.467 49 2.611 09
2,5-dimethylhexane 1.460 839 1.448 761 1.468 14 2.610 6
2,2,3-trimethylpentane~S! 1.324 832 1.309 049 1.3856 2.584 962
3-ethyl-3-methylpentane 1.318 695 1.313 148 1.379 36 2.583 7
2,2,3,3-tetramethylbutane 1.250 243 1.236 054 1.339 63 2.569 5
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be once more very good. Note, however, that cyclohex
departs somewhat from the previous models because
have considered it a rigid molecule in the cha
configuration.49

Figure 4 shows the EOS of the heptane isomers. N
that, as the chain length increases, the number of poss
isomers increases dramatically and here we consider six
of the nine possible isomers. Our choice is such, howe
that we consider all of the possible architectures: The lin
isomer, n-heptane; the only isomer with an ethyl grou
3-ethyl-pentane; one out of the two isomers with a sin
methyl group, 3-methylethane; two out of the four dimeth
isomers, 2,3-dimethylpentane, and 3,3-dimethylpentane;
finally, the most highly branched isomer, 2,2,
trimethylbutane. Once more, both MW1 and MW2 are se
to be in very good agreement with the simulation resu
However, it seems that MW1 slightly underestimates
EOS of the more branched isomers, while MW2 shows h
very good predictions for all of the isomers.

When it comes to the octane isomers, there are a tota
18, and here we just consider six representative members
linear isomer,n-octane; one ethyl isomer, 3-ethylhexane; o
methyl isomer, 4-methylheptane; one of the dimethyl is
mers, 2,5-dimethylhexane; one methyl-ethyl isomer, 3
ethylmethylpentane; and finally the more branched isom
2,2,3,3-tetramethylbutane. The theoretical prediction
these isomers are shown in Fig. 5. For the first four isom
considered, the agreement between theory and simulatio

f

.
d

FIG. 3. Compressibility factors of hexane isomers as a function of
packing fraction. Symbols are results from NpT MC simulations of t
work, while the lines are predictions from MW1~full line! and MW2
~dashed line!. Note that packing fractions may be converted back to den
ties using the molecular volumes of Table III.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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seen to be excellent and the results for MW1 and MW2
hardly distinguishable. For the two remaining isomers, d
ferences between MW1 and MW2 become apparent, w
MW2 predicting somewhat higher compressibility facto
than MW1. Overall, both MW1 and MW2 are shown to giv
rather reliable predictions for the compressibility factor, d
spite the fact that we have considered a rather broad rang
packing fractions, fromy50 to y50.5, close to the expecte
fluid–solid transition.58

An interesting issue that was not possible to consider
examining Figs. 3–5 is to what extent do the compressibi
factors of the isomers of a given alkane differ. Actually, t
differences are rather small and would have hardly been
preciated if plotted in the same graph. For this reason
proves more convenient to consider Tables IV–VI, whi
show the simulation results for the isomers of hexane, h

FIG. 4. As in Fig. 3 but for heptane isomers.
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tane and octane. To be specific, let us consider Table
where the EOS of heptane isomers is shown. What is cle
made apparent at first sight, by horizontal inspection of
table is that indeed the EOS of the different isomers is v
similar. Comparing pairs of contiguous columns, such as
of 2,3-dimethylpentane (r3) and 3-ethylpentane (r4), it
would seem that the EOS is identical within simulation err
The great similarity between the EOS of isomers of repuls
alkanes was already observed by Searet al. for models made
of tangent spheres.64 A closer inspection at Table V, how
ever, will show interesting systematic trends which are
fact predicted by both MW1 and MW2. Indeed, by taking
look at Eq.~28! one concludes that, for a given pressure,
smaller the nonsphericity, the larger the packing fraction. A
cordingly, if the molecular volumes are constant or nearly
the larger isa the smaller the density. To test this predictio

FIG. 5. As in Fig. 3 but for octane isomers.
re,

tion.
TABLE IV. Equation of state of hexane isomers atT5366.88 K as obtained from simulation. The pressu
p/kBT, is given in units ofd3, as well as the densities. From left to right, cyclohexane (r1), 2,2-dimethylbutane
(r2), 2,3-dimethyllbutane (r3), 3-methylpentane (r4), 2-methylpentane (r5), andn-hexane (r6). The num-
bers in parenthesis are a measure of the error in the last digit as measured by a single standard devia

p/kBT r1 r2 r3 r4 r5 r6

0.05 0.036~3! 0.035~2! 0.036~2! 0.035~3! 0.035~2! 0.034~2!
0.10 0.060~3! 0.057~3! 0.057~3! 0.056~3! 0.056~3! 0.055~3!
0.50 0.141~4! 0.128~3! 0.128~3! 0.128~3! 0.124~5! 0.125~4!
1.00 0.182~4! 0.165~4! 0.165~3! 0.164~4! 0.162~3! 0.160~4!
2.00 0.223~4! 0.204~4! 0.202~4! 0.201~3! 0.197~3! 0.198~3!
3.00 0.251~3! 0.226~3! 0.225~3! 0.224~2! 0.222~3! 0.220~2!
4.00 0.268~3! 0.242~3! 0.241~4! 0.240~2! 0.236~3! 0.234~2!
5.00 0.281~3! 0.254~3! 0.255~2! 0.252~3! 0.248~3! 0.249~2!
6.00 0.290~2! 0.261~2! 0.262~2! 0.263~3! 0.259~2! 0.257~1!
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Downloaded 26 
TABLE V. Equation of state of heptane isomers. The densities are, from left to right, 2,2,3-trimethylb
(r1), 3,3-dimethylpentane (r2), 2,3-dimethylpentane (r3), 3-ethylpentane (r4), 3-methylhexane (r5), and
n-heptane (r6). Rest of notation as in Table IV.

p/kBT r1 r2 r3 r4 r5 r6

0.05 0.034~2! 0.034~2! 0.033~2! 0.034~2! 0.033~2! 0.033~2!
0.10 0.053~3! 0.053~3! 0.053~3! 0.053~3! 0.052~2! 0.051~3!
0.50 0.119~3! 0.117~4! 0.116~4! 0.115~3! 0.114~3! 0.112~3!
1.00 0.151~3! 0.149~3! 0.149~3! 0.147~3! 0.145~3! 0.144~3!
2.00 0.183~2! 0.183~2! 0.182~2! 0.180~2! 0.180~2! 0.175~2!
3.00 0.202~2! 0.203~3! 0.201~2! 0.199~2! 0.199~1! 0.195~2!
4.00 0.216~2! 0.217~3! 0.213~2! 0.210~2! 0.211~2! 0.208~2!
5.00 0.227~2! 0.226~2! 0.225~2! 0.222~1! 0.222~2! 0.219~1!
6.00 0.237~1! 0.234~2! 0.234~2! 0.231~2! 0.230~1! 0.227~2!
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Table V collects the EOS of heptane isomers, arranged
columns from the isomer with smallera ~left!, to the isomer
with highera ~right!. Inspection of the last row of this table
where the differences are more apparent, shows that ind
the larger the nonsphericity, the smaller the density at a fi
pressure. What we can conclude from these consideratio
that MW1 and MW2 are not only able to give good quan
tative predictions for the EOS. They are also able to desc
very fine differences that are found between the differ
isomer of a given alkane.

B. Results for chains with different bond lengths

Previously, we have seen that both MW1 and MW2 a
able to correctly estimate the equation of state of a la
number of branched alkanes. Here we will consider whet
these equations of state may be also applied to other mo
with larger bond lengths. To this end, we have perform
simulations for athermal linear alkanes withn516. The
bond angles are set again to the tetrahedral value, bu
torsional potential allows for a free rotation about the bo
vectors~i.e., uniform torsional potential!. Four different bond
lengthsl 0 /d are considered, namely,l 0 /d50.4, 0.6, 0.8, 1.

In Table VII we collect the molecular parameters r
quired to apply MW1 and MW2. The results obtained fro
simulation are collected in Table VIII. Comparison with th
theoretical equations of state may be seen in Fig. 6, wh
the pressure (rd3/kBT) is plotted as a function of the num
ber density,rd3. For the smallest bond length,l 0 /d50.4,
the figure shows that both MW1 and MW2 yield very go
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agreement. For larger bond lengths~0.8 and 1.0! MW1 fails
clearly, while MW2 in seen to be significantly better, yiel
ing rather reasonable results.

The reason for the discrepancy between MW1 and MW
at long bond distances may be traced back to the definitio
the effective number of tangent hard spheres. In both M
and MW2, ne f52a21. By construction, MW2 yieldsne f

5n in the limit wherel 05d, so that one recovers the orig
nal TPT1 result of Wertheim, which is known to be qui
accurate. On the other hand, using the definition ofa pro-
posed in MW1, one finds thatne f is significantly smaller
thann for l 05d.

It would appear that MW1 is a good equation of state
molecules with bond lengths between 0.4 and 0.6, but
cannot be used for larger bond lengths. Although we h
shown that MW1 gives good results for alkanes of up to
carbon atoms,18 a scaling argument shows that it shou
eventually fail for larger model alkanes. Indeed, it may
shown that MW1 predicts a compressibility factor that sca
asn3n21, wheren is the exponent for the scaling law of th
radius of gyration.62,65 For repulsive chains, we expect th
exponent to ben50.6, so that the compressibility factor
predicted to scale asn0.8. On the contrary, it is expected tha
the compressibility factor of large chain molecules will sca
linearly with n,66 so that MW1 must eventually fail for long
enough model alkanes. Despite of this failure, it is expec
that MW1 will give better results than MW2 at low densitie
as it introduces the exact second virial coefficient by co
struction. On the other hand, MW2 does not predict the c
utane
TABLE VI. Equation of state of octane isomers. The densities are, from left to right, 2,2,3,3-tetramethylb
(r1), 3-ethyl-3-methylpentane (r2), 2,5-dimethylhexane (r3), 3-ethylhexane (r4), 4-methylheptane (r5), and
n-octane (r6). Rest of the notation as in Table IV.

p/kBT r1 r2 r3 r4 r5 r6

0.05 0.033~2! 0.032~2! 0.032~2! 0.031~2! 0.031~2! 0.031~2!
0.10 0.051~3! 0.051~2! 0.049~3! 0.049~3! 0.048~2! 0.047~2!
0.50 0.110~4! 0.107~3! 0.104~3! 0.104~3! 0.102~2! 0.103~2!
1.00 0.139~3! 0.136~3! 0.131~2! 0.131~3! 0.132~2! 0.130~2!
2.00 0.169~3! 0.166~2! 0.161~2! 0.160~2! 0.160~3! 0.157~2!
3.00 0.186~2! 0.184~2! 0.178~2! 0.179~2! 0.176~2! 0.175~1!
4.00 0.202~2! 0.194~2! 0.191~2! 0.190~1! 0.189~1! 0.188~2!
5.00 0.214~2! 0.204~1! 0.199~1! 0.200~2! 0.199~2! 0.195~2!
6.00 0.222~2! 0.212~2! 0.207~2! 0.206~1! 0.207~2! 0.202~1!
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rect virial coefficients and we have observed that inde
yields worse results than MW1 at low densities.55 Actually,
MW2 and TPT1 are identical forl 51 and it has been re
cently shown that TPT1 produces rather inaccurate vi
coefficients.65

It is interesting to consider the compressibility facto
for l 0 /d51.0. For this elongation MW2 reduces to TPT
which is known to predict accurately the equation of state
the fully flexible pearl-necklace model.5 However, as seen, in
Fig. 5, MW2 ~i.e., TPT1! deviates significantly from the
simulation results for the tangent sphere model considere
this work. Clearly, the discrepancy is due to the fixed bo
angle, which is seen to have a negligible effect at low d
sity, but a very significant one at higher densities. Actua
the pearl necklace model is known to have a crystal ph
with closed packed face-centered-cubic~fcc! arrangement of
monomers.67,68 However, fixing the bond angle to the tetr
hedral value prevents the formation of a closed packed c
tal and freezing thus takes place at much lower densitie58

Here we observe that the liquid phase already ‘‘feels’’ t
steric hindrance, which is reflected from the divergence
the compressibility factor.

TABLE VII. Molecular parameters for use in the MW1 and MW2 equatio
of state for linear chains with 16 monomers as a function of the bond len
l 0 . Rest of the caption as in Table III.

l 0 /d aexct amw1 amw2 vmol /d
3

0.4 1.932 2.044 2.0183 4.8311
0.6 2.741 3.040 3.4930 6.7439
0.8 3.86 4.165 5.2805 7.9380
1.0 5.65 5.910 8.5000 8.3776

TABLE VIII. Equation of state results for the athermal alkane model w
16 monomers as obtained from simulation.r1 , densities forl 050.6d; r2 ,
densities forl 050.8d; r3 , densities forl 051.0d. The results forl 050.4d
are not included, as they agree with the results of Yethiraj~Ref. 70! within
statistical accuracy. We supplement that data set with the state p
~p/kBT53.45,r50.102!. Pressure and density given in units ofd3.

p/kBT r1 r2 r3

0.010 0.0066 0.0058 0.0050
0.025 0.0119 0.0098 0.0083
0.050 0.0174 0.0139 0.0115
0.100 0.0237 0.0187 0.0152
0.500 0.0431 0.0332 0.0273
1.000 0.0526 0.0404 0.0338
2.000 0.0626 0.0487 0.0412
3.000 0.0686 0.0534 0.0458
4.000 0.0728 0.0569 0.0488
5.000 0.0761 0.0596 0.0503
6.000 0.0790 0.0615 0.0513
8.000 0.0635 0.0522

10.00 0.0644 0.0526
12.00 0.0651 0.0528
16.00 0.0659 0.0531
20.00 0.0662 0.0533
24.00 0.0534
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VI. CONCLUSIONS

In this paper we have considered the statistical therm
dynamics of model branched alkanes. We start with a ra
realistic Hamiltonian that contains bending and torsional
tentials, as well as excluded volume interactions. We sh
that within the classical flexible constraint approximatio
the configurational integral takes a simple form, namely,
integral of the Boltzmann factor of the remaining soft pote
tials. This follows from the fact that the Jacobian of th
transformation form Cartesian to generalized coordina
does not depend on the soft degrees of freedom.

We have then performed configurational bias simulatio
of several isomers of hexane, heptane, and octane. We
that, provided that the molecular volume of the isomers
similar, the equation of state changes but little. At any ra
the change is such that, at a given packing fraction, the la
the nonsphericity, the larger the pressure. Or, alternatively
a given pressure, the larger the nonsphericity, the smaller
corresponding equilibrium density.

We have tested two empirical modifications of We
theim’s TPT1 for the prediction of the equation of state. O
of these introduces an effective number of tangent h
spheres determined so as to reproduce the exact second
coefficient of the model~MW1!. The other, proposed by
Zhow, Hall, and Stell,16 uses an effective number of spher
such that both molecular surface and volume of the mo
are reproduced~MW2!. We find that both MW1 and MW2
provide a rather satisfactory agreement with simulations,
though MW2 has the advantage of being somewhat
computationally demanding. We have also studied the per
mance of these two equations of state as the bond le
changes. We find that MW2 gives rather good results for
reduced bond lengths between 0.4 and 1.0, while MW1 f
for reduced bond lengths larger than 0.6.

As an example of the usefulness of having an accu
equation of state for repulsive molecular models, let us c

FIG. 6. Compressibility factor for linear chains of 16 atoms and vary
bond lengths. Empty symbols are simulation results from this work. T
crosses are simulation results from Yethiraj70 for the same model andl
50.4. The full lines are predictions from MW1 while the dashed lines
predictions from MW2.
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sider a simple perturbation theory. Within the spirit of a v
der Waals~vdW! theory, we consider the MW form of th
equation of state and then add to this a simple mean-fi
perturbation term. The pressure then takes the form

p5pMW~r;vmol ,a!2avdwr2, ~32!

wherepMW is the pressure as predicted by the MW equat
of state. If we then apply the conditions for the critical poi
we find that the critical properties may be obtained in clo
form in terms of three molecular parameters, namely,vmol ,
the molecular volume,a, the nonsphericity, andavdw , the
van der Waals constant.

Vc5vmolVc* ~a!, ~33!

Tc5
avdw

kBvmol
Tc* ~a!, ~34!

pc5
avdw

vmol
2 pc* ~a!, ~35!

where Vc* , Tc* , and pc* are all dimensionless, universa
functions ofa. The explicit form of these functions is no
important. What matters is thatVc* is a monotonously in-
creasing function ofa, while Tc* and pc* are both monoto-
nously decreasing functions ofa. This knowledge is enough

TABLE IX. Dependence of the critical properties with the molecular para
eters as predicted from Eqs.~33!–~35!. ↗ and↘ indicate increase or de
crease of the critical property with respect to an increase of the corresp
ing molecular parameter, respectively. — indicates no effect of
molecular parameter on the critical property.

Critical
property

Molecular parameter

a vmol avdw

Vc ↗ ↗ —
Tc ↘ ↘ ↗
pc ↘ ↘ ↗
Zc ↘ — —
Downloaded 26 Sep 2001 to 147.96.5.37. Redistribution subject to AIP
ld

n
,
e

to use Eqs.~33!–~35! to make simple qualitative prediction
on the variation of the critical properties in terms of th
molecular parameters. As an example, Eq.~34! shows that
the smallera, the larger Tc . This explains why highly
branched alkanes such as 2,3,3,-trimethyloctane may ha
larger critical temperature thann-octane, when it is expecte
that the former should have a smaller van der Waals cons

Equations~33!–~35! may be considered as a succin
rationalization of the results we obtained in a previous pap
where we found that a mean-field theory could qualitativ
predict the critical properties of branched alkanes.28 Table IX
presents a summary of the conclusions drawn form th
equations.
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APPENDIX A: JACOBIAN OF THE TRANSFORMATION
FROM CARTESIAN TO GENERALIZED
COORDINATES IN BRANCHED ALKANES

In this Appendix we show that the Hamiltonian of th
transformation from Cartesian coordinates to generalized
ordinates in a branched alkane is independent of the torsi
degrees of freedom,$f%.

Consider a small fragment of some arbitrary branch
alkane, as shown in Fig. 7. This fragment is made of a lin
chain of atomsi 23, i 22, i 21, i. Now, let there be two
branched atoms,i 11 andi 12 bonded to atomi 21. Let the

-

d-
e

.

-

e

FIG. 7. Sketch of a branched alkane
u i , u i 11 , andu i 13 define bond angles
formed between atomsi, i 11, and i
12 and the backbone.a i 13 , a i 14 ,
and a i 15 are bond angles formed be
tween the bond vectorsr i , r i 11 , and
r i 12 . w i , w i 11 , andw i 12 ~not shown!
are dihedral angles that describe th
orientation of atomsi, i 11, andi 12
relative to the axis formed betweeni
22 andi 21.
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6234 J. Chem. Phys., Vol. 115, No. 13, 1 October 2001 MacDowell, Vega, and Sanz
set of polar coordinates that specify the position of atomi
relative to a reference frame formed from atomsi 21, i 22
and i 23 be l i , u i , andw i . Let there be similar setsl i 11 ,
u i 11 , andw i 11 for atom i 11 and similarly for atomi 12.
Note that polar anglesu correspond to bond angles, whi
azimuthal anglesw correspond to dihedral angles.

Using a local reference frame and an appropriate rota
matrix, the Cartesian coordinates of atomsi, i 11 and i 12
may be written as:53

r j5 l j~cosũ j ,sinũ j cosw j ,sinũ j sinw j !, ~A1!

whereũ j is the complementary of bond angleu j andj ranges
from i to i 12. The Jacobian of the transformation from Ca
tesian to polar coordinates for these three atoms may be
shown to be

Jc→p5)
j 5 i

i 12

l j
2 sinu j . ~A2!

The Jacobian from Cartesian to polar coordinates for
atom belonging to a linear chain has been already consid
by Go and Scheraga.44 Note that what is obtained here is th
product of the Jacobians for the last atom of the three lin
sequences (i 23)2( i 22)2( i 21)2 i , (i 23)2( i 22)2( i
21)2( i 11), and (i 23)2( i 22)2( i 21)2( i 12).

The set of polar coordinates used to describe atomsi, i
11, i 12 is not convenient, however. The reason is th
owing to the branches new bond anglesa i 13 , a i 14 , and
a i 15 appear~see Fig. 7!. These bond angles have a corr
sponding hard potential, and it would be desirable to hav
set of generalized coordinates that explicitly accounts
them. In order to proceed, we take the scalar productr i

•r i 11 , r i•r i 12 , r i 11•r i 12 and obtain
n

Downloaded 26 Sep 2001 to 147.96.5.37. Redistribution subject to AIP
n

-
en

n
ed

ar

t,

-
a
r

cosa i 121k5cosũ i cosũ i 1k1sinũ i sinũ i 1k cosD i 1k ,
~A3!

cosa i 155cosũ i 11 cosũ i 121sinũ i 11 sinũ i 12

3cos~D i 112D i 12!, ~A4!

wherek is either 1 or 2 andD i 1k5w i 1k2w i .
Note that the set of Eqs.~A3! and ~A4! immediately

suggest a very convenient new set of coordinates,u i , u i 11 ,
u i 12 , D i 11 , D i 12 , w i , which completely specify the posi
tion of atomsi, i 11, andi 12. We choose to call these th
internal set of coordinates. Note already that with the inter
set of coordinates all of the bond angles may be expres
independently of the dihedral anglew i . The transformation
from polar to internal coordinates is trivial, and the corr
sponding Jacobian can be seen to beJp→ i51.

These set of coordinates is, however, still nonconvenie
because the bending potentials will become complica
functions ofD i 11 , D i 12 . For this reason, we choose a set
generalized coordinates,a i , a i 11 , a i 12 , a i 13 , a i 14 , f,
made of five of the six bond angles, and one single torsio
degree of freedom,f

u i5a i , ~A5!

u i 115a i 11 , ~A6!

u i 125a i 12 , ~A7!

D i 115D i 11~a i ,a i 11 ,a i 13 ,f!, ~A8!

D i 125D i 12~a i ,a i 12 ,a i 14 ,f!, ~A9!

w i5f. ~A10!

At first instance, it is convenient to write the Jacobian
this transformation formally
Ji→g5U 1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

S ]D i 11

]a i
D S ]D i 11

]a i 11
D 0 S ]D i 11

]a i 13
D 0 S ]D i 11

]f D
S ]D i 12

]a i
D 0 S ]D i 12

]a i 12
D 0 S ]D i 12

]a i 14
D S ]D i 12

]f D
0 0 0 0 0 1

U , ~A11!
m
t of

d

one then gets simply

Ji→g5S ]D i 11

]a i 13
D •S ]D i 12

]a i 14
D . ~A12!

The derivatives may be obtained by implicit derivatio
from Eq. ~A3!

S ]D i 1k

]a i 121k
D5

sina i 121k

sina i sina i 1kA12cos2 D i 1k

, ~A13!

where againk is either 1 or 2 and
cosD i 1k5
cosa i 121k2cosa i cosa i 1k

sina i sina i 1k
. ~A14!

Now, the Jacobian of the overall transformation fro
Cartesian to generalized coordinates is just the produc
Jc→p , Jp→ i , Ji→g , so that we finally get

Jc→g5 l i
2 sina i )

k51

2 F l i 1k
2 sina i 121k

sina i sinD i 1k
G . ~A15!

It is then seen thatJc→g only depends on the hard bon
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



he

al
e
in
s

,
q

m
m

p
h

q.
in

o,

ys

.

.

em.

Soc.

d A.

r is

een

-

rid,

ng,

6235J. Chem. Phys., Vol. 115, No. 13, 1 October 2001 Equation of state of model branched alkanes
angle variables, so that it is explicitly independent of t
remaining soft degree of freedom,f, a torsional angle. One
can therefore integrate out all of the hard variables in Eq.~7!
~not all the integrals overa i are trivial, however! and this
leads to the configuration integral of Eq.~8!. Also note that
when the bending potential is infinitely stiff, the intern
variablesD i 11 and D i 12 are completely specified by th
equilibrium values of the bond angles. The only remain
degree of freedom required to specify the state of atomi,
i 11, and i 12 is the torsional anglef, while the dihedral
anglew i 1k is given byw i 1k5f1D i 1k .

In order to obtain the Jacobian of the complete chain
suffices to substitute the upper limit of the productory of E
~A15! by h( i ), the number of branches of atomi. The com-
plete Jacobian is then obtained as a productory of Eq.~A15!
over all the atoms of the chain~less the three first!, following
a complete growth path as described previously. For ato
with h( i )50, we recover the simple Go–Scheraga ter
l i
2 sin(ai), that corresponds to a linear chain.44 Here we have

considered the general case of a branched alkane. Ap
ently, the less general case of an isobutane fragment
already been considered.69 Note also that the Jacobian of E
~A15! may be useful for effective sampling of bond angles
more detailed models with an explicit bonding potential.
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